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Abstract

:

The COVID-19 pandemic has caused widespread infections, deaths, and substantial economic losses. Vaccine development efforts have led to authorized candidates reducing hospitalizations and mortality, although variant emergence remains a concern. Peru faced a significant impact due to healthcare deficiencies. This study employed logistic regression to mathematically model COVID-19’s dynamics in Peru over three years and assessed the correlations between cases, deaths, and people vaccinated. We estimated the critical time (tc) for cases (627 days), deaths (389 days), and people vaccinated (268 days), which led to the maximum speed values on those days. Negative correlations were identified between people vaccinated and cases (−0.40) and between people vaccinated and deaths (−0.75), suggesting reciprocal relationships between those pairs of variables. In addition, Granger causality tests determined that the vaccinated population dynamics can be used to forecast the behavior of deaths (p-value < 0.05), evidencing the impact of vaccinations against COVID-19. Also, the coefficient of determination (R2) indicated a robust representation of the real data. Using the Peruvian context as an example case, the logistic model’s projections of cases, deaths, and vaccinations provide crucial insights into the pandemic, guiding public health tactics and reaffirming the essential role of vaccinations and resource distribution for an effective fight against COVID-19.
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1. Introduction


The coronavirus disease 2019 (COVID-19) pandemic began in Wuhan, China, in December 2019 [1]. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the first week of the pandemic, asymptomatic cases barely reached 1%. Among infected people, 81% had mild symptoms, 14% were severe, and 5% were critical or fatal [2]. Thus, since its emergence, this virus has spread rapidly worldwide, causing more than 676 million infections, 6.8 million deaths, 13.3 billion total vaccine doses administered, and trillions of USD in economic losses [3,4].



This disease presents some particular characteristics that have favored its spread and catastrophic impact: (1) the etiological agent, an RNA virus, which is endowed with evolutionary mechanisms such as a high mutation rate and genetic recombination [5]; (2) its long incubation period, which allows asymptomatic infected people to transmit the virus [6]; (3) susceptible individuals with a higher risk of fatality, including the elderly, immunosuppressed, and people with underlying diseases [7]; (4) various sources of contagion, including droplets from sneezing, coughing, and contact with or ingestion of contaminated objects [8].



Since the first reports of increased community spread, developing vaccines against COVID-19 has been a global struggle, including the participation of both the public and private sectors. Consequently, there are currently 382 vaccine candidates, including 199 in preclinical development and 183 in the clinical phase [9]. The emergency nature of the pandemic has stimulated the development of several vaccine platforms, including classical vaccines (i.e., live attenuated virus and inactivated virus) and new-generation vaccines (e.g., protein subunits, viral vectors, DNA, RNA, virus-like particles) [10].



Vaccine candidates that have successfully passed preclinical and clinical evaluations and been authorized for emergency use have significantly reduced hospitalizations and mortality rates [11]. However, the differences in the efficacy of the vaccines and the great mutational capacity of SARS-CoV-2 have allowed for the emergence of variants of concern with the ability of immunological evasion, leading to new waves of infection [12].



Peru was one of the countries most affected by the pandemic, due to deficiencies in its hospital system, and exhibited the highest infection–fatality ratio (IFR) [13]. The number of confirmed infections is over 4.5 million, while the deaths are over 220,000. The vaccines used in Peru are CoronaVac, AstraZeneca, Pfizer, Jansen, and Moderna. Over 89.5 million vaccine doses have been administered, and over 28.6 million people are fully vaccinated [3].



Mathematical modeling is a powerful tool that is used to study the spread of COVID-19 in many countries. Mathematical models can predict how the disease will spread over time by tracking the flow of individuals between different compartments, such as susceptible, infectious, recovered, and dead. Each of these types of models has its strengths and weaknesses [14]. SIR (susceptible–infected–recovered) models are relatively simple to understand and can be used to make quick predictions. However, they must consider the full complexity of the disease’s spread [15]. SEIR (susceptible–exposed–infected–recovered) models are more complex but can provide a more accurate picture of how a disease spreads [16,17]. SEIRD (susceptible–exposed–infected–recovered–dead) models are extensions of SEIR models that add a compartment for individuals who have died from the disease. This allows SEIRD models to track the entire course of an epidemic, from the early stages to the end [18,19].



Additionally, logistic models are curve-fitting models that can be used to fit a sigmoidal (S-shaped) curve to data. This curve is often seen in the spread of infectious diseases, as the number of cases typically increases slowly at first, then faster, and then slows down again as the population reaches herd immunity. One advantage of logistic models is that they are relatively simple to understand and use, and they can also be employed to predict an epidemic’s course. However, logistic models do not consider all of the factors that can influence the spread of a disease, such as the contact rate between individuals and the effectiveness of public health interventions [20,21]. Studies applying logistic regression have been successfully adapted to a wide range of COVID-19 research applications, including the assessment of clinical severity [22], risk analysis [23], the use of vaccines [24], and immune protection by neutralizing antibody levels [25], among others, highlighting the versatility and importance of this type of model.



The objective of this study was to use logistic regression to mathematically model the dynamics of COVID-19 in Peru during 30 months of the pandemic, encompassing cases, deaths, and people vaccinated. Furthermore, potential correlations were assessed between cases or deaths and the number of people vaccinated.




2. Materials and Methods


2.1. Data Collection


Raw data on infections, deaths, and people vaccinated in Peru were retrieved from the World Health Organization’s COVID-19 Dashboard [3]. These data included the period from 6 March 2020 to 20 March 2023. Data variables included total cases, total deaths, and people vaccinated.



To describe the epidemiological panorama of COVID-19 in Peru, we plotted the progression of the variables of cases, deaths, and people vaccinated throughout the selected period. The definition of these variables was as follows:




	
Cases: Total confirmed cases of COVID-19. Counts can include probable cases, where reported (from 6 March 2020 to 20 March 2023).



	
Deaths: Total deaths attributed to COVID-19. Counts can include probable deaths, where reported (from 6 March 2020 to 20 March 2023).



	
People vaccinated: Total number of people who received at least one vaccine dose (from 9 February 2021 to 20 March 2023).








All data is available in the supplementary file (Table S1).




2.2. Mathematical Modeling


Mathematical modeling was based on the empirical modeling theory of Bronshtein and Semendiaev and applied to logistic regression for estimating the dynamics of COVID-19 cases in Peru, encompassing cases, deaths, and people vaccinated. The logistic model was derived from the Verhulst–Pearl logistic model, which describes growth that is initially exponential but slows down as the population nears its carrying capacity [26,27].



The formula to calculate the dynamics of COVID-19 in Peru describes a logistic dispersion of the following form:


  N =  M   (  1 + Q ×  e  − k × t    )     



(1)




where “ M ” is the maximum number of cases, deaths, and people vaccinated, “ Q ” is a pre-exponential amount, “ k ” is a proportionality constant, “ t ” is the elapsed time (in days), and “ N ” is the number of cases, deaths, and people vaccinated, depending on the case.



The formula for calculating “ M ” for the three events involves three independent random values and their corresponding dependent values from the database, using the following formula:


  M =   A × B −  I 2    A + B − 2 I    



(2)







The first value (A) is the dependent variable value corresponding to the independent variable (   t 1   ), where the behavior presents an inflection point. If the inflection (mean) value obtained is not an integer, the next integer value is taken (through rounding). If this latter value is not present in the data table, the next higher value displayed—more significant than the obtained value—is considered, including the linked value.



The second value (B) is the dependent variable value corresponding to the last value of the independent variable (   t 2   ). The third value ( I ) is the dependent variable value related to the semi-sum of the independent variables    t 1    and    t 2   , denoted by    t 3  =    t 1  +  t 2   2   . If the mean value obtained is not an integer, the next integer value is taken (through rounding), and the latter value is considered, including the linked value.



The determined value of  M  is then replaced in the logistic model. If the value obtained is not an integer, the next integer value is taken (through rounding). The logistic model is mathematically linearized, and the least squares method is applied to adopt the form   l n  (   M N  − 1  )    l n Q + k × t  ; a linear equation   y = A + C x  , where   y = l n  (   M N  − 1  )   ,   x = t  , and   A = l n Q  .



The statistical process of linear regression can be performed by entering the ordered pairs    (  x , y  )    in the format    [   (   M N  − 1  )   ]   . Once all ordered pairs have been entered, we search for lnQ and k. The value of  k  is the slope of the linear equation; that is, the “ C ” value in the linear equation   y = A + C x  , where the value of  A  is   l n B   and, therefore,   Q =  e A   . During the same linear regression process, we evaluated the correlation statistic Pearson’s “  r ”  . To estimate the rates of cases, deaths, and people vaccinated (people/day) due to COVID-19 in Peru, we derived the determined logistic model, which takes the following form:


    d N   d t   =  [    M × Q × k ×  e  − k × t        (  1 + Q ×  e  − k × t    )   2     ]   



(3)







To determine the critical time (   t c   ) at which the number of cases, deaths, and people vaccinated with respect to COVID-19 will be the maximum value, we derive Expression (3), set it equal to zero, and determine the word:


   t c  = −  1 k  × ln  (   1 Q   )   



(4)







If the value obtained is not an integer, the next integer value is taken (through rounding), and the latter value is considered for estimating the searched value in the original model.



We used the tidyverse package in the  R  programming language in Rstudio IDE [28]. Tidyverse is a set of  R  packages designed to import, transform, visualize, and model the information used in data science processes. It contains the ggplot2 package used to make the graphs in this article.




2.3. Statistical Analysis


We used the nortest and stats packages in the  R  programming language within  R  Studio IDE. Nortest is a collection of  R  functions specifically designed for conducting normality tests, while stats encompass  R  functions dedicated to statistical tests and data analysis. Correlation tests were conducted to evaluate whether vaccines reduce infections and deaths. Before performing these tests, a normality test was conducted for each population (cases, deaths, and people vaccinated).



Additionally, the tseries and lmtest packages were used because they provide a series of specific functions for time-series analysis. The data collected were presented in the form of time series, because this is a process of continuous counting of the new daily values and cumulative values of our populations. The time series for each of our populations were subjected to stationarity analysis and, subsequently, the causal relationship between the dynamics of infected and deceased with respect to the vaccinated was analyzed.



2.3.1. Normality Tests for the Variables: Cases, Deaths, and People Vaccinated


To assess whether the data for each variable (cases, deaths, and people vaccinated) followed a normal distribution, hypothesis testing was conducted. These tests provide a p-value representing the probability of observing a data distribution similar to or even further from normality, assuming the null hypothesis indicates that the variable follows a perfect normal distribution in the population. If the p-value exceeds the significance level, there is insufficient evidence to reject the null hypothesis, suggesting that the variable follows a normal distribution [29]. Since the data in each population exceeded   N > 50  , the Kolmogorov–Smirnov test was performed using the lillie.test function from the nortest package for each population.



Hypothesis test:



Hypothesis 0 (H0).

The data follow a normal distribution.





Hypothesis 1 (H1).

The data do not follow a normal distribution.





A significance level (α) of 0.05 was set.




2.3.2. Correlation Test between People Vaccinated and Cases


Based on the normality test results, a correlation test was conducted using Spearman’s method, since the data in all populations did not follow a normal distribution [30]. The cor.test (vaccinations, daily_cases, method = “spearman”) function was employed to conduct the test.



Additionally, the cor (vaccinations, daily_cases, method = “spearman”) function was used to visualize the type of correlation (positive or negative), where a negative rho value indicates a negative correlation, while a positive rho value indicates a positive correlation.



Hypothesis test:



Hypothesis 0 (H0).

The variables are not correlated.





Hypothesis 1 (H1).

The variables are correlated.





A significance level (α) of 0.05 was set.



Correlation tests were conducted with real data and modeled data. For modeled data, the values for cases_velocity were employed instead of those for daily_cases.




2.3.3. Correlation Test between People Vaccinated and Deaths


Based on the normality test results, a correlation test was conducted using Spearman’s method, since the data in all populations did not follow a normal distribution [30]. The cor.test (people vaccinated, daily_deaths, method = “spearman”) was used to conduct the test. Additionally, the cor (people vaccinated, daily_deaths, method = “spearman”) function was employed to visualize the type of correlation (positive or negative), where a negative rho value indicates a negative correlation, while a positive rho value indicates a positive correlation.



Hypothesis test:



Hypothesis 0 (H0).

The variables are not correlated.





Hypothesis 1 (H1).

The variables are correlated.





A significance level (α) of 0.05 was set.



Correlation tests were conducted with real data and modeled data. For modeled data, the values for deaths_velocity were employed instead of those for daily_deaths.




2.3.4. Causality Tests for the Variables: Cases, Deaths, and People Vaccinated


In order to establish a causal relationship between the study variables (cases, deaths, and vaccinated), the Granger causality test was performed. This is a hypothesis test used to determine whether a time series is statistically and significantly useful for predicting the behavior of another time series [31,32,33].



This causality relationship, also known as Granger-causality, is because a cause precedes an effect, and because knowing how the history of one time series affects the dynamics of the other improves its prediction, i.e., strictly speaking, this causality relationship refers to the precedence and predictive capacity of one series over another. Therefore, when we state that a time series X causes another time series Y “in the Granger sense”, we mean that X is a statistically significant predictor of Y [31,32].



This test gives us a p-value from the F-statistic; if its value exceeds the given significance level, we can reject the null hypothesis, which suggests that time series X is useful for the prediction of series Y. The hypotheses and decision rule used are as follows:



Hypothesis 0 (H0).

Time series X does not cause (in the Granger sense) time series Y.





Hypothesis 1 (H1).

Time series X is a causal predictor of time series Y.





A significance level (α) of 0.05 was used.




2.3.5. Stationarity Tests for the Variables: Cases, Deaths, and People Vaccinated


Granger causality testing requires the time series to be stationary. To verify this requirement, we performed the augmented Dickey–Fuller (ADF) test, which checks for stationarity between a pair of time series. This test analyzed the stationarity in each of the time series studied (cases, deaths, and people vaccinated). In this test, if the p-value is less than the significance level, then we reject the null hypothesis and suggest that the series is stationary. The hypotheses to test for a time series X are the following:



Hypothesis 0 (H0).

Time series X is not stationary.





Hypothesis 1 (H1).

Time series X is stationary.





A significance level ( α ) of 0.05 was used.




2.3.6. Information Criteria for Determining the Lag-Orders


In the Granger test, the lag selected refers to the time lag that will be used to predict one time series from the other. On the other hand, the lag in the augmented Dickey–Fuller test refers to the number of lags in the difference of the time series, which is used to assess its stationarity. Therefore, the optimal lag selected for the Granger test cannot be used directly in the augmented Dickey–Fuller test.



Both the Granger causality test and the augmented Dickey–Fuller test require that a lag value be specified. For this purpose, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were used. These criteria are used to compare different models with different lag values and determine which one provides the best fit to the data, because their performance depends on the sample size and the lag order [32,34]. The information criteria penalize models that are more complex in terms of the number of lags included [35]. Therefore, by calculating these criteria for various lag values, one can identify the model that has the lowest value of AIC or BIC, which suggests that it is the best-fitting model for one’s data, i.e., the lag value that minimizes AIC or BIC is the one that is considered optimal according to these criteria.




2.3.7. Comparison of Modeled Variables against Real Data


To verify whether the mathematical model explained the behavior of the real data, the coefficient of determination    R 2    was calculated [30].    R 2    represents the proportion of the total variability in the response variable explained by the model. A value of    R 2    closer to 1 indicates a good fit of the model, suggesting that the model explains a large portion of the response variable’s variability. On the other hand, an    R 2    value close to 0 indicates that the model does not adequately explain the variability of the response variable. The following mathematical formula was employed to calculate    R 2   :    R 2  = 1 −  (  S S R / S S T  )   , where   S S R   (sum of squares residual) is the sum of the squared differences between the predicted values from the model and the actual values of the response variable, while   S S T   (sum of squares total) is the sum of the squared differences between the actual values of the response variable and its mean.






3. Results


3.1. Epidemiological Panorama of COVID-19 in Peru


The first case of COVID-19 in Peru was confirmed on 6 March 2020. Since then, the number of cases has been increasing. Five epidemiological waves reaching or exceeding ten cases (infections) per thousand were observed, with peaks around September 2020, April 2021, February and July 2022, and January 2023 (Figure 1).



Regarding deaths, the temporal progression of COVID-19 deaths in Peru from March 2020 to March 2023 is shown in Figure 2. The graph depicts the three distinct waves of death. Each wave is characterized by reaching or surpassing a threshold of 200 daily deaths.



The vaccination process in Peru began on 9 February 2021 and has taken into account the synchronic data from the beginning of the COVID-19 pandemic until 20 March 2023. The data of new daily and accumulated vaccinations are shown in Figure 3. This graph shows different vaccination cycles, which are characterized by peaks exceeding 100,000 daily vaccinations.



The epidemiological scenario for the cumulative data for the three variables simultaneously can be observed in Figure 4. The graph shows the temporal progression of COVID-19 cases, deaths, and people vaccinated in Peru from March 2020 to March 2023. The graph depicts the cumulative cases and people vaccinated per million, along with the cumulative deaths per hundred thousand.




3.2. Mathematical Modeling


The obtained parameters were summarized using the above methodology and procedures (Table 1). The table shows the values for cases, deaths, and people vaccinated obtained by the logistic model.



The detailed procedures for applying the model for cases, deaths, and people vaccinated are delineated in the following subsections:



3.2.1. Mathematical Modeling for Cases


The first value:    t 1  = 642   days; corresponds to   A = 2 , 245 , 146   people.



The second value,    t 2  = 1109   days; corresponds to   B = 4 , 489 , 377   people.



The third value:    t 3  =   642   +   1109  2  = 872   days; corresponds to   I = 3 , 889 , 092   people.



Now, replacing in (2):   M =   2 , 245 , 146   ×   4 , 489 , 377   −   3 , 889 ,   029  2    2 , 245 , 146   +   4 , 489 , 377   −   2   ×   3 , 889 , 029   = 4 , 834 , 759   people.



Then, the model   Q =  M   (  1   +   B   ×    e  − k × t    )      can be written as   Q =   4 , 874 , 759    (  1   +   B   ×    e  − k × t    )     .



Applying the least squares method to the expression   l n  (    4 , 834 , 759  Q  − 1  )  = A + k × t  , we can obtain the prediction or estimation model.


  Q =   4 , 834 , 759    (  1 + 66.6730 ×  e  − 0.0067 × t    )     



(5)







With a correlation coefficient   r = − 0.8554  , and deriving Equation (5), we can obtain the equation for the speed of infected people, expressed by Equation (6):


    d Q   d t   =  [    2 , 159 , 730.84 ×  e  − 0.0067 × t        (  1 + 66.6730 ×  e  − 0.0067 × t    )   2     ]   



(6)







Deriving Equation (5) and equaling to zero, we can determine the critical time (tc) for which the velocity of the infected people is maximum.


   t c  = − 1 / 0.0067 l n  (   1  66.6730    )  = 627   days  











Then,    t c  = 627   days, and the maximum speed is      (    d N   d t    )    m á x   = 8098   people/day (Figure 5).



For COVID-19 in Peru, the maximum rate of estimated cases was on 23 November 2021; the number of estimated cases was determined by Equation (5), and the rate of change or rate of estimated cases was determined by Equation (6).




3.2.2. Mathematical Modeling for Deaths


The first value:    t 1  = 343   days; corresponds to   A = 110 , 184   people.



The second value:    t 2  = 1109   days; corresponds to   A = 219 , 648   people.



The third value:    t 3  =   343   +   1109  2  = 726   days; corresponds to   I = 210 , 672   people.



Now, replacing in (2):   M =   110 , 184   ×   219 , 684   −   210 ,   672  2    110 , 184   +   219 , 684   −   2   ×   210 , 672   = 220 , 528   people.



Then, the model:   Q =   220 , 528    (  1   +   B   ×    e  − k × t    )     .



Applying the least squares method to the expression



  l n  (    220 , 528  Q  − 1  )  = A + k × t  , we can obtain the prediction or estimation model:


  Q =   220 , 528    (  1 + 25.1760 ×  e  − 0.0083 × t    )     



(7)




with a correlation coefficient   r = − 0.8902  . Deriving Equation (7), we can obtain the equation for the speed of dead people, expressed by Equation (8):


    d Q   d t   =  [    46 , 081.7073 ×  e  − 0.0083 × t        (  1 + 25.1760 ×  e  − 0.0083 × t    )   2     ]   



(8)







Deriving Equation (7) and equaling to zero, we can determine the critical time (tc) for which the velocity of the dead people is maximum.


   t c  = − 1 / 0.0083 l n  (   1  25.1760    )    = 389   days  











Then,    t c  = 389   days, and the maximum speed is      (    d N   d t    )    m á x     = 459   people/day (Figure 6).



For COVID-19 in Peru, the maximum rate of estimated fatalities was on 30 November 2021; the number of estimated deaths was determined by Equation (7), and the rate of change or rate of estimated deaths was determined by Equation (8).




3.2.3. Mathematical Modeling for People Vaccinated


The first value:    t 1  = 222   days; corresponds to   A = 15 , 348 , 800   people.



The second value:    t 2  = 769   days; corresponds to   B = 30 , 774 , 977   people.



The third value:    t 3  =   222   +   769  2  = 496   days; corresponds to   I = 29 , 556 , 095   people.



Now, replacing in (2):   M =   15 , 348 , 800   ×   30 , 774 , 977   −   29 , 556 ,   095  2    15 , 348 , 800   +   30 , 774 , 977   −   2   ×   29 , 556 , 095   = 30 , 429 , 043   people. Then, the model   Q =  M   (  1   +   B   ×    e  − k × t    )      can be written as   Q =   30 , 429 , 043    (  1   +   B   ×    e  − k × t    )     .



Applying the least squares method to the expression



  l n    (    30 , 429 , 043  Q  − 1  )  = A + k × t  , we can obtain the prediction or estimation model:


  Q =   30 , 429 , 043    (  1 + 35.0510 ×  e  − 0.0133 × t    )     



(9)




with a correlation coefficient   r = − 0.722  . Deriving Equation (9), we can obtain the equation for the speed of people vaccinated, expressed by Equation (10):


    d Q   d t   =  [    14 , 185 , 359.54 ×  e  − 0.0133 × t        (  1 + 35.0510 ×  e  − 0.0133 × t    )   2     ]   



(10)







Deriving Equation (9) and equaling to zero, we can determine the critical time (   t c   ) for which the velocity of the people vaccinated is maximum:


   t c  = − 1 / 0.0133 l n  (   1  35.0510    )  = 268   days  











Then,    t c  = 268   days, and the maximum speed is      (    d N   d t    )    m á x   = 101 , 175   people/day (Figure 7).



The maximum estimated rate of people vaccinated against COVID-19 in Peru was on 4 November 2021; the estimated number of people vaccinated was determined by Equation (9), and the estimated rate of change or rate of people vaccinated was determined by Equation (10). The epidemiological scenario based on the modeled data for the three variables simultaneously can be observed in Figure 8.



Once we had mathematically modeled all of the variables, it was possible to compare the progression of the real data with that of the modeled data for cases (Figure 9), deaths (Figure 10), and people vaccinated (Figure 11).





3.3. Statistical Analysis


3.3.1. Normality Tests for the Variables: Cases, Deaths, and People Vaccinated


The data for all three populations (cases, deaths, and people vaccinated) did not exhibit a normal distribution. The p-value for the “people vaccinated” data was   < 2.2 ×   10   − 16    , indicating rejection of the null hypothesis and that the data did not follow a normal distribution. The p-value for the “cases” data was <2.2 × 10−16, indicating rejection of the null hypothesis and that the data did not follow a normal distribution. The p-value for the “deaths” data was   < 2.2 ×   10   − 16    , indicating rejection of the null hypothesis and that the data did not follow a normal distribution.




3.3.2. Correlation Test between People Vaccinated and Cases


The correlation test was conducted to evaluate whether the number of people vaccinated influenced the decrease in the number of infections. For real data, the p-value obtained was   < 2.2 ×   10   − 16    , rejecting the null hypothesis and indicating a correlation between the variables. The cor() function yielded a rho value of   − 0.4001837  , indicating a negative correlation. This negative correlation implies that an increased number of people vaccinated corresponds to a decrease in cases. For modeled data, the results were similar; the p-value obtained was   < 2.2 ×   10   − 16    , rejecting the null hypothesis and indicating a correlation between the variables. The cor() function yielded a rho value of   − 0.4204788  , indicating a negative correlation. This negative correlation implies that an increased number of people vaccinated corresponds to a decrease in cases.




3.3.3. Correlation Test between People Vaccinated and Deaths


The correlation test was conducted to evaluate whether the number of people vaccinated influenced the decrease in deaths. For real data, the p-value was <2.2 × 10−16, rejecting the null hypothesis and indicating a correlation between the variables. The cor() function yielded a rho value of   − 0.7530406  , indicating a negative correlation. This negative correlation implies that an increased number of people vaccinated leads to decreased deaths. For modeled data, the p-value was <2.2 × 10−16, rejecting the null hypothesis and indicating a correlation between the variables. The cor() function yielded a rho value of   − 0.9977608  , indicating a negative correlation. This negative correlation implies that an increased number of people vaccinated leads to decreased deaths.



Furthermore, it should be noted that the rho value obtained in the cor() test conducted for the people vaccinated and deaths populations was lower than the rho value obtained in the cor() test conducted for the people vaccinated and cases, indicating that the negative correlation for people vaccinated and deaths was stronger than the negative correlation for people vaccinated and cases. This result was obtained in a similar way for both the real data and the modeled data. Therefore, increasing the number of people vaccinated has a greater impact on reducing deaths than reducing cases.




3.3.4. Information Criteria for Determining the Lag Orders


In determining the lag order for the augmented Dickey–Fuller stationarity test, each of the time series (cases, deaths, and people vaccinated daily) was subjected to a different lag order (from 1 to 25), and the values of AIC and BIC corresponding to each lag were obtained, choosing the lowest of them. These results are shown in Table 2.



The following lag-order values were selected for the time series of vaccinated, cases, and deceased: 9, 10, and 16, respectively.



In the case of the lag order for the Granger causality test, the minimum values of the AIC and BIC criteria found are shown in Figure 12 and Table 3, and all of the values found for the lag order range from 1 to 25 for the deaths–people vaccinated series.



In this case, we selected a lag order of 15 for both pairs of series.




3.3.5. Stationarity Tests for the Variables: Cases, Deaths, and People Vaccinated


The time series for all three populations (cases, deaths, and people vaccinated) can be considered stationary. According to the Dickey–Fuller test augmented with lag-order values of 9 (vaccinated), 10 (cases), and 16 (deaths), using the adf.test() function of the tseries package, we found p-values < 0.01 (that is, p-values < 0.05 (significance level)) for all three populations; therefore, we can reject the null hypothesis and establish that the three time series are stationary, i.e., they exhibit a constant variance over time.




3.3.6. Causality Tests between the Variables: Cases, Deaths, and People Vaccinated


Since the three time series were stationary, we proceeded to perform the Granger causality test for two pairs of series: cases–vaccinated and deaths–vaccinated. We analyzed both causality directions in each pair of series with a lag order of 15, using the grangertest (X, Y, order) function of the lmtest package; the following table (Table 4) shows the results:



Due to the p-value in the causality direction vaccinated → deaths being less than the significance level (α = 0.05), we can reject the null hypothesis, i.e., the values of the vaccinated people can be used to predict the values of the deaths. The other causality direction showed a p-value > 0.05; in these cases, we cannot reject the null hypothesis, i.e., there is no Granger causality between them.




3.3.7. Comparison of Modeled Variables against Real Data


The comparison of the real data with the data obtained by the mathematical model for cases, deaths, and people vaccinated resulted in the following coefficients of determination (   R 2   ):   0.9263022  ,   0.9099109  , and   0.9814848  , respectively. These values indicate that the mathematical model strongly represents the real data for all of the variables.






4. Discussion


The COVID-19 pandemic was an unprecedented catastrophe due to the emergence of the first pandemic-causing coronavirus and its uncontrollable spread, significantly mitigated only by using vaccines. Other contemporary social, political, and economic factors also influenced the impact. The intricate interplay of biological and non-biological factors contributed significantly to the transmission and dissemination of SARS-CoV-2, causing millions of cases and deaths worldwide. Due to the underlying dynamics of COVID-19, which exhibit variation across different geographical regions, we endeavored to employ mathematical modeling, specifically logistic regression, to analyze the dynamics of COVID-19 in Peru during three years of the pandemic period, encompassing cases, deaths, and people vaccinated. Additionally, we assessed potential correlations between cases or deaths and the number of people vaccinated.



Predicting and understanding infectious diseases’ behavior in epidemiology is critical for effective public health interventions and policymaking. Among the various modeling approaches, the logistic mathematical model has proven valuable for its simplicity, adaptability, and ability to capture the essential dynamics of disease progression in a wide range of COVID-19 research applications [22,23,24,25].



Mathematical modeling, specifically logistic regression, helps elucidate the dynamics of the COVID-19 pandemic in Peru over three years, encompassing data on cases, deaths, and people vaccinated. This research is further justified by the unique challenges posed by COVID-19, such as its rapid global spread, high mutation rate, and the emergence of variants that can evade immunity. While vaccines have been a pivotal tool in mitigating the pandemic’s effects, disparities in their efficacy and the virus’s mutational capabilities necessitate comprehensive modeling to predict future trends and inform public health strategies. Additionally, many publications endorse the logistic model’s usage for predicting COVID-19 cases, deaths, and vaccinations [36,37,38,39,40].



This study’s approach, rooted in the empirical modeling theory, employed logistic regression to estimate the dynamics of COVID-19 cases, deaths, and people vaccinated in Peru. The choice of a logistic model derived from the Verhulst–Pearl logistic model is apt for capturing growth patterns that start exponentially but decelerate as they approach a carrying capacity [27]. Such models are particularly suited for infectious diseases’ spread, where initial growth is rapid but slows down as factors like herd immunity come into play [14]. The detailed formulae, including the logistic dispersion and the method to calculate the maximum numbers of cases, deaths, and people vaccinated, offer a comprehensive mathematical framework. However, as highlighted by Kumari and Sharma [41], it would be beneficial to provide a rationale for the choice of specific parameters and constants, ensuring that the model’s assumptions align with the real-world dynamics of the disease.



In the logistic model, the critical time (tc) represents the maximum rate at which the population experiences infections, deaths, or vaccinations. It also signifies the inflection point of the logistic curve. From this point onward, the growth rate of the three cumulative populations begins to decrease, eventually stabilizing at their respective maximum values (i.e., the maximum numbers of cases, deaths, and people vaccinated). These critical times hold immense significance because they mark a reduction in the rate of infection or mortality, indicating that the epidemic is starting to come under control. It is imperative to maintain the conditions that foster this trend, such as increasing primary care, promoting preventive measures against contagion, and so on. Conversely, in the case of vaccinated individuals, this critical point suggests a change in vaccination policy. The vaccination rate has slowed down, which could be attributed to factors like vaccine shortages, saturation of the eligible population, or other causes. In addition, the implications of vaccination usage in our study help us to better understand its impact on the progression of the pandemic. This can indirectly provide insights into vaccine efficacy, potential resistance, and the need for booster doses or new formulations. Such knowledge can influence vaccine development, administration strategies, and patient counseling. From a broader public health perspective, these findings can guide strategic planning, allocation of resources, and public communication efforts.



This study’s utilization of the R programming language, and specifically the tidyverse package, is commendable [42]. Tidyverse is a robust toolset for data science processes, and its inclusion ensures rigorous data handling and visualization. However, as Mishra et al. noted [43], the statistical analysis section could benefit from a more in-depth exploration of the data’s characteristics before applying specific tests. While the normality tests and hypothesis testing are well structured, providing some descriptive statistics or preliminary visualizations would be advantageous to give readers a clearer understanding of the data’s distribution.



The correlation tests, focusing on the relationship between people vaccinated and cases or deaths, are crucial for understanding the vaccine’s impact. Spearman’s method is an appropriate choice given the non-normal distribution of the data [30]. However, discussing the implications of the correlation results in the context of public health and vaccination strategies would be beneficial. The present study identified vaccinations’ impact as negative correlations between vaccinated people and cases or deaths. Furthermore, the effect of vaccinations on reducing deaths was more pronounced, exhibiting a stronger negative correlation. The correlation concerning cases can be explained by the fact that vaccines do not prevent infections but, rather, mitigate them through a gradual decrease in antibodies among vaccinated individuals and new variants of SARS-CoV-2 with immune-evasion characteristics [11,12]. However, it is important to note that correlation only shows a reciprocal relationship between two variables and does not imply causality.



To determine the causality effect between two variables, some statistical strategies have been developed; for example, propensity score matching (PSM) is widely used in the epidemiological context when it is desired to minimize the bias of non-randomized studies and to determine the effects of control measures or treatments on populations of interest; however, this methodology is essentially applicable only to cross-sectional studies and requires cofounders or covariables to perform a robust study [44,45,46,47,48]. In addition, some methodologies have been implemented in time-varying treatment or exposure, but this methodology could be inappropriate [49,50]. Considering the nature of the variables addressed in this study, we implemented the Granger test to evaluate causality. In general, if the relevant variables and the relationships between them are known and can be formalized by means of vector autoregressive models (i.e., models that consider the past and present relationships of the variables, generally represented as difference equations), then the Granger test can be useful to study the level of predictability of one variable from another variable [51]. Since our data are in the form of time series (i.e., discrete values at regular, finite intervals, and with stationary characteristics), the Granger test can be applied. The Granger causality test allowed us to determine with statistical significance that the vaccinated population dynamics can be used to forecast the behavior of deaths. However, vaccination does not seem to have a direct effect on contagion and the spread of the disease; this is consistent with the characteristics of the vaccines applied in Peru, which were designed with the purpose of reducing the severity and, therefore, mortality, but not the contagion of the disease.



Despite the above, we must bear in mind that the causality test used is not free of bias, and that even when all of the requirements for its application are met, the results of the causality test must be interpreted in conjunction with the other components (i.e., the variables and relationships between them) of the system, in addition to the fact that nonlinear relationships between variables tend to diminish its reliability. Moreover, it does not take into account the effect of a third time series that could actually cause the behavior observed when analyzing pairs of populations [31,33]. In the context of our study, although a predictive effect of the dynamics of the vaccinated population with respect to the number of deaths was determined, the level of that effect was not estimated in comparison with other health measures, such as the implementation of pharmacological treatment for symptomatic patients, isolation, social distancing, the use of mechanical protectors, genetic and behavioral factors, etc. On the other hand, we should mention that since the model based on differential equations is a limiting case of equations in differences, causality in the Granger sense would give us evidence and indirect support to explicitly state this relationship in a mathematical model in differential equations with two or more variables and, therefore, extend the logistic model proposed to characterize the dynamics of each population.



Comparing modeled variables against real data using the coefficient of determination, R2, is critical in validating the model’s accuracy [52]. An R2 value close to 1 would indeed suggest a good fit, but as Härdle and Simar [53] emphasized, it is essential to interpret this in the context of the disease’s dynamics. Even a model with a high R2 might have limitations, especially if it does not account for external factors like public health interventions or behavioral changes in the population. It would be beneficial to juxtapose the R2 value with other goodness-of-fit metrics and perhaps compare the logistic model’s performance with other potential modeling approaches.



The inherent nature of the logistic model, which captures the sigmoidal (S-shaped) curve often seen in infectious diseases’ spread, makes it an appropriate choice. The initial slow rise, followed by a rapid increase and eventual plateauing, mirrors the real-world progression of many epidemics, including COVID-19 [54]. This is particularly significant given the unpredictable nature of the virus’s spread, influenced by factors such as public health interventions, behavioral changes, and vaccination rates. The logistic model’s ability to predict the potential carrying capacity (i.e., the maximum number of cases, deaths, or people vaccinated) is useful for policymakers and health officials to anticipate healthcare needs and strategize interventions.



Complex compartmental models like SIR, SEIR, and SEIRD offer detailed insights into disease dynamics, but they often require many parameters and assumptions. Conversely, the logistic model provides a straightforward approach to understanding the general trend of the epidemic without delving into the intricacies of disease transmission dynamics [14]. This makes it a powerful tool for quick assessments and predictions, especially when timely decisions are paramount.



While the logistic model offers many advantages, it is crucial to recognize its limitations. The model inherently assumes a symmetrical rise and fall, which might only sometimes align with real-world data, especially in the face of external interventions or the emergence of new variants [20]. Moreover, the model does not account for factors like contact rates between individuals or the effectiveness of public health measures. Therefore, while the logistic model provides a valuable overview, it should ideally be used with other models or data sources to better understand the epidemic’s dynamics.



Peru’s unique challenges during the pandemic have made it a focal point for international professionals. The nation presented the highest infection–fatality ratio during the most catastrophic months of the pandemic worldwide. Coupled with the challenges introduced by its healthcare system’s limitations, including the lesser quantities of mechanical respirators and intensive care units in the region, Peru offers a compelling case study for managing an outbreak under strained circumstances. Insights gained from Peru can be invaluable for nations with similar healthcare infrastructure or those facing similar external challenges. Moreover, understanding the effects of the pandemic on diverse populations, such as the Amazonian indigenous community in Peru, can shed light on disease dynamics in varied sociocultural contexts [55]. These findings can guide tailored interventions, resource allocation, and policymaking in other regions, emphasizing the universal relevance of localized studies [56].




5. Conclusions


This study concludes that mathematical modeling, particularly logistic regression, provided a valuable tool for analyzing the dynamics of COVID-19 in Peru over three years, focusing on cases, deaths, and vaccinations.



The identified critical times represented the maximum rates of cases, deaths, and vaccinations, signifying a shift in the epidemic’s dynamics towards stabilization. The significance of these points influences the understanding of disease dynamics by identifying the events that occurred before and after those rates, enabling timely measures for better pandemic control.



Negative correlations were observed between the number of people vaccinated and both cases and deaths, indicating a reciprocal relationship between these variables. Furthermore, according to the statistical evidence, it can be concluded that the dynamics of the vaccinated population is a good predictor to determine the behavior of the deceased; however, the effects of other variables (e.g., pharmacological treatment and non-pharmacological measures) as possible predictors of the deceased cannot be ruled out.



While the logistic model offered simplicity and quick assessments, it had inherent limitations when applied to real-world scenarios, such as assuming a symmetrical rise and omitting more complex or circumstantial variables.



Finally, insights from Peru’s unique pandemic challenges, including healthcare deficiencies and diverse populations, can provide valuable lessons for countries with similar infrastructure or external challenges. This can guide tailored interventions, resource allocation, and policymaking, emphasizing their universal relevance.








Supplementary Materials


The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/vaccines11111648/s1, Table S1: Real and modeled data on infections, deaths, and people vaccinated in Peru.





Author Contributions


Conceptualization, O.M.-M., R.D.C. and O.M.-S.; methodology, O.M.-M., R.D.C., N.A.-L. and O.M.-S.; software, N.A.-L. and O.M.-S.; validation, N.A.-L. and O.M.-S.; formal analysis, O.M.-M., R.D.C., N.A.-L., L.P.-T., P.P.-G. and O.M.-S.; investigation, O.M.-M., R.D.C., N.A.-L., L.P.-T., P.P.-G. and O.M.-S.; data curation, R.D.C. and O.M.-S.; writing—original draft preparation, O.M.-M., R.D.C., N.A.-L., L.P.-T., P.P.-G. and O.M.-S.; writing—review and editing, O.M.-M., R.D.C., N.A.-L., L.P.-T., P.P.-G. and O.M.-S.; visualization, N.A.-L., L.P.-T., P.P.-G. and O.M.-S.; supervision, R.D.C. and O.M.-S.; funding acquisition, O.M.-M. and O.M.-S. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding for its execution. The Vicerrectorado de Investigación of the Universidad Nacional Federico Villareal (UNFV) sponsored the publication fee.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Raw data on infections, deaths, and vaccinations for Peru were retrieved from the World Health Organization’s COVID-19 Dashboard [3]. These data included the period from 6 March 2020 to 20 March 2023.




Acknowledgments


We wish to thank the following bodies of the Universidad Nacional Federico Villareal (UNFV): Vicerrectorado de Investigación, Dirección General de Administración, Oficina Central de Planificación, and Oficina de Abastecimiento y Servicios Generales, for enabling the financing of the article processing charge (APC) in open access.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]

	



Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]

	



WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 20 March 2023).

	



Kolahchi, Z.; De Domenico, M.; Uddin, L.Q.; Cauda, V.; Grossmann, I.; Lacasa, L.; Grancini, G.; Mahmoudi, M.; Rezaei, N. COVID-19 and Its Global Economic Impact. Adv. Exp. Med. Biol. 2021, 1318, 825–837. [Google Scholar] [CrossRef] [PubMed]

	



Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The Evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef]

	



Jiang, X.; Rayner, S.; Luo, M.-H. Does SARS-CoV-2 Has a Longer Incubation Period than SARS and MERS? J. Med. Virol. 2020, 92, 476–478. [Google Scholar] [CrossRef]

	



Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]

	



Lotfi, M.; Hamblin, M.R.; Rezaei, N. COVID-19: Transmission, Prevention, and Potential Therapeutic Opportunities. Clin. Chim. Acta 2020, 508, 254–266. [Google Scholar] [CrossRef]

	



Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 Vaccine Development Landscape. Nat. Rev. Drug Discov. 2020, 19, 305–306. [Google Scholar] [CrossRef]

	



Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. JAMA 2021, 325, 1318–1320. [Google Scholar] [CrossRef]

	



Ghazy, R.M.; Ashmawy, R.; Hamdy, N.A.; Elhadi, Y.A.M.; Reyad, O.A.; Elmalawany, D.; Almaghraby, A.; Shaaban, R.; Taha, S.H.N. Efficacy and Effectiveness of SARS-CoV-2 Vaccines: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 350. [Google Scholar] [CrossRef]

	



Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; COVID-19 Genomics UK Consortium; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 Variant Biology: Immune Escape, Transmission and Fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [CrossRef] [PubMed]

	



COVID-19 Forecasting Team Variation in the COVID-19 Infection-Fatality Ratio by Age, Time, and Geography during the Pre-Vaccine Era: A Systematic Analysis. Lancet 2022, 399, 1469–1488. [CrossRef]

	



Bouchnita, A.; Chekroun, A.; Jebrane, A. Mathematical Modeling Predicts That Strict Social Distancing Measures Would Be Needed to Shorten the Duration of Waves of COVID-19 Infections in Vietnam. Front. Public Health 2020, 8, 559693. [Google Scholar] [CrossRef] [PubMed]

	



Alanazi, S.A.; Kamruzzaman, M.M.; Alruwaili, M.; Alshammari, N.; Alqahtani, S.A.; Karime, A. Measuring and Preventing COVID-19 Using the SIR Model and Machine Learning in Smart Health Care. J. Healthc. Eng. 2020, 2020, 8857346. [Google Scholar] [CrossRef] [PubMed]

	



He, S.; Peng, Y.; Sun, K. SEIR Modeling of the COVID-19 and Its Dynamics. Nonlinear Dyn. 2020, 101, 1667–1680. [Google Scholar] [CrossRef] [PubMed]

	



Ghostine, R.; Gharamti, M.; Hassrouny, S.; Hoteit, I. An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter. Mathematics 2021, 9, 636. [Google Scholar] [CrossRef]

	



Loli Piccolomini, E.; Zama, F. Monitoring Italian COVID-19 Spread by a Forced SEIRD Model. PLoS ONE 2020, 15, e0237417. [Google Scholar] [CrossRef]

	



Fonseca i Casas, P.; García i Carrasco, V.; Garcia i Subirana, J. SEIRD COVID-19 Formal Characterization and Model Comparison Validation. Appl. Sci. 2020, 10, 5162. [Google Scholar] [CrossRef]

	



Fang, Y.; Nie, Y.; Penny, M. Transmission Dynamics of the COVID-19 Outbreak and Effectiveness of Government Interventions: A Data-Driven Analysis. J. Med. Virol. 2020, 92, 645–659. [Google Scholar] [CrossRef]

	



Attanayake, A.M.C.H.; Perera, S.S.N.; Jayasinghe, S. Phenomenological Modelling of COVID-19 Epidemics in Sri Lanka, Italy, the United States, and Hebei Province of China. Comput. Math. Methods Med. 2020, 2020, 6397063. [Google Scholar] [CrossRef]

	



Wolter, N.; Jassat, W.; Walaza, S.; Welch, R.; Moultrie, H.; Groome, M.; Amoako, D.G.; Everatt, J.; Bhiman, J.N.; Scheepers, C.; et al. Early Assessment of the Clinical Severity of the SARS-CoV-2 Omicron Variant in South Africa: A Data Linkage Study. Lancet 2022, 399, 437–446. [Google Scholar] [CrossRef] [PubMed]

	



Venancio-Guzmán, S.; Aguirre-Salado, A.I.; Soubervielle-Montalvo, C.; Jiménez-Hernández, J.D.C. Assessing the Nationwide COVID-19 Risk in Mexico through the Lens of Comorbidity by an XGBoost-Based Logistic Regression Model. Int. J. Environ. Res. Public Health 2022, 19, 11992. [Google Scholar] [CrossRef] [PubMed]

	



Shmueli, L. Predicting Intention to Receive COVID-19 Vaccine among the General Population Using the Health Belief Model and the Theory of Planned Behavior Model. BMC Public Health 2021, 21, 804. [Google Scholar] [CrossRef]

	



Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing Antibody Levels Are Highly Predictive of Immune Protection from Symptomatic SARS-CoV-2 Infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]

	



Kot, M. Elements of Mathematical Ecology, 1st ed.; Cambridge University Press: Cambridge, UK, 2001; pp. 3–12. [Google Scholar]

	



Bacaër, N. Verhulst and the Logistic Equation (1838). In A Short History of Mathematical Population Dynamics, 1st ed.; Bacaër, N., Ed.; Springer: London, UK, 2011; pp. 35–39. [Google Scholar]

	



Wickham, H.; Bryan, J. R Packages, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2023; pp. 1–381. [Google Scholar]

	



Pereira, S.M.C.; Leslie, G. Hypothesis Testing. Aust. Crit. Care 2009, 22, 187–191. [Google Scholar] [CrossRef]

	



Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]

	



Amblard, P.-O.; Michel, O.J.J. The Relation between Granger Causality and Directed Information Theory: A Review. Entropy 2013, 15, 113–143. [Google Scholar] [CrossRef]

	



Bruns, S.B.; Stern, D.I. Lag Length Selection and P-Hacking in Granger Causality Testing: Prevalence and Performance of Meta-Regression Models. Empir. Econ. 2019, 56, 797–830. [Google Scholar] [CrossRef]

	



Stokes, P.A.; Purdon, P.L. A Study of Problems Encountered in Granger Causality Analysis from a Neuroscience Perspective. Proc. Natl. Acad. Sci. USA 2017, 114, E7063–E7072. [Google Scholar] [CrossRef]

	



Cheung, Y.-W.; Lai, K.S. Lag Order and Critical Values of the Augmented Dickey-Fuller Test. J. Bus. Econ. Stat. 1995, 13, 277–280. [Google Scholar] [CrossRef]

	



Kihoro, J.M.; Otieno, R.O.; Wafula, C. Seasonal Time Series Forecasting: A Comparative Study of Arima and Ann Models. Afr. J. Sci. Technol. 2004, 5, 41–49. [Google Scholar] [CrossRef]

	



Jewell, N.P.; Lewnard, J.A.; Jewell, B.L. Predictive Mathematical Models of the COVID-19 Pandemic: Underlying Principles and Value of Projections. JAMA 2020, 323, 1893–1894. [Google Scholar] [CrossRef] [PubMed]

	



Hsiang, S.; Allen, D.; Annan-Phan, S.; Bell, K.; Bolliger, I.; Chong, T.; Druckenmiller, H.; Huang, L.Y.; Hultgren, A.; Krasovich, E.; et al. The Effect of Large-Scale Anti-Contagion Policies on the COVID-19 Pandemic. Nature 2020, 584, 262–267. [Google Scholar] [CrossRef] [PubMed]

	



Chimmula, V.K.R.; Zhang, L. Time Series Forecasting of COVID-19 Transmission in Canada Using LSTM Networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef] [PubMed]

	



Anastassopoulou, C.; Russo, L.; Tsakris, A.; Siettos, C. Data-Based Analysis, Modelling and Forecasting of the COVID-19 Outbreak. PLoS ONE 2020, 15, e0230405. [Google Scholar] [CrossRef]

	



Petropoulos, F.; Makridakis, S. Forecasting the Novel Coronavirus COVID-19. PLoS ONE 2020, 15, e0231236. [Google Scholar] [CrossRef]

	



Kumari, N.; Sharma, S. Modeling the Dynamics of Infectious Disease under the Influence of Environmental Pollution. Int. J. Appl. Comput. Math 2018, 4, 84. [Google Scholar] [CrossRef]

	



Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]

	



Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]

	



Walzer, P.; Estève, C.; Barben, J.; Menu, D.; Cuenot, C.; Manckoundia, P.; Putot, A. Impact of Influenza Vaccination on Mortality in the Oldest Old: A Propensity Score-Matched Cohort Study. Vaccines 2020, 8, 356. [Google Scholar] [CrossRef]

	



Shiba, K.; Kawahara, T. Using Propensity Scores for Causal Inference: Pitfalls and Tips. J. Epidemiol. 2021, 31, 457–463. [Google Scholar] [CrossRef]

	



Zhong, H.; Li, W.; Boarnet, M.G. A Two-Dimensional Propensity Score Matching Method for Longitudinal Quasi-Experimental Studies: A Focus on Travel Behavior and the Built Environment. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2110–2122. [Google Scholar] [CrossRef]

	



Hardgrave, H.; Wells, A.; Nigh, J.; Klutts, G.; Krinock, D.; Osborn, T.; Bhusal, S.; Rude, M.K.; Burdine, L.; Giorgakis, E. COVID-19 Mortality in Vaccinated vs. Unvaccinated Liver & Kidney Transplant Recipients: A Single-Center United States Propensity Score Matching Study on Historical Data. Vaccines 2022, 10, 1921. [Google Scholar] [CrossRef] [PubMed]

	



Son, C.-S.; Jin, S.-H.; Kang, W.-S. Propensity-Score-Matched Evaluation of Adverse Events Affecting Recovery after COVID-19 Vaccination: On Adenovirus and mRNA Vaccines. Vaccines 2022, 10, 284. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, Z.; Li, X.; Wu, X.; Qiu, H.; Shi, H.; AME Big-Data Clinical Trial Collaborative Group. Propensity Score Analysis for Time-Dependent Exposure. Ann. Transl. Med. 2020, 8, 246. [Google Scholar] [CrossRef] [PubMed]

	



Wijn, S.R.W.; Rovers, M.M.; Hannink, G. Confounding Adjustment Methods in Longitudinal Observational Data with a Time-Varying Treatment: A Mapping Review. BMJ Open 2022, 12, e058977. [Google Scholar] [CrossRef] [PubMed]

	



Asghar, Z. Simulation Evidence on Granger Causality in Presence of a Confounding Variable. Int. J. Appl. Econom. Quant. Stud. 2008, 5, 71–86. [Google Scholar]

	



Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]

	



Härdle, W.K.; Simar, L. Conjoint Measurement Analysis. In Applied Multivariate Statistical Analysis, 2nd ed.; Härdle, W.K., Simar, L., Eds.; Springer: Berlin, Germany, 2015; pp. 473–486. [Google Scholar]

	



Mishra, B.K.; Keshri, A.K.; Saini, D.K.; Ayesha, S.; Mishra, B.K.; Rao, Y.S. Mathematical Model, Forecast and Analysis on the Spread of COVID-19. Chaos Solitons Fractals 2021, 147, 110995. [Google Scholar] [CrossRef]

	



Soto-Cabezas, M.G.; Reyes, M.F.; Soriano, A.N.; Rodríguez, J.P.V.; Ibargüen, L.O.; Martel, K.S.; Jaime, N.F.; Munayco, C.V. COVID-19 among Amazonian Indigenous in Peru: Mortality, Incidence, and Clinical Characteristics. J. Public Health 2022, 44, e359–e365. [Google Scholar] [CrossRef]

	



Grillo Ardila, E.K.; Santaella-Tenorio, J.; Guerrero, R.; Bravo, L.E. Mathematical Model and COVID-19. Colomb. Med. 2020, 51, e4277. [Google Scholar] [CrossRef]








[image: Vaccines 11 01648 g001] 





Figure 1. Epidemiological overview of daily cases and cumulative people vaccinated in three years of the COVID-19 pandemic in Peru. 
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Figure 2. Epidemiological overview of daily deaths and cumulative people vaccinated in three years of the COVID-19 pandemic in Peru. 
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Figure 3. Epidemiological overview of daily and cumulative people vaccinated in three years of the COVID-19 pandemic in Peru. 
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Figure 4. Epidemiological overview of cumulative cases, deaths, and people vaccinated in three years of the COVID-19 pandemic in Peru. 
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Figure 5. The velocity of the progression of COVID-19 cases represented by the red line. The graph depicts the critical time of the progression at which Peru had the maximum daily value for cases. 
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Figure 6. The velocity of the progression of COVID-19 deaths represented by the green line. The graph depicts the critical time of the progression at which Peru had the maximum daily value for deaths. 
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Figure 7. The velocity of the progression of people vaccinated for COVID-19 represented by the blue line. The graph depicts the critical time of the progression at which Peru had the maximum daily value for people vaccinated. 
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Figure 8. Epidemiological temporal progression of COVID-19 cases, deaths, and people vaccinated in Peru from March 2020 to March 2023 using a logistic method. The graph depicts the cumulative cases and people vaccinated per million, along with the cumulative deaths per hundred thousand. 
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Figure 9. Comparison of the real data of cases with the modeled data of cases. Every million cases represents cumulative cases. 
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Figure 10. Comparison of the real data of deaths with the modeled data of deaths. Every hundred thousand deaths represents cumulative deaths. 
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Figure 11. Comparison of the real data of people vaccinated with the modeled data. Every million people vaccinated represents cumulative vaccinations. 
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Figure 12. Plot between the different lags evaluated by the AIC and BIC criteria for the pair of time series deaths—people vaccinated. 
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Table 1. Basic parameters obtained by the logistic model.
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	Parameter
	Cases
	Deaths
	People Vaccinated





	t1
	642
	343
	222



	A
	2,245,146
	110,184
	15,348,800



	t2
	1109
	1109
	769



	B
	4,489,377
	219,648
	30,374,977



	t3
	876
	726
	496



	I
	3,889,029
	210,672
	29,526,095



	M
	4,834,759
	220,528
	30,429,043



	a
	4.1998
	3.2259
	3.5568



	Q
	66.673
	25.176
	35.051



	k
	−0.0067
	−0.0083
	−0.0133



	tc
	627
	389
	268



	Maximum speed at tc
	8098
	459
	101,175



	Maximum value at tc
	2,418,709
	141,432
	19,890,913










 





Table 2. Criterion information results for the optimal lag order used in the augmented Dickey–Fuller test.






Table 2. Criterion information results for the optimal lag order used in the augmented Dickey–Fuller test.





	Time Series
	Lag-Order AIC
	AIC Value
	Lag-Order BIC
	BIC Value





	People vaccinated
	9
	24,998.81
	9
	25,053.94



	Cases
	10
	19,654.12
	10
	19,714.27



	Deaths
	16
	10,476.19
	15
	10,562.1










 





Table 3. Criterion information results for the optimal lag order used in the Granger causality test.
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	Pair of Time Series
	Lag-Order AIC
	AIC Value
	Lag-Order BIC
	BIC Value





	Deaths–people vaccinated
	21
	24,296.05
	15
	24,464.87



	Cases–people vaccinated
	21
	24,305.82
	15
	24,472.33










 





Table 4. Summary results for the Granger causality test in each analyzed direction.
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	Pair of