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Abstract: To reach large groups of vaccine recipients, several high-income countries introduced
mass vaccination centers for COVID-19. Understanding user experiences of these novel structures
can help optimize their design and increase patient satisfaction and vaccine uptake. This study
drew on user online reviews of vaccination centers to assess user experience and identify its key
determinants over time, by sentiment, and by interaction. Machine learning methods were used to
analyze Google reviews of six COVID-19 mass vaccination centers in Berlin from December 2020 to
December 2021. 3647 user online reviews were included in the analysis. Of these, 89% (3261/3647)
were positive according to user rating (four to five of five stars). A total of 85% (2740/3647) of all
reviews contained text. Topic modeling of the reviews containing text identified five optimally latent
topics, and keyword extraction identified 47 salient keywords. The most important themes were
organization, friendliness/responsiveness, and patient flow/wait time. Key interactions for users
of vaccination centers included waiting, scheduling, transit, and the vaccination itself. Keywords
connected to scheduling and efficiency, such as “appointment” and “wait”, were most prominent
in negative reviews. Over time, the average rating score decreased from 4.7 to 4.1, and waiting and
duration became more salient keywords. Overall, mass vaccination centers appear to be positively
perceived, yet users became more critical over the one-year period of the pandemic vaccination
campaign observed. The study shows that online reviews can provide real-time insights into newly
set-up infrastructures, and policymakers should consider their use to monitor the population’s
response over time.

Keywords: mass vaccination centers; national vaccination campaign; vaccine uptake; patient satisfac-
tion; patient experience; health services design; pandemic response; online reviews; natural language
processing; machine learning; text mining; topic modeling; keyword extraction

1. Introduction

In the wake of large-scale COVID-19 vaccination campaigns starting in December
2020, numerous countries across the globe opted to use mass vaccination centers as a key
pillar of their vaccine roll-outs [1]. A vaccination center is “a location, normally used
for non-healthcare activities, set up for high-volume and high-speed vaccinations during
infectious disease emergencies” [2]. In Germany, as in many other high-income countries,
mass vaccination centers were a novel construct, as vaccinations are usually administered
in outpatient practices.

Understanding how users experience these novel structures can provide valuable
insights. Positive user experience of healthcare is not just an inherent goal by itself [3],
well-designed vaccination services can also contribute to higher vaccine uptake [4]: they
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can increase perceived acceptability and lower adherence barriers to vaccines [5,6], satisfied
users appear more likely to comply with the vaccination schedule (i.e., get a follow-up
shot) [7], and recounted personal experiences could serve as a cue to action for others to get
vaccinated, according to the health belief model [8,9]. In the context of a pandemic, with
the objective of getting large proportions of the population vaccinated [10], positive user
experience can be a crucial driver for a successful mass vaccination campaign.

Patient online expressions (e.g., via tweets or review platforms such as Google) are a
readily available resource for user feedback. Their availability has grown exponentially
in the past decade [11] and they have proven to provide valuable insights into patient
experience and satisfaction [12–19] and also towards vaccines and vaccinations, in the con-
text of measles or more recently COVID-19 [20–29]. Vaccination experiences or temporary
pandemic response structures within or outside of the context of COVID-19, however, have
not yet been studied using patient online expressions. Overall, studies on user experiences
of mass vaccination centers are still limited.

Using Google Maps online reviews, we therefore aimed to understand user experience
of vaccination centers in Germany. We further aimed to identify key determinants of their
experience, which may assist center operators, healthcare providers, and policymakers
in optimizing vaccination center design and vaccination processes. We found that the
vaccination centers included in our study were perceived positively overall, yet users
became more critical as the vaccination campaigns lasted, in particular with regards to
efficiency. Policymakers should carefully monitor user experience and its determinants
over time. Online reviews can help provide real-time insights for this.

2. Materials and Methods

Online reviews of vaccination centers in Berlin, Germany, were analyzed using natural
language processing (NLP). Review texts were analyzed overall, by sentiment, and by time
period. A framework for vaccination user experience was developed and key interactions
for positive user experience within the framework were identified. The study followed
the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) [30]
reporting guideline for cross-sectional studies. It was deemed exempt from informed
consent as it used publicly available data.

2.1. Data Collection

The German capital Berlin was chosen as a study site since online reviews were
available for all its six vaccination centers. This provided a large sample and allowed
the team to study an entire federal state. Furthermore, Berlin hosts a diverse popula-
tion, promising heterogeneous reviewers. Vaccination centers accounted for approxi-
mately 40% of all COVID vaccinations administered in Berlin between December 2020 and
December 2021 [31]. The Appendix A ([32–41]) provides more details .

Google Maps reviews for all six COVID vaccination centers were retrieved for
12 consecutive months, from 27 December 2020 (start of the vaccination campaign) to
26 December 2021. A dataset containing 3797 online reviews was extracted from publicly
available Google Maps reviews sites (Appendix B). Online reviews are provided voluntarily
and contain, at a minimum, a star rating ranging from one star to five stars, where one
star is the lowest score and five stars is the highest score. In addition, reviews can contain
a free text comment. Among other items, the dataset extracted included the following:
a review rating ranging from one star to five stars; a timestamp detailing date and time
when the review was submitted; a review text. Reviews dating before the opening and
after the closing of a site were excluded. For one site (a festival arena) that did not have
a dedicated review sub-site, reviews that clearly related to the event location rather than
to the vaccination center were removed. Non-English reviews were translated to English
using Google Translate [42].
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2.2. Analysis
2.2.1. Key Themes

An analysis of key themes and sentiments was conducted in Python 3.9.9 [43] on
all reviews containing text using validated machine learning algorithms: topic modeling
with Latent Dirichlet Allocation (LDA) and keyword extraction with Bidirectional Encoder
Representations from Transformers (BERT).

LDA is a probabilistic topic modeling algorithm. It extracts word clusters called
“topics” that are distributed across texts and connected as latent constructs based on their
relative frequency and location [44]. Review texts were pre-processed for LDA using the
NLTK Python library [45]. The list of stop words, i.e., words to exclude, was amended to
also exclude words such as “COVID” and “vaccine” that did not add meaning (Figure S1).
LDA was then run on the entire text using the Gensim Python library [46]. To refine the
model parameters and ensure the topics are interpretable and meaningful, the model was
evaluated based on topic coherence (C_v measure) and the intertopic distance map. The
C_v coherence score was calculated for 2 to 15 topics to determine the optimal number of
topics. The Dirichlet hyperparameters α and η were set to default [46]. For topic labeling,
each topic’s salient terms were examined based on term frequency (λ = 1.0) and relevance
(λ = 0.6) as suggested by Sievert and Shirley [47], and sample reviews were inspected. The
weight parameter λ ranged from 0 to 1. A smaller λ indicates rare but exclusive terms for
the topic, whereas a larger λ features frequent but not necessarily exclusive words [25].

For validation and a more granular look into the reviews overall and sub-groups,
automated keyword extraction was used. Keyword extraction identifies single salient
words based on semantics. The recent NLP model keyBERT [48–50] was used, which
can identify more than one keyword in each text. For example, in “Super organized and
very friendly staff.”, keyBERT identified “staff”, “organized”, and “friendly” as keywords.
Text pre-processing was not needed, but as with topic modeling, additional stop words
were added. Synonyms were then aggregated through lemmatization and manual review
(e.g., “employees”, “staff”, and “helper” were grouped to “staff”; “appointment” and
“appointments” to “appointment”; Table S1). To ensure the relevance of the results, only
words with high frequency were considered in the analysis. Keywords identified in at
least 1% (28/2740) of reviews analyzed were then grouped and sorted to a user experience
framework (see Section 2.2.2). Sub-set analyses were conducted by sentiment and time
period. All extractions were validated by one human investigator on a random sub-sample
of 30 reviews.

2.2.2. Key Interactions

A vaccination center user experience framework was developed to summarize the
findings and draw actionable conclusions (Appendix C). User experience was defined as
the combination of a vaccine recipient’s user journey through the vaccination center and the
key determinants of their experience at the vaccination center. User journey phases were
defined according to the German Ministry of Health’s handbook for vaccination centers [37].
Key determinants of user experience, such as accessibility, hygiene, and duration, were
identified through policy documents on vaccination center planning [37] and case studies
of vaccination centers [38,39], as well as existing Patient Reported Experience Measures
(PREMs) frameworks [40,41]. These determinants were clustered into 3 themes: staff,
process/management, and location. Cost was omitted from the framework, as COVID-19
vaccinations were freely available in Germany.

2.2.3. Timeline

To understand user responses during different phases of the vaccination campaign,
seven time periods were defined based on population eligibility and the setup of alternative
vaccination structures over time (Figure 1). In the beginning, vaccinations were solely
offered in vaccination centers based on appointments and priority groups. As the campaign
progressed, eligible groups were gradually expanded, and other structures (e.g., outpatient
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practices) could offer vaccines. From June 2021 (period 4) onwards, the prioritization of
certain population groups was abandoned, and vaccinations were offered to anyone above
the age of 12 in vaccination centers. From July 2021 (period 5) onwards, walk-ins without
appointment were introduced [36], and the first vaccination centers closed. September
2021 (period 6) marked the start of the booster campaign for elderly, and November 2021
(period 7) marked the start of the booster campaign for all.
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Figure 1. Overview of time periods for analysis from December 2020 to December 2021.

2.2.4. Satisfaction

To understand which themes elicit satisfaction or dissatisfaction, keyword analysis
was conducted separately on positive and negative reviews. Users directly expressed their
sentiment through review ratings ranging from one to five stars. To ensure that the review
rating corresponded to the review content, a Pearson correlation coefficient between the
sentiment of the review text and the star rating was calculated using the NLTK and SciPy
Python libraries [45,51]. Since the Pearson coefficient showed a statistically significant
correlation, the rating score was used for further analysis. A review was deemed positive
if it received four or five stars, neutral if it received three stars, and negative if it received
one or two stars. Users leaving a positive review were assumed to be satisfied, and those
leaving a negative review were considered dissatisfied [14].

3. Results

After exclusion, the final dataset contained 3647 reviews. Of these, 907 (25%) solely
contained a rating, and 2740 (75%) contained rating and text (Figure 2A). The average
length of a review text was 33 words in English, with a minimum of 1 and a maximum of
544 words.

3.1. Key Themes

Topic modeling with LDA identified 5 key topics. Keyword extraction identified
47 keywords.

For topic modeling, five topics received the highest coherence score (0.486). The five
topics (Figure 3, Table S2) covered the vaccination process, location, and staff. Topics 1
and 4 contained comparatively narrow terms. Topics 2, 3, and 5 were more convoluted.
Topic 1 was related to scheduling and wait time, and Topic 4 was related to staff friendli-
ness and overall organization. Topic 2 contained terms related to efficiency and duration
(“quick”, “start”, and “finish”), vaccination effects, and personal protective equipment
(“mask” and “ffp”). An inspection showed that some users reported the effects they ex-
perienced shortly after their vaccination, e.g., “[...] I tolerated the vaccine without side
effects, only the shoulder hurt a little, like sore muscles. [...]”. Reviews mentioning masks
discussed subjects ranging from complaints about security staff not wearing masks to the
provision of masks at the centers. Topic 3 broadly dealt with the vaccination center location,
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specifically its accessibility (“parking”, “welcome”, and “entrance”), uniqueness (“effort”,
“event”, and “concert”), and the intuitiveness of the process exemplified through the
term “uncomplicated”. Several users commented on the vaccination being a special event,
but also on the fact that a location housed events before becoming a vaccination center.
Topic 5 again encompassed site access (“bus”, “shuttle”, and “entrance”), but also regis-
tration and documentation (“certificate”, “code”, and “digital”). Based on the marginal
topic distribution (Figure 3A), the two most salient topics were 1 and 4. Topic 5, regarding
accessibility and documentation, was also quite prominent.
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(B) top 10 terms per topic by frequency and relevance. In the intertropic distance map, each circle
represents one topic. The circle size represents the relative number of terms that belong to the topic.
The distance between circles represents the relative similarity and connectedness of topics. Topic
circles that are closer to each other have more terms in common. For the top 10 terms per topic, the
most frequent terms within a topic are shown at λ-value 1, and the top terms combining frequency
and relevance are shown at λ-value 0.6. Relevance reflects the level at which a term exclusively
belongs to a single topic. The λ-values 1 and 0.6 are suggested by the prior literature to analyze topics
(see Section 2.2.1).

Keyword extraction identified 47 keywords overall that featured in at least 1% (28/2740)
of reviews containing text. The top 30 keywords by frequency are displayed in Figure 4.
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Four terms were featured in more than 10% (274/2740) of reviews: “organization” (45%,
1227/2740), “friendliness” (34%, 940/2740), “staff” (34%, 940/2740), and “appointment”
(17%, 455/2740). Overall, most terms were related to staff and process, few to location, and
some to undefined dimensions, such as “people” (5%, 132/2740) and “user” (2%, 48/2740)
(Figure S2).
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3.2. Key Interactions

The 47 keywords were mapped against the user experience framework. Overall, more
keywords were related to key determinants of the experience rather than moments in
the vaccination center user journey (Figure 5). All three key determinant themes (staff,
process/management, and location) were mentioned in reviews. Terms related to overall or-
ganization (52%, 1426/2740) and friendliness/responsiveness (49%, 1331/2740) were more
frequent than those related to patient flow/wait time (25%, 688/2740), duration/efficiency
(18%, 497/2740), and accessibility (12%, 321/2740). Intuitiveness, information/education,
and hygiene/infection prevention and control were seldom or not featured.

There were five key moments in the user journey that were frequently mentioned:
scheduling, transit, arrival, waiting, and the vaccination itself. Most keywords were
related to the visit itself, while only a few were concerning experiences outside of the
vaccination center pre- or post-visit. Aside from scheduling, other administrative processes
like registration and documentation were not salient. Neither were adverse events or
continuous monitoring of vaccination effects.

3.3. Timeline

The number of reviews varied over time (Figure 2A). In period 2 (when more—also
younger—individuals gained access to vaccinations), the number of reviews steeply in-
creased. There was a noticeable drop in reviews after period 5. The top keywords by time
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period largely overlapped with overall keywords (Figure 2C). Organization and staff were
salient in all periods. The three terms “organization”, “staff”, and “friendliness” consis-
tently dominated the top three keywords across all periods until period 7. Other words
related to friendliness, e.g., “helpful”, “nice”, and “thanks”, were salient in all periods but
became less prevalent over time. Terms related to waiting and duration, such as “wait”,
“quick”, “queue”, and particularly the term “appointment”, became gradually more salient
from period 2 onwards. “Taxi”, “accompany”, and “support” are only featured among the
top 10 keywords in period 1.
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Figure 5. Keywords featured in at least 1% of reviews sorted to the user experience framework.
Keywords identified through the keyword extraction were grouped and then mapped against the
framework to highlight key interactions and identify recurring themes across reviews. A single
review could contain keywords related to several dimensions or phases, e.g., both “organization”
and “staff”. A single keyword may also simultaneously be related to an enabler and the journey, e.g.,
“wait”, which is related to “waiting” in the journey and to “patient flow/wait time” under enabler
dimensions. The frequency count of the enabler dimensions or journey phases hence do not add up
to the total number of reviews.

3.4. Satisfaction

Overall, 3261 (89%) of the 3647 reviews received a positive rating, 250 (6%) received a
negative rating, and 136 (4%) received a neutral rating (Figure 2B). The rating distribution
was strongly unimodal, with 2886 (79%) five-star ratings.

Over time, ratings stayed relatively constant with little variance until period 3. In
period 4, average ratings started to decrease. Similar to the overall keywords, the keywords
identified in positive (N = 2426) and negative (N = 223) reviews containing text were mostly
linked to organization, staff, and appointments (Figure 4B).

Positive reviews focused on organization, staff, friendliness, and competence. Neg-
ative reviews featured several keywords related to waiting and duration. Specific staff
were salient in negative reviews, namely “doctor” (9%, 20/223) and “security” (7%, 15/223)
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(Figure 3B). An inspection of reviews illustrates this: “outside the security is unfriendly
and self-absorbed, inside everyone is very nice. [...]”. The military, which supported center
operations, was not featured in negative reviews but appeared in the positive reviews.
Furthermore, negative reviews contained several keywords not salient in the reviews
overall. These were linked to the weather (“rain” (2%, 5/223), “cold” (5%, 12/223), and
“outside” (2%, 4/223)), accessibility (“parking” (5%, 12/223)), general “chaos” (3%, 7/223)
and “german” (3%, 7/223). For example, one review reads: “[...] I stood outside in the cold
for 1 h at 2 degrees and wind. [...]”.

4. Discussion
4.1. Principal Results

This study had three principal findings. First, the overall reception of vaccination
centers was strongly positive. Second, the most important themes identified in the online
reviews were wait time, overall organization, and friendliness, while the most important
moments in the user journey were scheduling, transit, arrival, waiting, and vaccination.
Third, efficiency/duration and wait time/patient flow were leading drivers for dissat-
isfaction, and their prevalence increased over the vaccination campaign as satisfaction
overall decreased.

Many online review-based studies in healthcare [11,24,28,52] and consumer research [53–55]
observed a positive rating tendency. The vaccination center online reviews were extremely
positively skewed compared to those of studies in other settings however [11]. Two survey-based
studies of COVID-19 vaccination experience in Saudi Arabia and Saxony (Germany) [56,57]
found similarly high overall satisfaction scores of above 90% for vaccination centers. Aside from
actual experiences or self-selection, this positive skew could be linked to the gratitude and hope
associated with the COVID vaccination [58], specifically in the beginning of the vaccination
campaign. These feelings could also explain the satisfaction decrease over time; at the start,
COVID vaccines were rare, and users were likely more appreciative of the opportunity to get
vaccinated, especially early target populations that were more exposed and vulnerable to the
virus. As the campaign lasted, the vaccine became more of a commodity. User expectations
with regards to the vaccination process probably increased, while recipients became less eager
and dependent on vaccines. This seems to fit with the timeline analysis: once the prioritization
was abandoned in period 4 and vaccines were offered to anyone aged 12 and above, the rating
scores dropped more noticeably (Figure 2B). Additionally, after period 5, only two centers
stayed open, and, in period 7, the time between initial and booster vaccination was suddenly
decreased, leading to “chaos” [59] around Christmas 2021. Both put pressure on scheduling and
impacted accessibility.

Two studies previously evaluated English language tweets on COVID-19 vaccina-
tion after the vaccine rollout, irrespective of geographical location, and also found that
scheduling and appointments were prevalent themes [25,28]. A systematic review found
that important themes in patient online reviews generally included physicians’ demeanor,
staff friendliness, time spent with patients, ease of scheduling, wait time, and cost [11].
While staff interaction and appointment management were reflected in the vaccination
center reviews, costs were irrelevant in the context of our study. With regards to time spent
with patients, vaccination center users seemed more focused on efficiency (i.e., little time
spent at the vaccination site) and the competence and friendliness of staff rather than ample
exposure time to doctors. A survey-based study comparing vaccination centers and GP
offices in Saxony, a more rural German region, found that wait times were lower at mass
vaccination centers than at GP offices [56].

Topic modeling provided five topics with broader terms that could not always be
distinctly sorted to a single determinant, whereas keyword extraction provided keywords
more focused on distinct determinants. Both methods identified similar principal themes
overall, which increases confidence in the results. Furthermore, the spheres indicating the
topics in the intertopic distance map for LDA topic modeling (Figure 3) do not overlap,
which can be understood as a characteristic of good quality. Yet, it is noteworthy that
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keyword extraction did not determine terms related to side effects or documentation (e.g.,
“certificate” and “code”) as salient. They were featured, however, in Topics 2 and 5 of topic
modeling. “Side effects” were also a prevalent topic identified in analyses of tweets related
to COVID-19 vaccine rollout [25,28].

Studies cite a range of critical themes in negative online reviews: discordant expec-
tations (education, support, and promises) and sub-optimal communication and quality
of care (management, organization, staff, and equipment) [12,60,61]. These were only
partly reflected in our findings. As vaccination centers are single-purpose facilities under
special circumstances, user priorities appear different from those of traditional healthcare
delivery. Huangfu and colleagues [28] also found that appointments played a major role
in negative tweets about COVID-19 vaccine rollout. In our study, scheduling, wait time,
patient flow, and duration became more salient as the vaccination campaign progressed. In
2020, Volpp and colleagues highlighted the need to reduce these “hassle factors” as crucial
for driving COVID vaccine uptake [10]. Dysfunctional scheduling in particular has been
a common criticism from the beginning of the German vaccine roll-out [62]. Scheduling,
which influences wait time, and choice of location, which influences accessibility, lie outside
of the vaccination site operators’ control, however. Both are managed by the public admin-
istration. To address these critical user experience themes, cross-stakeholder collaboration
is necessary.

4.2. Limitations

Our study has three key limitations. First, it is important to note that online reviews
are voluntary and predominantly anonymous. Online reviews hence suffer from self-
selection bias, rely on user sincerity and certain groups appear more prone to providing
them, i.e., this limits representativeness. A survey of patients in Germany showed that
younger, female, more educated, and chronically ill people were more likely to use patient-
review websites [63]. The reviews used in this study also lacked information on reviewer
characteristics and motives. Furthermore, some reviews may not be left by actual service
users [64]. A manual examination showed that some reviews were written by companions,
e.g., “I went to the vaccination with my 90-year-old mother today. [ . . . ]”. As the objective
was to understand general population response, this does not tarnish the results.

Second, although this study used a large sample covering an entire federal state in
Germany over different phases of the COVID-19 vaccination campaign, it studied only one
geographical area. Berlin may be particular as vaccination centers were central to the state’s
vaccine roll-out and some reviews mirror local specificities, e.g., the existence of language
barriers. Furthermore, experiences from a well-communicated city-state with a balanced
distribution of centers may not translate to rural areas. A study showed that the share of
people able to use public transport was higher and the median travel time to vaccination
centers in Berlin was lower than they were in other German federal states [65]. It would hence
be interesting to see future studies apply the methodology to other geographical areas.

Third, the text quality, specifically related to emojis and translations, was challenging.
A total of 258 reviews used emojis. An inclusion was attempted using demoji [66] but pro-
duced misleading results in thematic analysis (e.g., light, face, skin, and syringe). Colloquial
language, spelling mistakes, and wordplay were not always perfectly translated to English.
Some, but not all, translation errors, e.g., “snake” for the German word “Schlange”, which
means both queue and snake, could be corrected at the stage of keyword merging. Despite
machine learning techniques having made tremendous progress, this highlights some of
the currently persisting shortcomings of computer-aided analysis. Improved algorithms
for the translation and the analysis of non-English texts and emojis are needed.

To our knowledge, this is the first study to systematically assess vaccination centers
from a user’s perspective in Germany using online reviews and the first to assess pandemic
response structures using NLP. It lays the foundation for future research in this area and
contributes to pandemic response planning. Aside from addressing the limitations above,
future research should include a comparison to other vaccination structures, e.g., physicians’
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offices, and other single-purpose healthcare structures, e.g., test centers, and vaccination
experiences outside of a global pandemic. It should also contrast online reviews with
traditional survey results to further gauge their potential.

5. Conclusions

Positive user experience seems a worthwhile investment for decision-makers and op-
erators during a pandemic, where adherence to services and societal cohesion are essential.
Overall, the results of the study with regards to vaccination centers as a pandemic mass
vaccination structure are encouraging: User receptions of vaccination centers were very
positive, and smooth processes and friendly staff were highly valued. As the mass vaccina-
tion campaign lasted, however, efficiency and time management needed to be monitored to
ensure long-term satisfaction. Online reviews provided useful, free, and real-time feedback.
This makes them an attractive, early recognition “armchair epidemiology” tool [67] for
evaluating novel structures during crises, where circumstances continuously change. Their
use in pandemic response should therefore be strengthened—encouraging user reviews,
establishing units in public administration capable of their analysis, and promoting an
iterative design mindset.
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Appendix A

A total of six mass vaccination centers were set up in Berlin and opened between 27
December 2020, and 8 March 2021. The centers were set up by or on behalf of the federal
states and financed through public funds [32]. In Berlin, the centers were operated by
several Berlin-based humanitarian aid organizations coordinated through DRK SWB, a non-
profit company established by the German Red Cross Berlin, the Association of Statutory
Health Insurance Physicians Berlin and the Senate Department for Health, Nursing and
Equality. The vaccination centers were spread across the city to ensure reachability from all
districts. The vaccination centers were open daily usually between 9AM and 5PM with a few
exceptional closures (e.g., two sites closed temporarily due to a suspension of AstraZeneca
while side effects were being reviewed [1,2]). A single vaccination center could perform up
to 4.000 vaccinations per day [35]. The effective daily volume depended on the number
of vaccines available, and the number of appointments booked. Three different vaccines
were available at the vaccination centers. In the beginning vaccinations were offered based
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on appointments and priority group, from July 2021 walk-ins were introduced [36]. As
the vaccination campaign progressed and other structures (e.g., outpatient practices and
company physicians) got involved, vaccination centers were gradually closed. At the time
the study was conducted two vaccination centers were still running.
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The raw data was obtained on 27 dec 2021 from Google Maps Reviews public review
websites (Table A1) using Outscraper (https://outscraper.com). Online reviews for all six
vaccination centers in Berlin were obtained for the period 27 December 2020 00:00:00 to
27 December 2021 00:00:00. The dataset used for the analysis can be found on github
at: https://github.com/stellaroxanne/User-Reviews-Vaccination-Centers-Berlin (last ac-
cessed 27 December 2022).

Table A1. Links to Google Maps Online Review sites for the vaccination centers analyzed.

Name Vaccination Center Google Maps Online Review Link

Arena https://www.google.com/maps/place/Arena+Berlin/@52.4964613,13.4543597,15z/data=!4m5!3m4
!1s0x0:0x6852fd9350063186!8m2!3d52.4964613!4d13.4543597 (last accessed 27 December 2022)
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3457,17z/data=!3m1!4b1!4m5!3m4!1s0x47a857e0f5b20727:
0x27042a6252ee947c!8m2!3d52.555381!4d13.2956457 (last accessed 27 December 2022)
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0xd5b04abca92add1f!8m2!3d52.4827589!4d13.3931272 (last accessed 27 December 2022)

Messe
https://www.google.com/maps/place/Corona-Impfzentrum+Messe+Berlin/@52.5063417,13.27048
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0x2e9371eb78584ce8!8m2!3d52.5305156!4d13.4508434 (last accessed 27 December 2022)
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Appendix C

The figure below (Figure A2) shows the final framework for vaccination center user
experience composed of user journey and key determinants.

The user journey follows the path of a vaccination center user from their invitation to
get vaccinated up to their follow-up appointment. It is composed of three phases: pre-visit,
visit and post-visit. The user journey can also be applied to vaccinations in other settings as
it follows a similar overarching path.

The table below (Table A2) shows the different publications on vaccination centers
and patient reported outcome and experience measures that were referenced to determine
the relevant key determinants for a positive vaccination experience. The key determi-
nants that form part of the final framework can be clustered into three groups: staff,
process/management and location.
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Table A2. Key determinants of user experience as proposed in publications on vaccination centers
or reference publications on patient reported experience measures (PREMs) and patient reported
outcome measures (PROMs).

Fields Key Deter-
minants

Final
Framework

MoH
Handbook
(2020) [37]

Golberg
et al. (2021)

[38]

Goralnick
et al. (2021)

[39]

OECD
(2018) [40]

Bertelsmann
(2010) [41]

Staff

Friendliness/
responsiveness x x x x

Competence/
expertise x x x

Information/
education x x x x

Process/
Management

Patient flow/
wait time x x x x x

Duration/
efficiency x x

Intuitiveness x x x x x

Overall
organization

x x x

Location

Accessibility x x x x x
Hygiene/IPC x x x x
Uniqueness x x

Reputation -

Patient choice
Vaccine

availability -

Cost - x x
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