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Abstract: Malaria is one of the major causes of a high death rate due to infectious diseases every year.
Despite attempts to eradicate the disease, results have not been very successful. New vaccines and
other treatments are being constantly developed to seek optimal ways to prevent malaria outbreaks.
In this article, we formulate and analyze an optimal control model of malaria incorporating the new
pre-erythrocytic vaccine and transmission-blocking treatment. Sufficient conditions to guarantee
local stability of the malaria-free equilibrium were derived based on the controlled reproduction
number condition. Using the non-linear least square fitting method, we fitted the incidence data from
the province of Papua and West Papua in Indonesia to estimate the model parameter values. The
optimal control characterization and optimality conditions were derived by applying the Pontryagin
Maximum Principle, and numerical simulations were also presented. Simulation results show
that both the pre-erythrocytic vaccine and transmission-blocking treatment significantly reduce the
spread of malaria. Accordingly, a high doses of pre-erythrocytic vaccine is needed if the number
of infected individuals is relatively small, while transmission blocking is required if the number of
infected individuals is relatively large. These results suggest that a large-scale implementation of both
strategies is vital as the world continues with the effort to eradicate malaria, especially in endemic
regions across the globe.

Keywords: malaria; vaccine; treatment; controlled reproduction number; optimal control

1. Introduction

The primary cause of any infectious disease is the spread of pathogens such as bacteria,
viruses, parasites, or fungus. Some of these diseases can spread from person to person,
either through direct or indirect contact. A disease that spreads in the human population
with an intermediate vector is called a vector-borne disease. According to the world health
organization (WHO) [1], vector-borne infection contributes to over 17% of total infectious
disease cases worldwide, with an estimated 700,000 deaths annually. Malaria is a vector-
borne disease that threatens millions of people every year. Most of the cases come from
Africa, southeast Asia, the eastern Mediterranean, and West Pacific [2]. Globally, there were
over 600,000 deaths reported out of over 240 million detected cases in 2020. In Indonesia,
over 74% of all detected cases are from the provinces of Papua and West Papua [3].

Malaria spreads through the bite of female Anopheles mosquitoes from previously
infected individuals with Plasmodium (P). The five types of Plasmodium that cause malaria
are P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi [4]. Globally, among all
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these types of Plasmodium, P. falciparum is primarily commonly found in African countries,
while P.vivax exists in other parts of the world (that is, outside Africa) [5]. Several forms
of intervention to control the spread of malaria have been introduced for many years
worldwide. Most forms of intervention aim to control the population of mosquitoes in the
field, such as with the use of fumigation, larvacide, or insecticide-treated bed nets [6]. Other
than vector control, malaria prevention also focuses on developing a new vaccine to prevent
new infections in the human population. Based on the life cycle of Plasmodium in the human
body, the malaria vaccine is divided into three types, namely pre-erythrocytic vaccine,
blood-stage vaccine, and transmission-blocking vaccine [7]. The pre-erythrocytic vaccine
was designed to eliminate sporozoites immediately after mosquitoes inject Plasmodium
into the human body. It will also block the Plasmodium from going to the human liver.
According to the WHO report [5], RTS, S/AS01 is one type of pre-erythrocytic vaccine
that is recommended by WHO to kill P. falciparum in children population. The blood-stage
vaccine is introduced to target the asexual stage of Plasmodium (merozoites) in human
red blood cells. On the other hand, the transmission-blocking vaccine is given such that
further infection can be avoided [8]. Other than the transmission-blocking vaccine, a type
of transmission-blocking drug has been used to eliminate the sexual stages of Plasmodium
in human or mosquito bodies.

Mathematical models have been used for many years to understand the mechanisms
of malaria transmission, since such model approaches can be used to give a visual in-
terpretation of any possible intervention that can be implemented in the field to control
malaria transmission. These approaches provide a scientific background before a final
decision from the government should be taken. From the early work by Ross [9] in 1911,
many mathematical models were introduced by authors to help a better understanding
of malaria transmission. Macdonald in 1957 [10] used his model to estimate the infection
and recovery rates of malaria. He found that reducing the number of mosquitoes in an
endemic area is an inefficient malaria control strategy. In the early 1980s–1990s, Anderson
and May [11] and Aron and May [12] constructed their malaria model based on the assump-
tion that immunity to malaria is independent of the duration of exposure. Okosun et al.,
in [13], concluded from their mathematical model that a combination between insecticides
and transmission-blocking treatment is the most cost-effective interventions to control
malaria. An optimal vaccination and bed net mathematical model have been introduced by
Prosper et al. in [14]. Their analytical result reveals that increasing the case detection strat-
egy may reduce the chance of backward bifurcation phenomena in their model. An analysis
of the potential impact of pre-erythrocytic vaccine from clinical data was discussed by the
author in [15]. Similar to Prosper et al. in [14], Woldegerima et al. in [16] also found a
possible backward bifurcation from their model on the impact of transmission-blocking
drugs. Their model projects an approximately 82% death rate is reduced by 2035 if 35% of
the population in Sub-Saharan Africa receives a transmission-blocking drug with an efficacy
of 95%. Kuddus and Rahman in [17] analyze the dynamics of malaria using incidence data
in Bangladesh from 2001 to 2014. They found that as infection rate has the greatest impact
on the basic reproduction number compared to other model parameters, it is important to
reduce this infection rate, such as using insecticide-treated bed nets, spraying insecticides,
clearing stagnant water, etc. In a more recent mathematical model, authors include more
recent facts on malaria transmission such as the effect of vector-bias [18], asymptotic carri-
ers [19], age-structured [20], competitive strains [21], seasonal factor [22,23], and coinfection
of malaria with COVID-19 [24]. Furthermore, intervention models also have been widely
introduced by authors, such as the use of fumigation [25], insecticide-treated bed nets [26],
and vaccines with waning immunity [27], or transmission-blocking vaccines [28].

The authors in [29] concluded that a better understanding of Plasmodium develop-
ment in the pre-erythrocytic stage could lead to the discovery of new antigenic targets for
enhanced immunization strategies. These findings may aid in the development of new
malaria immunization techniques that are more successful and useful. In 2015, Glaxo-
SmithKline’s (GSK’s) RTS, S/AS01 pre-erythrocytic vaccine received a positive scientific
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response on the quality of this vaccine in combating malaria transmission [30]. Based
on the above description, we consider it essential to see the potential impact of the pre-
erythrocytic vaccine (RTS, S/AS01) and transmission-blocking drug as a combination of
control to reduce the spread of malaria using a mathematical model approach.

Our model divided the susceptible population based on a condition, whether they
use a pre-erythrocytic vaccine or not. Furthermore, we also consider the possibility that
the transmission-blocking drug cannot kill all Plasmodium in either the sexual or asex-
ual stage in the human body. We used incidence data from Papua and West Papua to
calibrate our model by determining the best-fit parameter on our model. Sensitivity anal-
ysis on the basic reproduction number and the numerical simulation on the dynamics of
each compartment are also conducted to see the impact of pre-erythrocytic vaccine and
transmission-blocking drugs in the malaria control strategy. An optimal control model
is then analyzed to determine the best possible scenario for combining pre-erythrocytic
vaccine and transmission-blocking drugs. The novelty of our model lies in the originality
of the model, where we discuss the potential impact of the pre-erythrocytic vaccine. Fur-
thermore, we also use incidence data from two provinces in Indonesia, namely Papua and
West Papua, to calibrate our model parameters. These incidence data have never been used
in any malaria mathematical model.

The organization of this paper is as follows. In Section 2, we construct our model based
on our assumptions, and estimate the parameter values on our model by fitting the output
of our model with incidence data in Papua and West Papua. Dynamical analysis regarded
the positiveness of the solution of our model, the existence and stability of equilibrium
points, and the controlled reproduction number discussed in Section 3. Sensitivity analysis
is given in Section 4. Existence of optimal solution and the characterization of the optimal
control problem are given in Sections 5 and 6, respectively. Finally, some conclusions are
given in Section 7.

2. The Model and Parameter Estimation Result
2.1. The Model

Based on the malaria status in the human and mosquitoes population, we divided the
total human population (denoted by N) into eight compartments as follows:

1. Susceptible without vaccine (S1) consists of a group of individuals susceptible to
malaria who have not received a pre-erythrocytic vaccine yet.

2. Susceptible with a vaccine (S2) consists of a group of individuals who are also suscep-
tible to malaria but have already received a pre-erythrocytic vaccine.

3. Exposed without vaccine (E1) consists of a group of newly infected individuals from
S1 who have not yet gotten the pre-erythrocytic vaccine. We assume that individuals
in this compartment are in the leaver stage. Hence, although these individuals do not
show any symptoms yet, we assume that they can transmit Plasmodium to susceptible
mosquitoes.

4. Exposed with vaccine (E2) consists of a group of newly infected individuals from S2.
Although these individuals have already gotten vaccinated, the description is still the
same with E1.

5. Infected (I) consists of a group of individuals who have already gotten infected by
malaria and show their symptoms.

6. Infected individuals undergo transmission-blocking treatment (T), defined as a group
of individuals who already get infected, show symptoms, but get a transmission-
blocking treatment. We assume that this treatment can kill the sexual Plasmodium
(gametocytes).

7. Recovered but carrier (R1) consists of individuals who recovered from malaria (do
not show symptoms anymore) and have a temporal immunity but still have asexual
Plasmodium inside their bodies. Hence, this group of individuals can still transmit
Plasmodium to the mosquito.
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8. Fully recovered (R2) consists of a group of individuals who recovered from malaria
and succeeded in the transmission-blocking treatment process. Hence, unlike in R1,
individuals in R2 lack sexual and asexual Plasmodium in their blood. Therefore, R2
compartment does not transmit malaria anymore.

On the other hand, we only divide the mosquitoes population (denoted by M) into
two compartments, namely the susceptible and infected mosquitoes, denoted by V and W,
respectively.

We use the following assumptions to construct the model:

1. The rate of new individuals only came from newborns with a constant rate of Πh. We
ignore migration from our model.

2. Vertical transmission is neglected [31].
3. The infected individuals in E1, E2, I, T, and R1 are capable to transmit Plasmodium to

mosquitoes with a constant rate βv.
4. The pre-erythrocytic vaccine is given to S1 individuals with a constant rate u1 to give

temporal protection from mosquito bites that can lead to malaria infection. Hence, we
assume that the transmission rate of S2 is less than S1 (βh2 < βh1).

5. The pre-erythrocytic vaccine is not for a lifetime. Hence, after a period of α−1, individ-
uals in S2 will return to S1.

6. The transmission-blocking treatment is given to individuals in I with a constant rate
u2 to cure malaria and wipe out sexual and asexual Plasmodium from their blood.

7. The transmission-blocking treatment is not always successful in curing infected indi-
viduals.

8. The description of all parameters is given in Table 1 and assumed to be nonnegative.

Table 1. The parameters of malaria model in (1). Some parameter values are taken from parameter
estimation results in Section 2.2 and the rest are from assumptions.

Symbols Biological Definitions Papua West Papua Sources

Πh Natural birth rate of humans 3,435,430
71.5 × 12

981,822
71.5 × 12 [32–34]

Πv Natural birth rate of mosquitos 2 × 3,435,430
21
30

2 × 981,822
21
30

[32,33,35]

b The average number of mosquitoes bite per unit time 9.07523 5.94285 estimated

βh1 The successful transmission rate of susceptible humans per bite 0.89999 0.87753 estimated

βh2
The successful transmission rate of susceptible humans who

receive pre-erythrocytic vaccine per bite 0.42299 0.41244 estimated

βh1 =
bβh1

N Average infection rate to humans per unit time per mosquito 2.37749 × 10−6 5.31162 × 10−6 estimated

βh2 =
bβh2

N
Average infection rate to humans who receive pre-erythrocytic

vaccine per unit time per mosquito 1.11742 × 10−6 2.49646 × 10−6 estimated

βv
Average of successful transmission rate of susceptible

mosquitos per bite 0.00572 0.01054 estimated

βv =
bβv
N Average infection rate to mosquitos per unit time per human 1.51190 × 10−8 6.38376 × 10−8 estimated

κ Waning rate of temporal immunity from recovered carriers 0.33333 0.33333 estimated

ϑ Waning rate of temporal immunity from fully recovered class 0.05555 0.05555 estimated

u1 Vaccination rate with pre-erythrocytic vaccine 0.001 0.001 assumption

u2 Rate of treatment with transmission-blocking drugs 0.499999 0.499997 estimated

1− ξ pre-erythrocytic vaccine efficacy level 0.53 0.53 [36]

α Waning rate of vaccine efficacy 1
6

1
6 [37]

δ1 Progression rate from exposed without vaccine class 6.08333 6.08333 estimated
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Table 1. Cont.

Symbols Biological Definitions Papua West Papua Sources

δ2 Progression rate from exposed with vaccine class 2 2 [36,38]

γ1 Natural recovery rate of infected humans by immune response 0.19999 0.19999 estimated

γ−1
2 Duration of treatment with transmission-blocking drugs 1

1.08631
1

1.08631 estimated

p Proportion of people in treatment who managed to get protection 0.59999 0.59964 estimated

q Proportion of people in treatment who fail to receive protection and then
recover naturally 0.29999 0.29994 estimated

1− p− q Proportion of people in treatment who fail to receive protection and then
return to the infected class 0.100000004 0.10040 estimated

ζe1 Correction factor for infection rate in mosquitoes by exposed humans 0.04999 0.04999 estimated

ζe2
Correction factor for infection rate in mosquitoes by exposed humans

with vaccine 0.03999 0.03999 assumption

ζr
Correction factor for infection rate in mosquitoes by recovered humans

but carrier 0.06 0.06 estimated

ζt Correction factor for infection rate in mosquitoes by humans in treatment 0.08 0.08 estimated

µh Natural death rate of humans 1
71.5 × 12

1
71.5×12 [34]

µv Natural death rate of mosquitos 30
21

30
21 [35]

The construction of the model is based on the transmission diagram in Figure 1. All
newborns in human and mosquito populations are assumed to be susceptible, with a
rate of Πh and Πv, respectively. On the other hand, we assume that each compartment
has a natural death rate of µh and µv for human and mosquito populations, respectively.
According to [32,33], the total inhabitants in Papua and West papua are 3,453,430 and
981,822, respectively.

Figure 1. Transmission diagram of model (1).

Our main purpose is to understand the potential impact of the pre-erythrocytic vaccine
on reducing the possible transmission of malaria in the human population. This vaccine
was designed to clean the sporozoite from the human body right after the mosquito injects
the Plasmodium into the human body and block the sporozoites’ invasion of the human
liver cell. Hence, we include the rate of this pre-erythrocytic with a constant rate of u1
to the susceptible population (S1). This vaccine is not for a lifetime [37]. Hence, after a
certain period of time, individuals in S2 will return to S1. We denote this dropout rate with
α. The transmission of malaria comes from the bite of infected mosquitoes to susceptible
humans. We assume that the successful transmission rates of S1 and S2 are denoted by
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βh1 and βh2, respectively. Let b be the average number of mosquitoes bite per month, then
bβh1 and bβh2 are the averages of possible success transmission in S1 and S2 each month
due to the bite of one infected mosquitoes, respectively. We use a ratio-dependent function
to model our infection term. Therefore, the number of total infections in S1 is given by
bβh1WS1

N . We assume that the total human population is constant. Therefore, bβh1
N is constant,

and we denote it by βh1. Therefore, we have that the total number of new infections in
the human population from the S1 compartment is given by βh1S1W. Using the same
approach, the number of new infections in S2 is given by βh2S2W. Exposed individuals
without vaccine (E1) and with vaccine (E2) move to Infected class (I) due to progression
rate δ1 and δ2, respectively. Note that due to the effect of pre-erythrocytic vaccine that can
suppress invasion of sporozoites in hepatocytes [8], we have δ2 < δ1. Without treatment,
we assume that infected individual I can recover with a constant rate γ1.

Another essential factor that is considered in this article is the use of transmission-
blocking treatment for infected individuals I. We assume that individuals in I get a
treatment with a constant rate u2, which will transfer them into compartment T. This
treatment is given in a duration of γ−1

2 . Hence, after a period of γ−1
2 , the result of this

treatment should be evaluated. If the treatment successfully kills all sexual and asexual
parasites, then they are transferred to the compartment of R2 with a rate of pγ2. If the
treatment only partially succeeds where only sexual parasites could be eliminated but
not the asexual parasites, these individuals will go to R1 with a rate of qγ2. Finally, if the
treatment fails, then individuals in T go back to I with a rate of (1− p− q)γ2. We assume
that individuals in R1 still could infect mosquitoes, but they are immune to the symptoms of
malaria. Further, we also assume that they have a temporal immunity of κ−1. On the other
hand, individuals in R2 cannot transfer Plasmodium to mosquitoes and have a temporal
immunity of ϑ−1.

Unlike the human population, the modeling of the mosquito population is not as
complex. It only involves newborn Πv, natural death rate µv, and infection. We assume
that susceptible mosquitoes will get infected if they bite infected individuals in compart-
ments E1, E2, I, T, and R1. Since the status of parasites in each mentioned compartment
is in different stages, we assume the transmission rate for the mosquitoes are different
based on their parasites status. Gametocytes are sexual forms of parasites produced by
blood-stage merozoites. However, for P. vivax, gametocytes can be produced by liver stage
merozoites [39]. Therefore, humans still in the pre-erythrocyte stage can also transmit
susceptible mosquitoes. Exposed humans who received the pre-erythrocytic vaccine (E1)
will have fewer parasites in the liver, so the likelihood of liver-stage merozoites producing
gametocytes will be less than that of exposed unvaccinated humans (E2). In addition,
according to [39], gametocytes can still be found in peripheral blood after several weeks
of asexual parasite infection being cleared, so recovered humans (R1) can still transmit
susceptible mosquitoes. Humans in treatment can transmit susceptible mosquitoes be-
cause humans in treatment (T) are people who are still infected or have not been fully
treated. Hence, the transmission rate of E1, E2, R, T to susceptible mosquitoes are given
by ζe2βv, ζe1βv, ζrβv, and ζtβv, respectively. Note that ζe1, ζe2, ζr, and ζt are the correction
parameters due to parasites’ stage in human body, and satisfies the following inequality:

0 < ζe2 < ζe1 < ζr < ζt < 1.

Therefore, the total of new infection in mosquitoes population is given by

βv(ζe1E1 + ζe2E2 + I + ζrR + ζtT)V,

where βv = bβv
N . From all mentioned parameters above, we must understand that some

parameters, especially in the mosquito population, might depend on time or other factors
such as weather. For example, mosquitoes are more active when the temperature is low,
which means that mosquitoes will be more active in biting humans when the temperature
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is relatively low [40]. Based on this explanation, all parameter values in our model as in
Table 1 are average values.

In many mathematical models for disease control, an optimal control approach is
commonly used by many authors to understand the behavior of each intervention as a
time-dependent variable under a specific budget limitation problem [41–43]. Our pro-
posed model has two different forms of intervention: the pre-erythrocytic vaccine and
transmission-blocking treatment, denoted by u1 and u2, respectively. In this article, these
two forms of intervention will be treated as a time-dependent variable to pursue the best
strategy to suppress the spread of malaria. Hence, we have u1 = u1(t) and u2 = u2(t).

Based on assumptions above, we describe the dynamics of malaria under the effect of
pre-erythrocytic vaccine and transmission-blocking treatment by the following system of
ordinary differential equations:

dS1

dt
= Πh + κR1 + ϑR2 + αS2 − βh1S1W − (u1(t) + µh)S1,

dS2

dt
= u1(t)S1 − βh2S2W − (α + µh)S2,

dE1

dt
= βh1S1W − (δ1 + µh)E1,

dE2

dt
= βh2S2W − (δ2 + µh)E2,

dI
dt

= δ1E1 + δ2E2 + (1− p− q)γ2T − (u2(t) + γ1 + µh)I (1)

dT
dt

= u2(t)I − pγ2T − qγ2T − (1− p− q)γ2T − µhT,

dR1

dt
= γ1 I + qγ2T − (κ + µh)R1,

dR2

dt
= pγ2T − (ϑ + µh)R2,

dV
dt

= Πv − βv(ζe1E1 + ζe2E2 + I + ζtT + ζrR1)V − µvV,

dW
dt

= βv(ζe1E1 + ζe2E2 + I + ζtT + ζrR1)V − µvW,

with positive initial conditions, and time measured in months. Next, we deduce the related
cost which needed to be minimized in the context of malaria control strategy.

1. Cost to implement pre-erythtocytic vaccine. The total cost to implement the pre-
erythrocytic vaccine is given by ∫ t f

0

(
ω1u2

1

)
dt,

where ω1 is the weight parameter for pre-erythrocytic parameter and t f is the final
time of simulation. The unit of ω1 is 1

month2 . In this article, we consider the non-
linearity term on this cost term as authors in [18,26].

2. Cost to implement transmission-blocking treatment. Similar to u1, we also use a
quadratic term for u2. Hence, the total cost of transmission blocking is given by∫ t f

0

(
ω2u2

2

)
dt,

where ω2 is the weight parameter for transmission blocking. The unit of ω2 is 1
month2 .

3. Cost related to the high number of infected individuals. Except the cost related
to the implementation of pre-erythrocytic and transmission-blocking, the cost for
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malaria control strategy also comes from the cost related to the high number of
infected individuals who were not treated (I and R1). This cost is given by∫ t f

0
(ω3 I + ω4R1)dt,

where ω3 and ω4 are the weight parameters for I and R1, respectively. ω3 I and ω4R1
respectively denote the cost associated with the high number of infected individuals,
such as for maintaining health campaigns or any other related cost which comes as
a consequence of the high number of infected individuals. The unit of ω3 and ω4 is

1
individual .

Based on the above explanation, the cost function for our model is given by:

J =
∫ t f

0

(
ω1u2

1 + ω2u2
2 + ω3 I + ω4R1

)
dt. (2)

There are no exact values of ωi for i = 1, 2, 3, 4. Choosing the values of ωi should
balance the value of each components on J , since the range of u1 and u2 are very small
compared to I and R1. Hence, we have to choose ωi so that no component dominates
other components in the cost function. For example, in order to balance between ω1u2

1 and
ω3 I, then ω1 and ω3 should satisfy ω1

ω3
≈ I

u2
1
. To simulate our optimal control problem,

it is important that we use parameter values which can present the situation of malaria
dynamics in Papua and West papua. Hence, it is important that we estimate our parameter
values based on the incidence data in these areas.

2.2. Parameter Estimation

In this section, we discuss the incidence data that we use to estimate our parameters
and the numerical scheme that has been used. The incidence data for malaria are taken from
two provinces in Indonesia that have the highest number of malaria incidence every year,
namely Papua and West Papua [44]. According to [32,33], the total number of inhabitants
in Papua and West Papua was 3,435,430 and 981,822 in 2020, respectively. In both areas,
the majority of malaria cases are caused by Plasmodium falciparum, and Plasmodium vivax,
both of which cause routine health problems and morbidity in these areas [45].

The incidence data used in this article is the monthly new cases in both provinces,
from January to December 2020. The data was collected by personal request from the
Directorate of Prevention and Control of Vector and Zoonotic Infectious Diseases, Ministry
of Health of the Republic of Indonesia. The data can be seen in Figure 2.

Figure 2. Estimation result on fitting the accumulated cases in Papua with c(t) in Equation (3).
The best-fit initial conditions for S1, E1, I, T, R1, R2, V, W are 3,435,430, 2000, 2000, 2000, 1000, 21,
6,870,860, 3000, respectively.
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In our model, we do not have a compartment that describes the monthly cases of
malaria. Hence, we need to adapt our model to accommodate this. Hence, we transform
the monthly cases in both provinces into the accumulated case. Next, we create a new com-
partment from our model, which describes the accumulated cases. From the transmission
diagram given in Figure 1, the total detected cases are coming from the compartment T.
Hence, the newly detected cases come from the intervention of transmission-blocking from
I to T with a rate of u2. Hence, the dynamic of the monthly cases is given by

dc
dt

= u2 I. (3)

Solving the above differential equation will give us the accumulated cases of malaria
incidence. Our task is to minimize the Euclidean distance between c(t) from our numerical
results with the incidence data, using the best-fit parameter of our model. This task can be
formulated as follows.

min
X

∫ t f

0

(
c(t)simulation − c(t)data

)2
dt, (4)

where X is the set of best-fit parameters and initial conditions, while t f is the final time
of available data. However, because the use of pre-erythrocytic vaccines had not been
implemented in Papua and West Papua in 2020, parameter estimation is performed when
the parameters u1, α, βh2, δ2, and ζe2 are zero and the S2 and E2 compartments are zero.
The corresponding best-fit parameters are κ, ϑ, βh1, b, δ1, p, q, u2, γ1, γ2, βv, ζe1, ζt, ζr, and all
initial conditions of the system (1) (except S2(0) and E2(0)) and (3). We used a nonlinear
optimization toolbox in MATLAB to conduct this parameter estimation, called fmincon
function. To run the simulation, we need to give an estimation of an interval in which our
parameter values must exist. Hence, we use the lower and upper bound of our parameter
values, calculated as shown in Table 2. We estimate our parameter values for incidence
data in Papua and West Papua, and the result is given in Table 1, while the fitted cumulated
cases are in Figures 2 and 3. This finding indicates that malaria incidence will increase
in Papua Province, which tends to the malaria-endemic equilibrium point. Meanwhile,
malaria incidence in West Papua Province tends to the malaria-free equilibrium point. From
our modeling analyses/results, we can deduce the following:

1. Papua is more malaria-endemic than West Papua given the non-controlled basic
reproduction number (R0|Papua = 1.75 andR0|West Papua = 1.53). See the formula of
non-controlled basic reproduction number (R0) in (12).

2. Based on the value of p and q, we conclude that individuals in Papua have a slightly
bigger chance of reaching the malaria elimination target if there is a continuous
implementation of treatment efforts compared to West Papua.

3. The infection rates from mosquitoes to humans (βh1, and βh2) in West Papua is higher
than in Papua. Hence, it is important to develop a media campaign that targets
reducing the contact between humans and mosquitoes in West Papua than in Papua.
Such campaigns may include the use of bed nets or mosquito repellent.



Vaccines 2022, 10, 1174 10 of 29

Table 2. Lower and upper bound of parameters that will be estimated.

Parameters Interval Values Sources

Πh
3,435,430
71.5×12 or 981,822

71.5×12 [32–34]
Πv 2× 3, 435, 430× 30

21 or 2× 981, 822× 30
21 [32,33,35]

b [3.012, 17.4] [27]
βh1 [0.03, 0.9] [16,27]
βh2 [0.47× 0.03, 0.47× 0.9] [16,27,36]

βh1 =
bβh1

N
[
2.63× 10−8, 4.22× 10−6] or

[
9.20× 10−8, 1.47× 10−5] [27,32,33]

βh2 =
bβh2

N
[
1.23× 10−8, 1.98× 10−6] or

[
4.32× 10−8, 6.94× 10−6] [27,32,33,36]

βv [0.00572, 0.09] [27]

βv =
bβv
N

[
5.01× 10−9, 4.55× 10−7] or

[
1.75× 10−8, 1.59× 10−6] [27,32,33]

κ
[

1
12 , 1

3

]
[38]

ϑ
[

1
18 , 1

3

]
[38]

u1 (0, 1) varied
u2 (0, 1) varied

1− ξ 0.53 [36]
α

[
1

4×12 , 1
4

]
[37]

δ1 [2.02778, 6.08334] [38]
δ2 [0.9530566, 2.8591698] [36,38]
γ1

[
1
12 , 1

5

]
[46]

γ2 [0.7242071429, 1.086310714] [47]
p [0, 1] varied
q [0, 1] varied

1− p− q [0, 1] varied
ζe1 [0.00001, 1) [16]
ζe2 (0, 1) varied
ζr [0.005, 1) [16]
ζt [0.02, 1) [16]
µh

1
71.5×12 [34]

µv
30
21 [35]

Figure 3. Estimation result of fitting the accumulated cases in West Papua with c(t) in Equation (3).
The best-fit initial conditions for S1, E1, I, T, R1, R2, V, W are 974,300, 400, 400, 51, 21, 125, 1,789,099,
202, respectively.

3. Dynamical Analysis of the Model
3.1. Preliminary Results on the Positiveness and Boundedness of the Solution

The malaria model in system (1) involves human and mosquito populations. Hence,
it is necessary to guarantee that all associated variables are positive with nonnegative
parameters and initial conditions.
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Theorem 1. Let the initial conditions of all variables in system (1) be nonnegative as follows:

S1(0) > 0, S2(0) ≥ 0, E1(0) ≥ 0, E2(0) ≥ 0, I(0) ≥ 0,

T(0) ≥ 0, R1(0) ≥ 0, T2(0) ≥ 0, V(0) > 0, W(0) ≥ 0. (5)

Then the solution set

Ω = {S1(t), S2(t), E1(t), E2(t), I(t), T(t), R1(t), R2(t), V(t), W(t)}

is nonnegative for all t ≥ 0.

Proof. Let βh1S1W + (u1 + µh)S1 = G(t). Since the initial conditions of R1, R2, and S2 are
nonnegative, then the first equation in system (1) satisfies:

dS1(t)
dt

= Πh − G(t)S1(t) + κR1 + ϑR2 + αS2

≥ Πh − G(t)S1(t).

Hence, we have:
dS1(t)

dt
+ G(t)S1(t) ≥ Πh.

Choosing the integrating factor as exp
(∫ t

0 G(τ)dτ.
)

gives us:

dS1(t)
dt

exp
(∫ t

0
G(τ)dτ

)
+ G(t)S1(t) exp

(∫ t

0
G(τ)dτ

)
≥ Πh exp

(∫ t

0
G(τ)dτ

)
d
dt

[
S1(t) exp

(∫ t

0
G(τ)dτ

)]
≥ Πh exp

(∫ t

0
G(τ)dτ

)
.

Integrating both sides yields

S1(t) exp
(∫ t

0
G(τ)dτ

)
− S1(0) ≥ Πh

∫ t

0
exp

(∫ τ

0
G(u)du

)
dt. (6)

Therefore,

S1(t) ≥ S1(0) exp
(
−
∫ τ

0
G(u)du

)
+ Πh

(∫ t

0
exp

(∫ τ

0
G(u)du

)
dt
)

exp
(
−
∫ τ

0
G(u)du

)
≥ 0. (7)

Therefore, we can see that if S1(0) > 0, then we have that S1(t) ≥ 0 for all t > 0. A similar
approach can be used to show that S2(t), E11(t), E2(t), I(t), R1(t), R2(t), V(t), and W(t) are
nonnegative for all t ≥ 0. This completes the proof.

It can be shown that our model in system (1) is well-defined biologically in the feasible
region below.

Ω =

{
(X(t), Y(t)) ∈ R8

+ ×R2
+|0 ≤ N(t) ≤ Πh

µh
, 0 ≤ V(t) + W(t) ≤ Πv

µv

}
, (8)

where X(t) = {S1(t), S2(t), E1(t), E2(t), I(t), T(t), R1(t), R2(t)} and Y(t) = {V(t), W(t)}.

3.2. The Malaria-Free Equilibrium and the Controlled Reproduction Number

The first equilibrium point of malaria model in (1) is the malaria-free equilibrium,
which is denoted by E∗, and given by

E∗ = (S0
1, S0

2, E0
1, E0

2, I0, T0, R0
1, R0

2, V0, W0)

=

(
(α + µh)Πh

µh(α + µh + u1)
,

u1Πh
µh(α + µh + u1)

, 0, 0, 0, 0, 0, 0,
Πv

µv
, 0
)

. (9)
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It can be seen that E∗ presents a condition where all infections have disappeared from both
populations. In this condition, we also can see that the ratio of susceptible human beings
with and without pre-erythrocytic vaccine is given by

S0
1

S0
2
=

(α+µh)Πh
µh(α+µh+u1)

u1Πh
µh(α+µh+u1)

=
(α + µh)Πh

u1Πh
=

α + µh
u1

. (10)

The purpose is, of course, to reduce this ratio, which is equivalent to increasing the number
of individuals in S2. It can be seen that this ratio is only affected by three parameters, namely
µh, α, and u1. Of these three parameters, only the latter two are controllable. Therefore, we
can see that reducing this ratio can be done by increasing the rate of vaccination, and the
vaccine’s duration could be prolonged. Hence, the higher the quality of the vaccine (i.e., its
duration), the better.

We will now calculate the basic and controlled reproduction number of our model, which
is denoted byR0 andRC, respectively. The basic reproduction number defines the expected
average number of secondary malaria cases caused by a single malaria-infected case during its
infection period in a completely susceptible population. This threshold holds a vital role in many
malaria models [48]. From its definition,R0 helps us to understand the qualitative behavior
of our model and whether the disease may persist or exist. Mostly, they found that malaria
will disappear from the population if R0 < 1, and exist if R0 > 1. In several cases, mainly
when backward bifurcation phenomena occur in their model [18,49–51], it is still possible to
find malaria even thoughRC is already less than one.

When no control intervention is given to our model, then system (1) reduced into:

dS1

dt
= Πh + κR1 − βh1S1W − µhS1, (11a)

dE1

dt
= βh1S1W − (δ1 + µh)E1, (11b)

dI
dt

= δ1E1 − (γ1 + µh)I, (11c)

dR1

dt
= γ1 I − (κ + µh)R1, (11d)

dV
dt

= Πv − βv(ζe1E1 + I + ζrR1)V − µvV, (11e)

dW
dt

= βv(ζe1E1 + I + ζrR1)V − µvW. (11f)

To find the basic reproduction number of the basic model (11), we use the well known
next-generation matrix approach [52]. The respected basic reproduction number for the
basic model (11) is given as follows.

R0 =

√(
Πhβh1
µhµv

)
×
(

βvζe1πv

µv(δ1 + µh)
+

βvπvδ1

µv(δ1 + µh)(γ1 + µh)
+

βvζrΠvδ1γ1

µv(δ1 + µh)(γ1 + µh)(κ + µh)

)
. (12)

With a similar approach, we can calculate the controlled reproduction number of
our malaria problem. Implementing the next-generation matrix method into system (1),
the controlled reproduction number is given by:

RC =
√

f a + gb + hc + id + je, (13)

where
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f a =
Πv

µv
· βvζe1

µv︸ ︷︷ ︸
R

E1
0v

· Πh
µh
· α + µh

α + µh + u1
· βh1

δ1 + µh︸ ︷︷ ︸
R

E1
0h1

, (14a)

gb =
Πv

µv
· βvζe2

µv︸ ︷︷ ︸
R

E2
0v

· Πh
µh
· u1

α + µh + u1
· βh2

δ2 + µh︸ ︷︷ ︸
R

E2
0h2

, (14b)

hc =
Πv

µv
· βv

µv︸ ︷︷ ︸
R I

0v

· Πh
µh

K︸ ︷︷ ︸
R I

0h

, (14c)

id =
Πv

µv
· βvζt

µv︸ ︷︷ ︸
RT

0v

· Πh
µh

(
α + µh

α + µh + u1
· βh1

δ1 + µh
· δ1u2

L
+

u1

α + µh + u1
· βh2

δ2 + µh
· δ2u2

L

)
︸ ︷︷ ︸

RT
0h

, (14d)

je =
Πv

µv
· βvζr

µv︸ ︷︷ ︸
R

R1
0v

· Πh
µh

M︸ ︷︷ ︸
R

R1
0h

, (14e)

and

K =
α + µh

α + µh + u1
· βh1

δ1 + µh
· δ1(γ2 + µh)

L
+

u1

α + µh + u1
· βh2

δ2 + µh
· δ2(γ2 + µh)

L
,

M =
α + µh

α + µh + u1
· βh1

δ1 + µh
· δ1

κ + µh
· u2γ2q + γ2γ1 + µhγ1

L
. . .

+
u1

α + µh + u1
· βh2

δ2 + µh
· δ2

κ + µh
· u2γ2q + γ2γ1 + µhγ1

L
,

L = pγ2u2 + qγ2u2 + γ1γ2 + γ1µh + γ2µh + µh
2 + µhu2.

As we can see from the expression on (13), R0 is the combination of many paths of
infection on our model. The explanation is given as follows.

1. RE1
0v shows the path of transmission for a new case in mosquito due to a bite from

susceptible mosquitoes to an exposed human in compartment E1.
2. RE1

0h1 shows the transmission path which gives a new infection in humans without
pre-erythrocytic vaccine (E1) due to a bite from infected mosquitoes.

3. RE2
0v presents the transmission path for a new infection in the mosquito population

after they bite exposed humans in E2.
4. RE2

0h2 presents the transmission path for a new infection in vaccinated human E2 due
to a bite from infected mosquitoes.

5. RI
0v shows a transmission for a new infection in the mosquitoes population after

biting an infected individual in I.
6. RI

0h presents a transmission path for a new cases in I due to progression of E1 and E2.
7. RT

0v presents a transmission path for a new case in the mosquitoes population after
biting an infected individual who is undergoing treatment (T).

8. RT
0h presents a transmission path for a new case in treated human population (T) due

to the treatment rate from I.
9. RR1

0v presents a transmission path for a new case in the mosquito population after
biting individuals in R1.

10. RR1
0h presents a transmission path for new cases in the compartment of humans who

partially succeed in conducting transmission-blocking treatment.
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3.3. The Malaria-Endemic Equilibrium

The malaria-endemic equilibrium point of system (1) indicates the condition when
malaria persists in the human and mosquito populations. The malaria-endemic equilibrium
of system (1) will be determined when the number of infected individuals is not equal to
zero. However, due to the complexity of the model, we can not explicitly show the form
of the endemic equilibrium point as a function of other parameters. Hence, we write our
endemic equilibrium point as a function of dependent variables I and W. The idea is as
follows. We set the right hand side of system (1) equal to zero, and solve them backwardly
with respect to each variables until we only have I and W left. This process will give us two
different polynomial as a function of I and W. Hence, the malaria-endemic equilibrium of
system (1) is given by:

E † = (S∗1 , S∗2 , E∗1 , E∗2 , I∗, T∗, R∗1 , R∗2 , V∗, W∗), (15)

where

S∗1 =
(W∗βh2 + α + µh)I∗ (δ2 + µh)(δ1 + µh)a

W∗
, (16a)

S∗2 =
u1 I∗ (δ2 + µh)(δ1 + µh)a

W∗
, (16b)

E∗1 = (W∗βh2 + α + µh)I∗ (δ2 + µh)βh1a, (16c)

E∗2 = u1 I∗ βh2(δ1 + µh)a, (16d)

T∗ =
u2 I∗

γ2 + µh
, (16e)

R∗1 =
((qu2 + γ1)γ2 + γ1µh)I∗

(γ2 + µh)(κ + µh)
, (16f)

R∗2 =
I∗ pγ2u2

(γ2 + µh)(µh + ϑ)
, (16g)

V∗ =
µvW∗

βv
(
T∗ζt + E∗1 ζe1 + E∗2 ζe2 + R∗1ζr + I∗

) , (16h)

with

a =
µh

2 + (γ1 + γ2 + u2)µh + γ2((p + q)u2 + γ1)

γ2 + µh

× 1
βh1δ1µh

2 + (δ1(W∗βh2 + α + δ2)βh1 + u1δ2βh2)µh + δ2((W∗βh2 + α)βh1 + βh2u1)δ1
,

while I∗ and W∗ are taken from the positive intersection of the following polynomials:

G1 = a2(I)W2 + a1(I)W + a0(I) = 0,

G2 = b1(W)I + b0(W) = 0, (17)

where ai(I), bi(W) for i = 0, 1, 2 has a complex form to be shown. We leave the existence
analysis on this malaria-endemic equilibrium as an open problem to an interested reader.

We show the existence of this malaria-endemic equilibrium numerically with the
following scenario. To conduct this numerical experiment, we use the following parameter
values:

Using the above parameter values, we have the basic reproduction number of sys-
tem (1) is 1.002169498, which is larger than one. Substituting the parameter values in Table 3
into G1 and G2 yield:

G1 = (2.81× 10−19 I + 2.4× 10−11)W2 + (−1.89× 10−12 I + 3.62× 10−6)W − 2.91× 10−7 I = 0,

G2 = 6.14× 10−15(W + 150489.34)(W + 34834.79)I − 2.67× 10−9(W + 150616.39)W = 0. (18)
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Table 3. Parameter values to show existence of E†.

Parameter Value Parameter Value

κ 0.333333327466586 γ1 0.199999993947735

ϑ 0.0555555854358188 γ2 1.08631070229205

α 1
6 βv 1.51190029406934× 10−8

βh1 2.37749246426963× 10−6 ζe1 0.0499997440960968

u1 0.001 ζe2 0.0399997440960968

βh2 1.11742145820672× 10−6 ζt 0.080000001876738

δ1 6.08333998105411 ζr 0.060000000761188

δ2 2 µh 1.165501166× 10−3

p 0.599999998192909 Πh 4003.99766899767

q 0.299999997668467 µv 1.428571429

u2 0.499999999825239 Πv 9,815,514.28571429

Next, we plot G1 and G2 in I −W plane. The result is given in Figure 4.

Figure 4. Illustration for the existence of malaria-endemic equilibrium point

Since we have an intersection between G1 and G2 in the first quadrant of I −W plane,
then we have the malaria-endemic equilibrium point, which is given by:

E † =(S∗1 , S∗2 , E∗1 , E∗2 , I∗, T∗, R∗1 , R∗2 , V∗, W∗)

=(3400396, 20241, 200, 2, 1874, 862, 1960, 9898, 6870710, 151). (19)

4. Sensitivity Analysis
4.1. Global Sensitivity Analysis on the Basic Reproduction Number

In this subsection, we carry out a global uncertainty analysis of basic reproduction
number for the malaria model without control. As we have already shown in the previous
section, the basic reproduction number could determine whether malaria will persist
or become extinct in the population. Hence, it is essential to analyze the sensitivity of
the basic reproduction number with respect to the model parameters. Global sensitivity
analysis is used to study the relative changes in epidemic model parameters output, giving
input/altered model parameters for the dynamical systems under investigation. Thus, we
enabled modelers to identify key model variables that require controlling for the particular
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disease. To carry out the simulation, we used global sensitivity analysis, which combines
the Latin-hypercube sampling and Partial Rank Cross Correlation (PRCC) technique as
given in [53] with similar analysis in [54]. Using R-software, we performed 1000 simulations
per run, and examined and evaluated the PRCC of the model parameters concerning in
R0. The PRCC indicates the degree of monotonicity between the model’s parameters in
the R0. Thus, juxtaposing the values of PRCC gives an apparent effect and contribution
of each model parameter on R0 in our malaria model. The results from the numerical
simulations are given in Figure 5 and Table 4. The sensitivity of the parameters to the basic
reproduction number (12) is proportional to the absolute value of PRCC. As we can see in
Table 4, we observe Πh, βh1, µh, µv, βv, Πv, γ1, and ξr. From these parameters, we can see
that βh1, βv, and µv are the most significant parameters that can be controlled. Increasing
µv and reducing βh1 and βv will reduce R0. It can also been seen in Table 4 that all the
parameters have p-values < 0.05 and thus are said to be significant besides ξe1, κ, and δ1.
Therefore, it is essential to introduce intervention to reduce the infection rate with vaccine
in susceptible populations, or increasing the mosquito death rate with fumigation.

Figure 5. Tornado plot showing the PRCC values for the model parameters inR0.

Table 4. PRCC parameter values and p-values for the global sensitivity analysis againstR0.

Parameter PRCC Values p-Values Significant?

Πh 0.271036046 0 TRUE
βh1 0.631568463 0 TRUE
µh −0.656060428 0 TRUE
µv −0.856948705 0 TRUE
βv 0.643359162 0 TRUE
ξe1 0.038340724 2.282× 10−1 FALSE
Πv 0.276430743 0 TRUE
δ1 0.003574822 9.106× 10−1 FALSE
γ1 −0.162743705 2.486× 10−7 TRUE
κ −0.079425150 1.240× 10−2 FALSE
ξr 0.183579610 5.425× 10−9 TRUE

4.2. Local Sensitivity Analysis on the Model Variables

The sensitivity methods can be used on infectious disease models to determine which
variable or parameter is sensitive to a specific condition. In our case, identifying the key
critical parameters of system (1) is an effective way to study the qualitative behaviour of the
parameters which govern the model. In our proposed model (1), we have 10 compartments
xi for i = 1, 2, ..., 10 and 22 parameters k j for j = 1, 2, ..., 22. Then, the local sensitivities can
be calculated using three different techniques: non-normalisations, half-normalizations,
and full-normalizations. Firstly, the equation of non-normalization sensitivities is given by
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Sxi
kj

=
∂xi
∂k j

, (20)

where Sxi
kj

is measured as sensitivity coefficients of each xi with respect to each parameter
k j. Then, the formula of half–normalization sensitivities is defined below:

Sxi
kj

=
( 1

xi

)(∂xi
∂k j

)
. (21)

Finally, the equation of full-normalization sensitivities is defined by

Sxi
kj

=
( k j

xi

)(∂xi
∂k j

)
. (22)

In this article, we only perform a full-normalization sensitivity analysis on our pro-
posed model in (1) for best-fit parameter of Papua and West-Papua incidence data. The re-
sults are given in Figures 6 and 7. We can see from Figures 6 and 7 that the progression
rate from E1 to I (δ1) is the most influential parameter for all compartments, except S2 and
E2. The second most influential parameter is the transmission-blocking parameter (u2). In
contrast to u2, we can see that the impact of pre-erythrocytic (u1) is not as sensitive as u2.
This result is similar to our previous sensitivity analysis onR0.

(a) (b)

Figure 6. Local sensitivity analysis with full–normalization technique of all variables with respect to
all parameters (a) and without δ1 (b). We use incidence data from Papua and the following initial
conditions: S1(0) = 3,208,839, S2(0) = 0, E1(0) = 2000, E2(0) = 0, I(0) = 2000, T(0) = 1000,
R1(0) = 1000, R2(0) = 317, V(0) = 6,664,102, W(0) = 2781 to run the simulation.

(a) (b)

Figure 7. Local sensitivity analysis with full–normalization technique of all variables with respect
to all parameters (a) and without δ1 (b). We use incidence data from West-Papua and the following
initial conditions: S1(0) = 918,167, S2(0) = 0, E1(0) = 399, E2(0) = 0, I(0) = 242, T(0) = 51,
R1(0) = 22, R2(0) = 88, V(0) = 1,915,967, W(0) = 641 to run the simulation.
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5. Existence of Solution and Characterization of the Optimal Control Problem

We consider our optimal control problem on determining S∗1 , S∗2 , E∗1 , E∗2 , I∗, T∗, R∗1 ,
R∗2 , V∗, W∗, associated with our admissible control parameter (u∗1 , u∗2) ∈ Ω on the time
interval [0, T], which satisfies our malaria model in (1), non-negative initial conditions
S1(0), S2(0), E1(0), E2(0), I(0), T(0), R1(0), R2(0), V(0), and W(0) in order to minimize
the cost function in (2), i.e.,

J(u∗1 , u∗2) = min
Ω

J(u1, u2). (23)

The existence of our optimal control solutions (u∗1 , u∗2) comes from the convexity of
the integrand of the cost function in (2) with respect to the controls and the regularity of
the malaria model in (1) (See [55,56] for the existence results of optimal solutions).

5.1. Existence of the Optimal Solution

In this subsection we state and prove the existence of solutions for the optimal control
ODE system given in Equation (1), before proving the existence of solutions for the optimal
control problem. Firstly, it is necessary to establish the boundedness of our malaria model
over the modeling time horizon. Now, let Ŝ1, Ŝ2, Ê1, Ê2, Î, T̂, R̂1, R̂2, V̂, and Ŵ denote the
super-solutions with respect to each state variable in Equation (1). Therefore, we obtain

dŜ1

dt
= Πh, (24a)

dŜ2

dt
= Ŝ1, (24b)

dÊ1

dt
= 1, (24c)

dÊ2

dt
= 1, (24d)

dÎ
dt

= δ1Ê1 + δ2Ê2, (24e)

dT̂
dt

= Î, (24f)

dR̂1

dt
= γ1 Î + qγ2T̂, (24g)

dR̂2

dt
= pγ2T̂, (24h)

dV̂
dt

= 1, (24i)

dŴ
dt

= βv(ζe1Ê1 + ζe2Ê2 + Î + ζtT̂ + ζrR̂1). (24j)

Writing system (24) in a vector notation format, we get

X̄′ =M1X̄ +M2,
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where X̄ =



Ŝ1
Ŝ2
Ê1
Ê2
Î
T̂
R̂1
R̂2
V̂
Ŵ


, M1



0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 δ1 δ2 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 qγ2 γ1 0 0 0 0
0 0 0 0 pγ2 γ1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 βvζe1 βvζe2 1 βvζt βvζr 0 0 0


and

M2 =



Πh
0
1
1
0
0
0
0
1
0


.

From the above matrices, it can be deduced that our model is linear and satisfies the
properties of being semi-positive definite on Ω. Then, it follows that the super-solutions of
the system (1) are bounded.

Applying Theorem 4.1 on pages 68–69 of Fleming and Rishel [56], we then show the
existence of the optimal control model. Supposed

H = {uk(t) : 0 ≤ uk(t) ≤ 1}, ∀t ∈ [0, t f ] f or k = 1, 2.

Theorem 2. Given the objective functional

J =
∫ t f

0

(
ω1u2

1 + ω2u2
2 + ω3 I + ω4R1

)
dt, (25)

which has associated admissible control while subject to the model initial conditions given in Theorem
1. There exists an optimal control pair u∗1 , u∗2 which minimizes the functional

J(u∗1 , u∗2) = min
Ω

J(u1, u2). (26)

Therefore, the conditions enumerated below should be satisfied by our model.

1. The admissible control parameters and each model state variable are non-empty.
2. ControlH is convex and bounded.
3. Right hand side of our system is continuous and bounded above by a linear function in the

state variables and the control parameters.
4. The integrand of J (u1(t), u2(t)) is concave onH.
5. There exists positive constants b1, b2 > 0 and τ > 1 such that J (uk(t)) satisfies

J (u1(t), u2(t)) ≤ b1 + b2(|u1|2 + |u2|2)
τ

2 .

Proof. The proof follows for the stated conditions as follows:

1. Applying the methodology of Theorem 9.2.1 on page 182 of [57], the first criteria
is fulfilled as the solutions of our model system exist and are bounded in ω as also
shown by the existence of the super-solutions.

2. Using the definition ofH, we have that set as bounded and closed.



Vaccines 2022, 10, 1174 20 of 29

3. Considering our model in Equation (1) and the cost function (2) is linear in u1 and
u2. with the aid of the result of the theorem as in [57], we can then deduce that the
right-hand side of our system is continuous and bounded.

4. Suppose the objective function

L = ω1u2
1 + ω2u2

2 + ω3 I + ω4R1

and we set (p, q) ∈ Θ, for p, q and 0 ≤ t ≤ 1. Then L(tp + (1− t)p) ≥ t(p) + (1−
t)Lp. Additionally, let (p, q) ∈ Θ2 for 0 ≤ t ≤ 1, then we have that p = u11, p = u12
and (tp + (1− t)q = tu11 + (1− t)u12). Thus,

L(tp + (1− t)q) = ω3 I + ω4R1 + ω1(tu11 + (1− t)u12)
2 + ω2(tu21 + (1− t)u22)

2 (27a)

tL(p) + (1− t)L(q) = ω3 I + ω4R1 + ω1(tu2
11 + (1− t)u2

12) + ω2(tu2
21 + (1− t)u2

22). (27b)

From (2), we observe that

(tu11 + (1− t)u12)
2 ≥ (tu2

11 + (1− t)u2
12),

(tu21 + (1− t)u22)
2 ≥ (tu2

21 + (1− t)u2
22).

Following this observation, we can then generalize that given any (p, q) ∈ θ2 for
0 ≤ t ≤ 1 we obtain L(tp + (1− t)q) ≥ tL(p) + (1− t)L(q). Hence, the integrand of
J is concave.

5. Following the fact that the model state variable in the objective function, that is, I and
R1 are bounded as shown in 3. Above, there exits positive constants ϕ1, ϕ2 > 0 such
that the sum of (I + R1) ≤ ϕ2. If we set ϕ2 = maxn = 3, 4 · · · , we have that

L(I, R1, u1, u2) ≤ η1 + η2 + η3

(
|u2

1|+ |u2
2|
) 2

τ

in which τ = 2. This implies that there is a positive constant ϕ1, ϕ2 > 0 and a τ > 1
such that the integrand component of J satisfies

L(I, R1, u1, u2) ≤ ϕ1 + ϕ2

(
|u2

1|+ |u2
2|
) 2

σ .

From the above proof, we have that our system satisfies the necessary conditions in
Theorem 2, which is completed here.

5.2. Characterization of the Optimal Control Problem

The Pontryagin’s Maximum principle [58] allows us to utilize costate functions to
transform the optimization problem to the problem of determining the point-wise minimum
of u∗1 and u∗2 of the Hamiltonian. This Hamiltonian function is built using the cost function
in (2) and the malaria model in (1). With this, we derive:

H(X, λj, ui) = ω1u2
1 + ω2u2

2 + ω3 I + ω4R1

+ λ1[Πh + κR1 + ϑR2 + αS2 − βh1S1W − (u1(t) + µh)S1]

+ λ2[u1(t)S1 − βh2S2W − (α + µh)S2]

+ λ3[βh1S1W − (δ1 + µh)E1]

+ λ4[βh2S2W − (δ2 + µh)E2]

+ λ5[δ1E1 + δ2E2 + (1− p− q)γ2T − (u2(t) + γ1 + µh)I]
+ λ6[u2(t)I − pγ2T − qγ2T − (1− p− q)γ2T − µhT]
+ λ7[γ1 I + qγ2T − (κ + µh)R1]

+ λ8[pγ2T − (ϑ + µh)R2]
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+ λ9[Πv − βv(ζe1E1 + ζe2E2 + I + ζtT + ζrR1)V − µvV]

+ λ10[βv(ζe1E1 + ζe2E2 + I + ζtT + ζrR1)V − µvW], (28)

where X = (S1, S2, E1, E2, I, T, R1, R2, V, W) and λj for i = 1, 2, . . . 10 are the associated
adjoints for the model variables S1, S2, E1, E2, I, T, R1, R2, V, and W, respectively.
Next, we will calculate the optimality system of our optimal control problem. The following
results is a direct consequences of application of the Pontriagin’s Maximum Principle for
bounded controls [59]. The adjoint system can be written as follows:

dλ1

dt
= − ∂L

∂S1

= βh1W(λ1 − λ3) + u1(λ1 − λ2) + µhλ1,
dλ2

dt
= − ∂L

∂S2

= βh2W(λ2 − λ4) + α(λ2 − λ1) + µhλ2,
dλ3

dt
= − ∂L

∂E1

= δ1(λ3 − λ5) + ζe1βvV(λ9 − λ10) + µhλ3,
dλ4

dt
= − ∂L

∂E2

= δ2(λ4 − λ5) + ζe2βvV(λ9 − λ10) + µhλ4,
dλ5

dt
= −∂L

∂I
= −ω3 + u2(λ5 − λ6) + γ1(λ5 − λ7) + βvV(λ9 − λ10) + µhλ5,

dλ6

dt
= −∂L

∂T
(29)

= γ2(λ6 − λ5) + pγ2(λ5 − λ8) + qγ2(λ5 − λ7) + ζtβvV(λ9 − λ10) + µhλ6,
dλ7

dt
= − ∂L

∂R1

= −ω4 + κ(λ7 − λ1) + ζrβvV(λ9 − λ10) + µhλ7,
dλ8

dt
= − ∂L

∂R2

= ϑ(λ8 − λ1) + µhλ8,
dλ9

dt
= − ∂L

∂V
= βv(ζe1E1 + ζe2E2 + I + ζtT + ζrR1)(λ9 − λ10) + µvλ9,

dλ10

dt
= − ∂L

∂W
= βh1S1(λ1 − λ3) + βh2S2(λ2 − λ4) + µvλ10,

and with transversality conditions λj(T) = 0 for j = 1, 2, . . . 10. The optimality condi-
tions requires that ∂H

∂u1
= ∂H

∂u2
= 0. Hence, according to our model and cost function,

and following the lower and upper bounds, we have:

u∗1 = min
{

max
{

0,
S1(λ2 − λ1)

2ω1

}
, 1
}

, (30)

u∗2 = min
{

max
{

0,
I(λ6 − λ5)

2ω2

}
, 1
}

. (31)

6. Numerical Simulation of the Optimal Control Problem

From the previous analysis, our optimal control problem consists of the state system,
which is the malaria model in (1) with initial condition X(0), the costate system in (29)
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with transversality condition λj(T) = 0, and optimal conditions in (30). To determine
the optimal trajectory of u∗1 and u∗2 , we have to determine the solution of the state and
costate system. Since the state system has an initial condition, while the costate has the final
condition, we cannot solve these systems directly forward in time. Thus, we will solve it
using the “forward-backward sweep method” [59]. The algorithm is as follows. An initial
guess for the control variables should be made. Then, with this initial guess, we solve the
state system in (1) numerically forward in time using a Runge–Kutta method. Having the
initial guess of control variables and the solution of the state system for t ∈ [0, T], we solve
our costate system in (29) backward in time, also with the Runge–Kutta method. Having
the solution of state and costate for t ∈ [0, T], we update the control trajectories using
the equation in (30). This process is repeated until the convergence criteria are satisfied.
In our numerical implementation, the convergence criteria are when the Euclidean distance
between ith and (i + 1)th iteration for costate, state, and control parameters are smaller than
our chosen tolerance.

Unless stated otherwise, to run the simulations in this section, we used parameter val-
ues as shown in Table 1, with the following initial conditions: S1(0) = 95%N, S2(0) = 0,
E1(0) = 1%N, E2(0) = 0, I(0) = 3%N, T = 0, R1(0) = 0, R2(0) = 1%N, V(0) = 180%N,
and W(0) = 20%N, with N is the total of human population in Papua (3,435,430). The val-
ues assigned for the weight constant are ω1 = 1, ω2 = 1, ω3 = 5× 1011, and ω4 = 1012.
In this section, the impact of control trajectories with various scenarios is studied. We
studied the impact on the change of the dynamic of each sub-population (with and with-
out controls), the total of susceptible and infected populations, and the cost related to
the scenario.

6.1. Different Combination of Interventions

For the first scenario of optimal control simulations, we conducted our experiment
based on the combination of controls that have been used. Let Scenarios 1, 2, and 3 be
scenarios when only pre-erythrocytic drugs are used (u1 > 0, u2 = 0), transmission-
blocking drugs are used (u1 = 0, u2 > 0), and both drugs are used (u1 > 0, u2 > 0),
respectively. The illustration on the dynamics of system (1) and the control profiles for
Scenarios 1, 2, and 3 are given in Figures 8, 9, and 10, respectively. From Figure 8, we can
see that with a profile of u1 of Scenario 1 in Figure 8k, the number of infected individuals
is always decreasing except E2, as a consequence of the existence of individuals who are
already vaccinated (S2). It is clearly observed that the pre-erythrocytic vaccine should be
maintained at one from the start of the simulation for a long time period to increase the
number of vaccinated individuals. With a large number of vaccinated individuals, fewer
people will be infected by mosquitoes. Hence, the total number of infected individuals
is always smaller than when no intervention is used. The total cost for Scenario 1 is
4.31889× 1012, with an average of total avoided infected individuals (E1 + E2 + I + T)
compared to without intervention scenario is 34,679 individuals. Please see Figure 11 for
the dynamics of total susceptible and infected individuals, with and without control.

Simulation results of Scenario 2, when only transmission-blocking is used as an
intervention strategy, are given in Figure 9. Similar to Scenario 1, the intervention of
transmission-blocking successfully reduces the number of infected individuals significantly.
The trajectories of u2 for Scenario 2 can be seen in Figure 9l, where intervention should be
given in its maximum effort from the beginning of simulation for 10 months and decreasing
slowly as time passes. The total cost for Scenario 2 is 1.33452× 1012, which is almost 70%
smaller than Scenario 1. The average number of total infected inverted in Scenario 2 is
160,114 individuals. Compared to Scenario 1, the average number of averted cases for
Scenario 2 is almost 361% larger.
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Figure 8. Dynamics of human (a–h), mosquitoes (i,j), and controls (k,l) under the scenario of
pre-erythrocytic vaccine intervention only applies. Blue and red curve represents implementation
strategies with and without controls.

Figure 9. Dynamics of human (a–h), mosquitoes (i,j), and controls (k,l) under the scenario of
transmission-blocking treatment intervention only applies. Blue and red curve represents implemen-
tation strategies with and without controls.

Figure 10 shows the dynamics of each subpopulation in system (1), and it controls
trajectories for Scenario 3. It reflects the success of the combination between the pre-
erythrocytic vaccine and transmission-blocking treatment. This scenario suggests the
intervention of transmission-blocking should be given in its maximum effort, much longer
than the pre-erythrocytic vaccine. With the total cost for Scenario 3 being 1.334401× 1012,
the average number of avoided infections is 170,680 individuals.
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Figure 10. Dynamics of human (a–h), mosquitoes (i,j), and controls (k,l) under the scenario of both
intervention applies. Red and blue curve present a condition of without and with implementation
of control.

The comparison of all scenarios in one figure can be seen in Figure 11. We can see that
reducing the number of infected individuals between Scenarios 2 and 3 is almost similar,
which is more successful than Scenario 1. Hence, with the set of parameters and initial
conditions in this article, we can conclude that transmission-blocking treatment is more
significant in reducing the number of infected individuals than the pre-erythrocytic vaccine.
We have to state that the estimation of parameters on our model does not include the
number of individuals who already use both forms of intervention. Hence, it is important
to do another parameter estimation when the data for the number of individuals who use
both interventions are already available and re-simulate our optimal control simulation.
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strategies (no intervention (red), u1 and u2 (blue), u1 only (black), and u2 only (magenta)).
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6.2. Different Initial Condition of Population

In this subsection, we analyze the impact of the initial condition of the population
on the dynamics of control variables. We use parameter values and initial condition of
Scenario 3 in Section 6.1 as the base case, and change the initial conditions as follows:
S1(0) = 80%N, S2(0) = 0, E1(0) = 5%N, E2(0) = 0, I(0) = 10%N, T = 0, R1(0) = 0,
R2(0) = 5%N, V(0) = 150%N, and W(0) = 50%N, with N being the total human popu-
lation in Papua (3,435,430). Let us call this Scenario 4. In Scenario 4, we can see that the
number of infected individuals in the human and mosquito population is larger than in
Scenario 3. The result of this scenario is shown in Figure 12. We can see in Figure 12k that
the dynamics of u1 are only given in its maximum effort for just a few days of simulation,
and start to decrease rapidly compared to in Scenario 3 (Please see Figure 10k). Since the
rate of vaccine is the maximum given in a concise time period, then the increased number of
S2 in Scenario 4 is not as significant as in Scenario 3. The dynamics of u2, which present the
transmission-blocking treatment, should be given its maximum value over a longer period
than u1 to reduce the number of infected individuals. Consequently, the number of treated
individuals increases very rapidly and decreases as they begin to recover. The cost for
Scenario 4 is 4.6189× 1012, which is much larger than Scenario 3. Although the number of
infected cases avoided in Scenario 4 is 1,177,307, which is more significant than in Scenario 3,
the cost to achieve this result is almost 330% larger than in Scenario 4. Hence, we can
conclude that when the number of infected individuals is relatively large at the beginning
of the intervention period, most of the intervention should be focused on reducing cases,
which in our model is the implementation of transmission-blocking treatment. With more
infected individuals at the beginning of the intervention period, more costs are needed to
control the spread of malaria.
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Figure 12. Dynamics of human (a–h), mosquitoes (i,j), and controls (k,l) under the scenario of both
intervention applies, but with a higher number of infected individuals at time t = 0. Red and blue
curve present a condition of without and with implementation of control.

6.3. Different Initial Basic Reproduction Number

In this subsection, the optimal control simulation aims to see the effect of the initial
value of the basic reproduction number when pre-erythrocytic intervention and transmission-
blocking treatment is not yet implemented. In this case, the basic reproduction number of
system (1) is given by (12).
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For this simulation, we used parameter values as from Table 1, except that u1 = 0,
u2 = 0, and also other parameters that related to the control parameters are zero as the base
case (case 3 in Table 5). We run our simulation in seven different cases, and the differences
are based on the value of βh1, βh2, and βv. Hence, we also have a different initial basic
reproduction number R0, as shown in Table 5. It can be seen that the greater the value
of R0, the higher the costs to reduce the high number of cases in the field. If we pay
attention to Figure 13k,l, the higher the R0 value, the longer the transmission-blocking
treatment intervention should be given to its maximum value, and at the same time,
the pre-erythrocytic intervention should be reduced in intensity to avoid high intervention
costs. On the other hand, when R0 is smaller, the pre-erythrocytic vaccine should be
given for a longer period at its maximum level to avoid an increase in the number of
malaria-infected individuals.
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Figure 13. Time series dynamics for; humans (a–h), mosquitoes (i,j), and controls (k,l), but different
initialR0 when no control applied. The color in the legend are explained in Table 5.

Table 5. Numerical results for various initial value of the non-controlled basic reproduction number.

Case Scenario for βh1, βh2 and βv R0 Inverted Case Cost Colour

1 Reduced 50% from case 3 1.005 52,787 7.038× 1011 Red
2 Reduced 25% from case 3 1.508 129,702 1.101× 1012 Green
3 As in Table 1 for Papua data 2.011 170,680 1.334× 1012 Blue
4 Increased 50% from case 3 3.016 185,168 1.857× 1012 Cyan
5 Increased 100% from case 3 4.022 183,584 2.67× 1012 Magenta
6 Increased 150% from case 3 5.027 184,294 3.573× 1012 Yellow
7 Increased 200% from case 3 6.033 185,505 4.562× 1012 Black

7. Conclusions

In this paper, we formulated and analyzed a deterministic compartmental model for
malaria transmission. The model consists of eight compartments for humans and two
compartments for mosquitoes. The malaria-free equilibrium is locally asymptotically stable
if the basic reproduction number is less than unity. The basic reproduction number of our
model presents the combination of infection paths in our transmission model, such as the
bite of susceptible mosquitoes to the exposed human (with/without the vaccine), infected,
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treated, or carrier recovered individuals, or the bite of infected mosquitoes to susceptible
humans (with/without vaccine).

Our model parameter values were estimated using incidence data from the Papua
and West Papua provinces in Indonesia. We found that without implementing any type
of intervention, the basic reproduction number of malaria in Papua and West Papua is
greater than one, which suggests that a massive intervention should be made to reduce
the spread of malaria. Our sensitivity analysis of the basic reproduction number shows
that transmission-blocking is more sensitive to reducing the basic reproduction number
compared to the pre-erythrocytic vaccine.

Several scenarios on the optimal control simulation were carried out based on the
combination of interventions (first scenario), different initial conditions (second scenario),
and the value of the basic reproduction number (third scenario). From the first simulation,
in order to understand the most effective combination strategies, we found whether using
both vaccine and treatment as a single or combined form of intervention will be more
effective compared to other possible combinations. Our analysis shows that using both
interventions is the most successful strategy in reducing the number of new infections.
However, the number of averted infections with this strategy is only slightly different
compared to that of implementing transmission-blocking treatment as a single form of
intervention, but with a cheaper cost of implementation. On the other hand, the pre-
erythrocytic vaccine is not recommended as a single form of intervention, as the result
in reducing the number of infected individuals is not as significant as other strategies.
From the second scenario, we concluded that more cost is needed to control malaria when
the number of infected individuals is already high. For the last scenario, we run our
simulation for various values of the basic reproduction number to indicate that the level
of endemicity of malaria when vaccines and treatment are not yet implemented. Our
results suggest the larger the basic reproduction number of an area, the larger the scale of
the implementation of transmission-blocking treatment is needed to reduce the spread of
malaria. Additionally, the pre-erythrocytic vaccine should be implemented at its maximum
rate for a short period to minimize the intervention cost.
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