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Abstract: One hundred years after the flu pandemic of 1918, the world faces an outbreak of a new
severe acute respiratory syndrome, caused by a novel coronavirus. With a high transmissibility, the
pandemic has spread worldwide, creating a scenario of devastation in many countries. By the middle
of 2021, about 3% of the world population had been infected and more than 4 million people had
died. Different from the H1N1 pandemic, which had a deadly wave and ceased, the new disease
is maintained by successive waves, mainly produced by new virus variants and the small number
of vaccinated people. In the present work, we create a version of the SIR model using the spatial
localization of persons, their movements, and considering social isolation probabilities. We discuss
the effects of virus variants, and the role of vaccination rate in the pandemic dynamics. We show that,
unless a global vaccination is implemented, we will have continuous waves of infections.

Keywords: COVID-19; pandemic; vaccination; ABM-SIR model

1. Introduction

At the end of 2019, the world received news about a novel disease that started in
Wuhan, China. This illness, called COVID-19, is caused by a SARS class virus named SARS-
CoV-2. Due to its high transmission capability, the disease rapidly reached all countries
around the globe, mainly through airports networks [1–3], and, on 11 March 2020, the
World Health Organization (WHO) declared it a pandemic. As of September 2021, the
Johns Hopkins COVID-19 dashboard [4] showed more than 200 million cases and more
than 4 million deaths globally. Such a number shows how fast the SARS-CoV-2 can spread
through an entire population if no coordinated actions to prevent and reduce infections are
in place.

Any responsible sanitary policy adopted to slow down the progress of COVID-19
pandemic should make use of the following three strategies:

1. Social distancing: the obvious way to reduce susceptible-infected interaction and
subsequent contagion;
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2. Mask wearing and hygiene: this was implemented once it became known that trans-
mission is mainly through respiratory droplets of infected patients and contact with
surfaces infected by aerosol;

3. Vaccines: a correct vaccination program can decrease overall transmission and the
intensity of the disease symptoms among those infected and vaccinated, reducing
the public health collapse risk and the mortality rates, as susceptible but vaccinated
people become asymptomatic. Still, the virus will circulate, and the lack of a proper
vaccination will create outbreaks due to contact between an increasing number of
“asymptomatic” people with susceptible people. As [5] demonstrated, the existence
of transient collective immunity may prolong an epidemic, and a bad vaccine scheme
may exacerbate this pattern.

For the specific case of COVID-19 vaccination, one of the subjects of the present work
is that there are many factors that must be considered for a suitable immunization policy.
Among all of them, this work focuses mainly on two aspects: how the virus is evolving
into new variants of concern and reinfection.

Every time SARS-CoV-2 infects a susceptible person, it starts to make copies of itself
replicating its RNA [6,7]. As this process is not 100% error proof, some changes can be
introduced, and different copies can be created. These changes or mutations in RNA
can lead to different scenarios: it can be an evolutionary dead end and kill the virus,
it can be an irrelevant and not noticeable change, or it can bring some advantages, for
example, better response to the immune system or a better enhanced ability to invade the
cells [8]. Even more rarely, whole clusters of mutations can be acquired by the virus during
a single infection. When a virus with a single or clusters of mutations is capable of an
epidemiologically significant spread through populations, they are named “Variants of
Concern” or VOC. According to US Center of Disease Control and Prevention (CDC) [9], a
variant becomes a VOC when there is evidence of an increase in transmissibility, or in lethality
and severity of the disease, significant reduction in neutralization by antibodies generated during
previous infection or vaccination, reduced effectiveness of treatments or vaccines, or diagnostic
detection failures.

Although there are thousands of different genetic lineages of SARS-CoV-2, there are
few Variants of Concern [10]. Both the variant β (former B1.351), which was first detected
in South Africa, and variant γ (former P.1), which was first seen in Brazil and Japan, contain
mutations that appear to weaken the ability of antibodies to neutralize the virus by binding
to it, which would normally prevent it from infecting cells [11]. Variant α (former B1.1.7),
detected in the UK and reported in 93 other countries, and variant δ (former B.1.617.2), from
India, show less of an ability to escape from antibodies, but they have gained mutations
that allows them to reproduce faster, rapidly increasing the viral load in an infected person,
with consequences for the transmissibility than the original version of the virus [12,13]. The
latest Omicron variant has an extremely high transmissibility, even higher than δ, but it is
less likely to infect the lungs [14,15].

Apart from VOCs, there are still the “Variants of Interest” or VOIs (variants ε, η, ι, κ,
and ζ) and “Variants of High Consequence” (there are no SARS-CoV-2 variants that rise
to the level of high consequence until now) [16]. The CDC definition of a VOI is a variant
with specific genetic markers that have been associated with changes to receptor binding,
reduced neutralization by antibodies generated against previous infection or vaccination,
reduced efficacy of treatments, potential diagnostic impact, or predicted increase in trans-
missibility or disease severity. On the other hand, a variant has high consequences when
there is clear evidence that prevention measures or medical countermeasures (MCMs) have
significantly reduced effectiveness relative to previously circulating variants.

The second factor that can impact an immunization policy is the reinfection caused
by the loss of immunity. Some works have shown that immunity with greater memory
is acquired by infected people who developed severe symptoms, recovered, and were
vaccinated with at least one dose. However, even in these cases, immunity is not permanent,
requiring a new dose of vaccine [17,18]. The reinfection was assumed as rare just before
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the spreading of the new variants of concern in early 2021 [19]. However, risks may rise
if the pandemic is not controlled and the virus is left to evolve freely [20–22]. Reduced
neutralization of the Delta variant in comparison to the ancestral Wuhan-related strain was
already observed [23], and a complex relation between different variants is also possible.
For instance, it was found that people infected with Beta variant are more susceptible to
reinfection by Delta variant [23]. Hence, there is room for the evolution of new variants that
could escape vaccination more aggressively, especially if the vaccination scheme continues
to follow a heterogeneous pattern, leaving the most vulnerable populations exposed for
longer [24].

In this work, we developed an epidemiological model where events such as the
appearance of new variants and reinfection are taken into account. Our results point to an
optimal vaccine frequency that should be conducted in a given epidemiological setting.

Mathematical models for the evolution of epidemics have been proposed in the last
century; one with the concept of compartmental models was introduced by Ross (1916),
followed by the most known and referenced model, proposed by Kermack and McKendrick
(1927) [25]: the SIR or “susceptible-infected-removed” model (nowadays, the term recov-
ered is also used). Many incremental evolutions of the original models have been studied,
by considering many other “compartments”, such as non-asymptomatic, hospitalized, and
other situations.

While in the ordinary versions of SIR and its descendants, the population is simulated
by densities, which assumes an infinite population and does not capture effects of finite or
even small communities, in the present work, an Agent-Based Model [26] version of the
SIR model is introduced. The population is represented by individuals which can interact,
but the health conditions are defined by a few states. This allows us to better understand
the pandemic dynamics.

2. Materials and Methods
The Model

In the present paper, we simulate a version of the SIR model [25] in a city with a
population N (t) that may vary over time. Many variants of SIR model were used to
simulate different scenarios of the SARS-CoV-2 pandemic [27–29]. However, to have a
better understanding of how cities’ structures and citizen dynamics affect the spreading of a
transmissible disease such as SARS-CoV-2, we chose to develop an ABM-SIR (Agent-Based
Model) [30–33] of a “city” in which citizens start to become infected.

The city represents a geographically limited region in which only the arrival and
departure of visitors and the deaths of its inhabitants can change its population. As in the
previous versions of the SIR model, a Si variable defines the health state of each individual:
susceptible (Si = 0), infected (Si = 1), and recovered or immunized (Si = 2). In this work,
we have included a fourth state: dead (Si = 3). Factors such as age, sex, or race are not
considered.

In the simulated city, the residents live in houses, and they can move to public es-
tablishments (e.g., such as malls, stadiums, stores, restaurants, etc.). In some simulations,
people can move to other people’s houses. The day starts with all the residents in their
homes, to which they will be linked throughout the simulation. That is, if they leave for
another home or any establishment, at the end of the day, they will return to their own
home. Each person has a probability of movement Pmov, and this probability defines the
social isolation mobility.

There is no natural movement, and to go from one location to the next takes zero
time. The agents disappear from a place and reappear in another. We considered that the
time of permanence in public or private places is longer than the travel time. On the other
hand, for big cities, one can suppose that the time they stay in a mode of public transport,
if prolonged, may also be considered as staying in a small public place with the same
infection conditions.
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Every public area has a carrying capacity of K, so that Σ Ki = N0, that is, the city allows
all of its residents to leave at the same time. There are several public areas with different
Ki = {10, 000, 1, 000, 100, 50}, so that the sum of the capacity of each area of the same type is
equal to 0.25 N0. The number of places of a specific kind i is the total number of individuals
they can support divided by its Ki. Thus, the number of sites that support fewer people
is higher than those which support more people: in other words, there are more smaller
stores than big stadiums. When individuals can move to other people’s houses, we define
a carrying capacity of 12 individuals.

The time scale of our simulations is one day. For each day, individuals are chosen
at random, among the number of alive people on that day. A resident can either not be
drawn or could be drawn more than once. After this, we test if they will move, with the
probability given by Pmov. Each individual may visit other places a maximum of three
times during the day. If a person is going to move, the places to which they will go are
chosen at random: houses, small shops, or large stores. Its maximum capacity gives the
likelihood of going to a location: they are more likely to go to a large store than to someone
else’s home. If a selected place reaches its capacity, a new site is drawn until the person
moves, ensuring that whoever was chosen to move will make a move. COVID-19 has a
high transmissibility during the pre-illness period, and the model assumed seven days
of transmission before causing any disease, which was estimated by the pandemic for
previous variants and the Delta variant. The mobility defined in the model emphasizes the
transmissibility by pre-symptomatic and asymptomatic individuals, as no constraint on
the movement of an infected person is imposed until someone dies [34–36].

The person arriving at a new location may be in one of three states: susceptible,
infected, or immunized. If the person is vulnerable, it is verified if there is someone infected
at that location. If not, the person stays there until they move again or until they return
home at the end of the day. However, if there is an infected person(s) at that location, first,
we calculate the probability of contact with the infected person, given by:

Pcontact =
Nin f ected

Nmax
(1)

where Ninfected is the total number of infected persons at that place (house or mall) and
Nmax is the maximum capacity of that place.

Two steps define the infection of a susceptible person: first, we calculate if they come
into contact with a contaminated person. If so, we test if they will contract the virus, as
contact does not imply infection. The probability of infection is β. In the case of COVID-19,
β is estimated between [0.2, 0.3]. In the cases simulated in this work, we use a value of
β = 0.2 for a “normal” variant and we assume β > 0.2 for more transmissible variants [37].

The probability of becoming infected with one of the variants present in that location
is proportional to how often that variant is in that location, weighted by the transmissibility
of the strain. The higher the ni × βi, the higher the probability of being infected, where ni
is the total number of individuals infected by the strain βi at that location. The infected
individual then becomes a potential transmitter of the disease.

If an individual who arrives at a place is infected or immunized (Si = 1 or 2), nothing
happens to those who are already at that place. The arrival of an infected person will create
the conditions for those who arrive later to be infected. Hence, there is an asymmetry in
the model. If an infected person arrives at a place, we do not test if they will infect the
susceptible ones already there. This kind of procedure corresponds to a sequential order in
the contact/contagion process. It is understood that for huge populations and many days
of simulation, the results will not be different from those here reported.

At the end of the day, after performing some movements, all individuals return to
their homes. Of course, if they have not moved, nothing is tested. However, for those who
return to their home, the same set of procedures to check for infection is adopted: If the
person returning home is susceptible, and someone infected is in the house, the same steps
described above are carried out for contact and contagion.
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The dynamics can be summarized as follows: To each individual i is assigned a
variable Si that can be in four states: susceptible (0); infected (1); recovered or immunized
(2); and dead (3). The entire population starts the simulation as susceptible: Si = 0. A single
person among the residents is infected at t = 0 with the less lethal variant β = 0.2. The
dynamics is given by the process shown in Figure 1.
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The figure represents the possible changes of state. A susceptible individual Si = 0 can
become infected Si = 1 with the probability given by Pcontact × βi. βi is the transmission
rate of an individual which contaminates a susceptible individual, as described above. An
infected individual Si = 1 can die Si = 3 if their time of infection is greater than 7 days and
with probability of death given by Pdeath. In case of contamination with the most lethal
variant β + δβ, the value of Pdeath is increased by δdeath. This antagonism creates a tension
between the strain’s lethality and the individual’s probability of death. That is, hosts with a
more lethal variant are more likely to die.

The state of infection in an individual remains for a maximum of 1/γ = 14 days. It is
assumed that the potential for infecting another person does not change during this period.
It depends only on the β value, which does not change for a contaminated individual.

We have also simulated the case of incubation. In this case, the susceptible individuals
become infected after five days of incubation.

After 1/γ days, the infected individual, Si = 1, either recovers or is immunized, Si = 2.
After T days, the immunized individual, Si = 2, returns to the susceptible condition, Si = 0.
In the case of a vaccination program in that community, a susceptible or infected individual,
either Si = 0 or Si = 1, can be immunized with probability Pvac. This probability is related
to the vaccination rate, which is the percentage of the total population that is vaccinated
every day after the campaign started. The status of a vaccinated individual becomes Si = 2.
Similar to the recovered one, the immunization protects an individual for T days. During
this period, they cannot be infected with any variant of the new coronavirus [38,39].

In our simulations, vaccination starts from the 300th day. This date roughly cor-
responds to the beginning of vaccination campaigns in several countries: between De-
cember/2020 and January/2021, considering the detection of the pandemic as time zero
(around February or March 2020). There is no need to use two doses or intervals between
doses of the vaccine to gain immunity. In this simplified version of the model, immunity
is acquired at the time of vaccination. Although it is possible that vaccinated individuals
can infect and transmit the virus, it happens more rarely or with lower intensity than with
infected non-vaccinated individuals; thus, for sake of simplicity, in our model, vaccinated
individuals did not get infected [40]. Due to its structure and complexity, we used the
Brazilian vaccination numbers as reference. We performed simulations with two vaccina-
tion rates. Some simulations used a vaccination probability of Pvac = 1/200, representing
the typical value of vaccination campaigns in Brazil, when close to 1 million people are
vaccinated per day. Brazil has a public health system formed by about 40 thousand health



Vaccines 2022, 10, 343 6 of 17

centers, belonging to three levels of administration, but forming a cooperative network.
This system has vast experience on vaccination campaigns and can easily reach a rate of
1 million vaccinations per day, roughly 1/200. The second value we have tested is a rate
of 1/1000, which represents the values that we have observed for the vaccination against
COVID-19 in the first two months of vaccination, close to 200 to 300 thousand people per
day. From 23 January 2021 to 29 March 2021, 14 million people received the first dose of
one of the two available vaccines. In Brazil, the vaccines that were used were those that
required two doses. The vaccination rate increased in April but then oscillated, since Brazil
had no plan of vaccine acquisition. In the USA, the vaccination rate reached 0.006 of the
whole population in March. By the beginning of March, Israel had already vaccinated
practically its entire population of around 9 million people.

Our model assumes that visitors arrive and leave the city every day. The number
of visitors coming and leaving each day is around 1/1000 of the total residents. These
visitors have a probability of movement equal to 1. This means that a visitor will go to
three places (houses, small shops, or large stores). The likelihood of a visitor being infected
is 0.1%. In principle, if infected, they will have the virus variant β = 0.2, but some can have
a more transmissible variant. We have implemented a version in which visitors are 1% of
the population. Of the visitors, 3% may have the new, more transmissible type of virus.

If that visitor is susceptible, they may become infected during the day and transmit
the infection. However, as they only spend one day in the city, they will not be subject to
death, nor will they be able to recover. They will also not be vaccinated.

In this model, there are no births. There is no increase in the number of inhabitants,
except the increase caused by visitors, which represents a zero change in the population, as
visitors only arrive and leave. The only factor that can change the resident population is
death caused by disease. We study the effects of a new variant of the virus, which enters via
visitors, studying the competition dynamics between different strains. Moreover, we also
want to study the effects of vaccination, not considering other variables. A local variant is
not supposed to mutate.

We show the results with two versions of the model: in the first one, we simulate a city
with houses and small and big stores, where the visitors may carry just one virus variant
with higher transmissibility. Residents can move to other residents’ houses. In the second
version, the towns have homes and just one type of store, and the visitors carry many virus
variants (described below).

We studied the effects of vaccination only in the first version of the model. The central
aspect of the first version is to look at the spread of a higher transmissibility strain with
vaccination. In addition, we used real COVID-19 cases and vaccination strategies from two
populations in similar countries, i.e., Portugal and Israel, to validate our mathematically
based conclusions. The second version aims to study the competition between different
strains, and thus, the natural evolution of the pandemic without vaccination. In both cases,
we consider that variants with different transmissibility also have different lethality.

In this work, as usual in computer simulations, we assumed some simplifications and
assumptions in order to optimize the model, and to capture the most significant possibilities
according to some objectives. One of these simplifications is the absence of traffic and
commuting, i.e., the time required for displacement. The introduction of a transportation
network could improve the model, and is likely to bring new features to the study. Another
limitation of our work is the population structure. In our “city” model, the population
does not have any age or gender structure. For COVID-19, it is known that the response to
infection can vary depending on the infected age; thus, the use of an age-structure AMB-SIR
model also could bring more realism to the simulation. Finally, our work assumes that all
variants are affected equally by vaccinations, which does not reflect the real-life situation.
Thus, adding different responses to the vaccine–variant interaction could strongly improve
the model. Similar to other models, as we have discussed, we tried to shed some light
on the main effects of the dynamics. On the other hand, the assumptions we made in
order to allow a feasible but simplified model to run expectations of the effects caused by
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an effective vaccination program allowed us to test the difference between having or not
having an effective vaccination program in an open-to-migration city during an evolving
pandemic. Thus, our model considered a successional dynamic of variants with distinct
life traits. Even the simplifications we assumed did not undermine the effectiveness of
vaccines, considering we built up a more vulnerable society (where everybody was equally
susceptible) combined with realistic combinations of lethal-transmissible variants.

3. Results
3.1. Model with Two Strains

The first set of results were obtained in simulations of cities with two populations:
N ∼875 thousand residents and N ∼8.75 million residents. In the first case, they live in
250 thousand households. When allocating people, it was decided that a house had 3 or 4
residents; thus, there were 3.5 residents on average per household [41]. These residents can
move to 20,000 stores with a maximum capacity of 50 people or 2000 establishments which
support 500 people. The houses, small shops and big shops can accommodate all citizens,
which means that there is enough space for all people to move to any location.

In the simulations described below, values of Pmov = 0.6, 0.5, or 0.3 were adopted,
meaning an average isolation of 40%, 50%, and 70%. In the case of Brazil, the average
isolation, measured while individuals stay in their homes for a day, has fluctuated between
30% to 40%, and on weekends, it can reach 50%. It increased a little in February and
March 2021 due to the imposition of new measures of restriction and operation of the
establishments. At the beginning of the pandemic, in March 2020, there were higher values
in Brazil, in the range of 60%.

For each day, individuals are chosen at random, as described above. It was verified if
they were going to leave the house. If so, we drew the total number of moves they would
make: 1 up to 3. Then, we randomly chose the places for visitation: other houses or small
or large stores. Then, they left the house and went to each establishment. Each person
executed their movements, and after completing them, stayed at the last site until they
returned home at the end of the day.

In all the simulations discussed below, 10% of the population had a probability of
movement of Pmov = 0.1, representing the people who were most often at home. As
described above, visitors would come and go. We assumed a proportion of visitors of 0.1%
of the total initial population per day. The people who arrived and left remained in the
city for only one day. A ratio of 1/1000 may be contaminated. The contamination strain
had β = 0.2. In total, 1/90 of the contaminated individuals had a more lethal variant, with
β = 0.25. Visitors had a probability of movement equal to 1.0 and always visited three
locations (drawn at random, as described above).

In the results shown below, Pcontact is given by Equation (1), β = 0.2, δβ = 0.05,
Pdeath = 0.01, δdeath = 0.004, 1/γ = 14, and T = 120 days.

On the simulation’s 300th day, a vaccination campaign could start. Figure 2 represents
the evolution of a population with 40% of social isolation, Pmov = 0.6, without vaccination.
The values represent the densities relative to the initial number of residents, in this case,
874,975 people. There is an oscillating evolution of the numbers caused by the ongoing
entry of infected individuals: the visitors. The curve called βav represents the average value
of β taken among all individuals with S = 1. It is observed that in the peaks of infection, the
most lethal variant tends to dominate. The decrease in the infected population is typical of
the SIR model, but the permanence of the most lethal variant is an important characteristic.
The number of individuals who died is in the order of 10% of the original population.
Certainly, this is a very high number when compared to real data. This model and the
simulations do not intend to project expected values, but they represent the dynamics of
disseminating the most lethal variant qualitatively.
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Figure 2. ABM-SIR dynamic of COVID-19 (i.e., Susceptible-Infected-Recovered Agent-Based model)
evolution over 1000 days with a social isolation of 40%, adjusted for the initial population of
∼8.75 × 105 individuals. There is no vaccination. Each color represents a population group, defined
in the legend. The value of βav is the average for all infected people.

Figure S1 shows the percentage of people dying each day (blue line) and the percentage
of people who died due to the most lethal variant (red line). The results were obtained
from the simulation described above. One can observe that the number of people who die
each day increases in the periods of infection. However, the quantity of those who die from
the new variant rises more rapidly, becoming ∼50% at the end of the simulation.

Change in this kind of dramatic evolution is only achieved when social isolation is
about 70%, without vaccination. Figure S2 shows a simulation obtained with the previous
parameters, but now with Pmov = 0.3. In this case, the susceptible population remains
basically between 0.95 and 1, the density to the original number of residents. Infected
people cannot contaminate significant fractions of the population, and the infection stops.

Figure 3 shows the result obtained with vaccination at a rate of 1/1000, with a prob-
ability of movement of 60% corresponding to a social isolation of 40%, the peak value
currently in Brazil. The numbers of infected and the progression of the pandemic do not
stop. The numbers of deaths and the spread of the most lethal variant follow the patterns
observed previously. This happens because the rate of vaccination, that is, the transition
from susceptible and infected to immunized, is low compared to the rate of change from
vaccinated to susceptible. Note that the time for this transition is T = 120 days, meaning
four months on our time scale.
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Figure 2. ABM-SIR dynamic of COVID-19 (i.e., Susceptible-Infected-Recovered Agent-Based model)
evolution over 1000 days with a social isolation of 40%, adjusted for the initial population of
∼8.75 × 105 individuals. There is no vaccination. Each color represents a population group, defined
in the legend. The value of βav is the average for all infected people.

Figure S1 shows the percentage of people dying each day (blue line) and the percentage
of people who died due to the most lethal variant (red line). The results were obtained
from the simulation described above. One can observe that the number of people who die
each day increases in the periods of infection. However, the quantity of those who die from
the new variant rises more rapidly, becoming ∼50% at the end of the simulation.

Change in this kind of dramatic evolution is only achieved when social isolation is
about 70%, without vaccination. Figure S2 shows a simulation obtained with the previous
parameters, but now with Pmov = 0.3. In this case, the susceptible population remains
basically between 0.95 and 1, the density to the original number of residents. Infected
people cannot contaminate significant fractions of the population, and the infection stops.

Figure 3 shows the result obtained with vaccination at a rate of 1/1000, with a prob-
ability of movement of 60% corresponding to a social isolation of 40%, the peak value
currently in Brazil. The numbers of infected and the progression of the pandemic do not
stop. The numbers of deaths and the spread of the most lethal variant follow the patterns
observed previously. This happens because the rate of vaccination, that is, the transition
from susceptible and infected to immunized, is low compared to the rate of change from
vaccinated to susceptible. Note that the time for this transition is T = 120 days, meaning
four months on our time scale.
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Figure 3. ABM-SIR dynamic of COVID-19 (i.e., Susceptible-Infected-Recovered Agent-Based model)
evolution over 1000 days for social isolation of 40%, adjusted for the initial population of ∼8.75 × 105

individuals. Each color represents a population group, defined in the legend. The value of βav is the
average for all infected people. The vaccination rate is 1/1000 of susceptible or recovered individuals
per day.
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When the immunization rate assumes a value of 1/200, the picture changes radically,
as shown in Figure 4. Vaccination started on day 300 of the simulation. One can observe a
second wave of infections because the virus is widespread in the population. However, the
number of immunized people increases rapidly, which is a blocking factor for the spread of
the pandemic. One can also observe that the most lethal variant is contained, as the value
of βav is closer to 0.2. It is important to remember that the rate of contaminated visitors is
the same in the three cases discussed so far. The number of deaths also stabilizes with the
blockade caused by vaccination.
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evolution over 1000 days for social isolation of 40%, adjusted for the initial population of ∼8.75 × 105

individuals. Each color represents a population group, defined in the legend. The value of βav is the
average for all infected people. The vaccination rate is 1/200 of susceptible or recovered individuals
per day.

Figure S3 reproduces the relationship between daily deaths and the presence of the
most lethal variant. This variant is still present in the second wave but with a smaller
percentage than in Figure S1. Later, this variant becomes marginal. It is necessary to
remember that this most lethal variant enters the population from the visitors, and therefore,
in this model, this variant will always be present.

In summary, we show that there is a dynamic relating the number of infected people
to isolation and vaccination rates. Without vaccination, we observe that only with an
isolation rate of 70% the pandemic is stopped. On the other hand, when the vaccination
rate is 1/1000, a small value, it is observed that there is no significant impact on infection
dynamics. Only with a higher vaccination rate, as in the cases of Chile or Portugal, can the
pandemic be stopped, even with lower isolation rates.

To better understand the influence of the city size, the number of individuals, as
well as the period of immunization after vaccination, we performed simulations with
N = 8.75 million individuals and T = 180 days, meaning that a recovered or immunized
stays in the S = 2 state for six months.

All the parameters are the same as those used in the simulations described above:
Pmov = 0.6; β = 0.2 for residents; number of visitors, 1/1000; contaminated visitors, 1/1000;
contaminated visitors with the highest transmissibility rate, 1/90. Vaccination, when it
occurs, starts on the 300th day.

Qualitatively, the behavior observed in the curves is the same as discussed above for
populations that are ten times smaller. Notice that the change in the immunization period
T does not change the evolution of successive waves for the cases without vaccination or
with a low vaccination rate.

Figure 5 shows the evolution of cases and vaccination of two countries with approx-
imately the same population, Israel and Portugal [42]. It is clear how the difference in
the vaccination policy adopted in those two countries has shaped the cases curve. Both
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countries started their vaccination around the same period (12/2020). However, the rate of
vaccination was completely different. Israel started at a high rate, but it faded around three
months later, while Portugal kept an increasing rate. The impact in the cases can be seen
in the last peak caused by the Delta variant in the last months of 2021, which was much
stronger in Israel than Portugal. The huge increase of cases on the right of both plots (early
2022) are due to the spread of Omicron, which is not affected by vaccination.
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3.2. Model with Many Strains

We have implemented a second version of the model where residents can move only
to public places. We have considered a more significant number of visitors who can bring
different variants of the virus. In this version, for each instant of time (day), residents leave
their houses with a probability that defines social isolation. They stay at home or move
to public areas, making one or two movements per day. We simulated the initial isolation
of 45% as default. In this second model, the flux of visitors is 1% of the total population,
but infected visitors are 3% of the total number of visitors. All the other parameters are the
same as the original model.

The objective of the second version of our model is to simulate how different strains
compete among themselves in an epidemic scenario. This is achieved in the following
way: the simulation starts with just one type of variant (called variant 1); after 5% of the
population gets infected, four other variants (2, 3, 4, and 5) are introduced via infected
visitors. These variants have different contagion and mortality probabilities, as can be seen
in Table 1. It shows that, compared with the original strain, we have a combination of 70%
and 50% more and less contagious and lethal variants, respectively.

Table 1. Contagion (β) and lethality of the original and variant strains used in the second model.

Variant β Lethality (%)

1 (original) 0.2 1.0
2 1.7 × 0.2 1.5
3 1.7 × 0.2 0.5
4 0.7 × 0.2 1.5
5 0.7 × 0.2 0.5

Figure S4 shows the evolution in a simulated city with a population of 1 million, with
45% of social distancing, and a more contagious variant introduced via visitors. The result
shows the waves of infection caused mostly by loss of immunity after 120 days in a similar
way to the results of the first model without vaccination.

The competition among different variants can be better viewed in Figure 6. This plot
shows, for the same parameters of the previous plot, how the different strains are present
in the population over time. It can be seen how the original strain causes a peak of ∼45%
of people infected in a first wave around day 80. However, once the four new variants are
introduced in the system, the following waves show that the original variant is rapidly
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replaced by the two most transmissible ones (variants 2 and 3 of Table 1). Since the second
wave (starting between days 200 and 300), the simulation shows a dominance of variant
3 (more transmissible, less lethal), followed by variant 2 (more transmissible, more lethal),
until finally, the original variant is barely present. This plot shows two important results:
(A) the new variants with less transmissibility than the original strain (variants 4 and 5) are
not able to invade the city, while the more transmissible variants substituted the original
one from the second wave on; (B) interestingly, the lesser lethal variant overcame the more
lethal one in all the waves, which is expected for a long-term evolution of an emergent
disease if the lack of host illness favors transmission, and thus, loss of virulence [43,44].
Due to the full shifting of the original strain by new variants, the β-infection rate was
permanently higher after the second wave than it was at the beginning of the pandemics,
as shown by the average transmission in Figure 6.
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4. Discussion

The majority of papers modeling vaccination strategies are likely to fit in three cate-
gories: (1) extrapolation or estimation using real epidemiological data, for example [45],
(2) compartmental models (SIR, SEIR, etc.), based on differential equations and epidemi-
ological quantities defined as density of states (susceptible, infected, recovered, etc.), as
in [46–48], and (3) Agent-Based Models (ABM) [32,49], which can be defined as an epidemic
dynamic that takes place in a discrete way, with host/people as individualized entities
of action, called “agents”. Models in family (2) have variables defined in a continuum
and, thus, there is no “person” or “agent”, while in (3), ABM models are more versatile to
describe a population where a set of characteristics must be considered, for example, age
structure, topological distribution, and all kinds of spatial and temporal data.

Models based on estimates taken from real data can be useful if high-quality data are
available, with good extrapolations as a response to a very specific scenario. However, such
models fail in exploring multiple parameters and “what if” questions. Compartmental
models compose the majority of the publications and are very powerful tools. Although
SIR models can deliver similar results as ABM, they are not as versatile as ABM models.
As the ABM dynamic does not rely in differential equations, any change in the model
can be done in a punctual way, only changing the agent parameters. Generally speaking,
compartmental models are used in more generalist problems, while ABM appear to model
real places.

Our model is a hybrid ABM-SIR, meaning it has a base structure of agents while the
infection logic follows the SIR model. Using agents, our model was capable to sustain a
population that moves in an independent way, while this same population could have
citizens in different epidemiological states, stages, and places. This construct made it
possible, with few modifications, to find out the optimum vaccination rate, as seen in
Figure 4, and the competition among many variants in Figure 6. Our group proposed this
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novel hybrid model to compare the Spanish Flu with COVID-19 dynamics in the Brazilian
city of Manaus [20].

After some waves of infections of COVID-19, the world is facing a new challenge. By
the end of January 2022, 61% of the world population received at least one dose of the
COVID-19 vaccine out of a total of 10.06 billion doses administered globally [50]. However,
only 10% of people from low-income countries were vaccinated with one dose at that
date. Even in largely vaccinated countries with severe inequalities, such as Brazil, there
were areas with low vaccine coverage [51]. Additionally, vaccine hesitance and rejection
spread in the developed world due to misinformation. Consequently, countries with a
larger availability of vaccines and an early vaccinal program, such as the US and Germany,
had a smaller proportion of overall vaccinated people by end of January 2022 than Brazil
and Argentina, for instance, where anti-vax movements are irrelevant. Brazil and France
vaccinated proportionally the same at this date, but France presented a more significant
resistance against it, as in contrast to Brazil, the absolute availability of vaccines in France
was higher for both adults and children [50]. Although it is a global problem, vaccine
refusal has been properly studied mostly in the US [52–55]. Both vaccine inequality and
hesitancy are likely to cause the spread of new variants [56]. Vaccination slowed down
and this may cause the present situation [57,58]. In Israel, a new wave has been observed.
However, since they have a high vaccination rate, the number of deaths is smaller than in
the previous wave [59]. Brazil presents a different situation. The country started vaccination
at a low rate, due to the delay to acquire vaccines from the federal government [60,61].
However, there was a strong engagement of the population and, after public pressure and
the action of political sectors, the rates of vaccination increased in the second semester of
2021. The number of contaminated and dead people plateaued during the first months of
2021, but declined due to the increase in the vaccination rate. Different scenarios can be
observed in different countries. However, they are a product of the spread of new variants
and the vaccination of the population.

In this paper, we simulated the competition between virus strains, the role of the
vaccination rate, and social isolation, which are believed as one of the main aspects to detain
the virus’s circulation. In many countries, such as Brazil, it is very complicated to maintain
social isolation for long periods. For instance, we observed, in parts of the population, stress
among children out of schools, increase in domestic violence, and difficulties for individuals
to obtain a basic income to sustain their families [62–64]. Poverty increased in many
countries. In the case of Brazil, social isolation never reached adequate or recommended
levels, which was responsible for the long plateau of infections and deaths.

Thus, we show that the only way to stop the circulation of the virus, or at least
to diminish the contamination rates, is to increase the vaccination rates despite the cur-
rent vaccination hesitancy and challenges to mass vaccination. Low vaccination rates
allow the circulation of the many variants, and we observed a cyclic problem. The sit-
uation gains a much more dramatic feature with the existence of new variants with a
higher transmissibility.

The many different variants will compete and those with higher transmissibility will
win this competition, even in cases of combined higher lethality. This picture was observed
anywhere the δ variant appeared. This variant rapidly infected people, even those already
vaccinated, and caused a higher increase in contamination [65]. Thus, it brought humanity
back to the beginning of the pandemic, struggling to flatten the infection curve, as even
non-lethal new variants can overload health systems.

In a world where “vaccine nationalism” (i.e., governments supply the population
of their countries with vaccines ahead of them becoming available to other countries)
prevailed once more, the pandemic might find its way towards a natural evolution in those
less vaccinated corners [66]. Our mathematical model was built considering a continuous
immunization, with a single dose, and with a regular immunization rate in a scenario with
no vaccine shortage. In addition, our mathematical model considered that vaccination was
able to generate a four-month temporary immunity with only one dose, so immunization
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and booster doses every six months were not included for the calculations that we propose
in this work. However, it is important to consider that the emergence of the Delta and
now Omicron variant further reinforces the importance of access to COVID-19 vaccines,
globally and equitably, for the health of all [67]. Constrained vaccine supply has driven
opportunities for SARS-CoV-2 to mutate and be more infectious.

The emergence of Omicron has emphasized that further delay in widely delivering
at least the first two doses is fraught with peril for all [68]. On the other hand, our
model reinforces the need to plan more strategic and specific vaccination schedules, to
review current vaccines, and to design vaccines with the ability to prevent infection. The
current vaccines have been overtaken by variants of concern and strains that can escape
the protection given by the vaccine, despite maintaining protection against hospitalization
and deaths. Nonetheless, we agree with the recommendation that in countries with a
high prevalence of previous infections and a low proportion of over-60-year-old people,
prioritizing delivering the first dose will have the greatest effect on preventing severe
COVID-19 cases due to high vulnerability [69,70]. Conversely, in countries with a low
prevalence of previous infections and a high proportion of old people, protection against
severe disease in adults requires at least two doses, as well as booster doses in people who
are severely immunocompromised or older than 60 years. Evidence suggests that although
booster doses for all adults might prevent severe diseases, it could also compromise timely
global availability of first doses [36].

Vaccination, more than natural infection, in addition to inducing the production of
neutralizing antibodies, establishes a cellular immune response by activating memory T
cells, which leads to a favorable clinical outcome and considerably reduces the number
of deaths [71,72]. The most recent data have clearly shown that 70% of ICU admissions
in European countries, the USA, and even in Latin America (Brazil) are people who have
either not been vaccinated or who have not had two or three complete vaccine doses [73].
Finally, vaccination changes the dynamics, as it reduces the time of infection in vaccinated
individuals and, consequently, interferes with the dynamics of the virus in the human
body, preventing serious, long-term infections and, consequently, reducing the risks of
new variants [74]. The existence of countries with low vaccination coverage is worrying,
as in some European countries and several others African countries [75]. Particularly
for some African countries, there is still a concern about the number of HIV+ and, thus,
immune suppressed people without access to treatment, which may become sources for
the emergence of new variants [76,77].

The Omicron strain, detected by the end of 2021, in South Africa, might fit the most
consistent theoretical prediction: evolution of virulence loss [78]. This strain is amazingly
contagious, spreading in a substantially faster rate than even the Delta strain, but which,
as first evidence suggest, causes mainly mild symptoms, and may open the path for wide
non-lethal dissemination [79]. Such a variant, if it indeed appears with these specific traits,
might, and already has, overcome numerically any other, as Delta did before. However,
the theoretical prediction of an emergent disease may not help lower the human and social
costs. For instance, what level of hospitalization will be required with a too fast spreading
strain, even if it is not lethal? Moreover, what sort of sequelae will it leave, increasing the
public health cost of so-called long COVID syndrome?

5. Conclusions

The sudden disappearance of historic viral pandemic events might all have followed
the path of natural selection favoring transmissibility against lethality, but there is a catch
with SARS-CoV-2. Because transmissibility is high before symptoms, the positive selection
based on losing lethality is weaker than it was, for instance, for Spanish Flu [20]. Even
though natural loss of lethality may happen to a strain rapidly spreading worldwide,
other strains may also appear in many places with non-fully vaccinated individuals and in
places which are less internationally connected. There is, likewise, no impediment for new
mutants which transmit fast and are still lethal. Hence, outbreaks of more virulent strains
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may keep surging for decades, according to our previous and present models [2,20]. The
most relevant fact is that a planet of nearly eight billion people should not allow the luxury
of leaving a pandemic to evolve widely.

The main purpose of this paper is to shed some light on the main aspects of the actual
dynamics of the pandemic. A global governance is needed to deal with the immunization
process, as the pandemic dynamics exhibits successive peaks with a distance of about
4 months between them. Without global control, new variants will continue to appear and
when the infection is partially controlled in one country or region, but increases in other
parts, a dramatic cyclic wheel of death may prevail.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines10030343/s1, Figure S1: ABM-SIR dynamic of COVID-19 evolution over 1000 days,
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individuals is shown, represented by the blue line. The proportion of those who died by the most
lethal variant is represented by the red line; Figure S2: ABM-SIR dynamic of COVID-19 evolution over
1000 days with 70% of social isolation, adjusted for the initial population of ∼8.75 × 105 individuals,
without vaccination. Each color represents a population group, defined in the legend. The value of
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