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Abstract: Anaplasma phagocytophilum Major surface protein 4 (MSP4) plays a role during infection
and multiplication in host neutrophils and tick vector cells. Recently, vaccination trials with the A.
phagocytophilum antigen MSP4 in sheep showed only partial protection against pathogen infection.
However, in rabbits immunized with MSP4, this recombinant antigen was protective. Differences
between rabbit and sheep antibody responses are probably associated with the recognition of non-
protective epitopes by IgG of immunized lambs. To address this question, we applied quantum
vaccinomics to identify and characterize MSP4 protective epitopes by a microarray epitope mapping
using sera from vaccinated rabbits and sheep. The identified candidate protective epitopes or
immunological quantum were used for the design and production of a chimeric protective antigen.
Inhibition assays of A. phagocytophilum infection in human HL60 and Ixodes scapularis tick ISE6 cells
evidenced protection by IgG from sheep and rabbits immunized with the chimeric antigen. These
results supported that the design of new chimeric candidate protective antigens using quantum
vaccinomics to improve the protective capacity of antigens in multiple hosts.

Keywords: tick; vaccine; sheep; Anaplasma phagocytophilum; rabbit; epitope; microarray; quantum
vaccinomics

1. Introduction

Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) is a tick-borne intracel-
lular bacterial pathogen emerging in many regions of the world where it causes human
granulocytic anaplasmosis (HGA), tick-borne fever (TBF) and canine anaplasmosis [1].
A. phagocytophilum infection has been documented in a wide host range including cattle,
goat, sheep, horse, dog, human, roe deer (Capreolus capreolus), red deer (Cervus elaphus),
white-tailed deer (Odocoileus virginianus) and several rodents (Apodemus sylvaticus, Microtus
agrestis, Clethrinomyces glareolus, Peromyscus spp., Zapus hudsonius, Clethrionomys gapperi,
Microtus spp., Tamias spp., Spermophilus lateralis, Sigmodon hispidus, Sciurus spp., Neatoma
spp.) [1,2].

The clinical signs associated with A. phagocytophilum vary from mild to severe in
the different species. Among the clinical manifestations, lethargy and fever are the most
common, and reluctance to move, lameness, polydipsia, anemia, pale mucous membranes,
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diarrhea, vomiting, petechia, hemorrhage, splenomegaly and enlarged lymph nodes may
also occur but depending on the strain and the susceptibility and immune status of the
host [3–6]. In human patients, the clinical range of HGA extends from asymptomatic
infection to fatal disease, and a direct correlation between patient age and illness severity
is reported [7]. In humans, doxycycline hyclate has been reported as the agent of choice
for treatment with a clinical improvement in 24–48 h and recovery [7]. In other species,
prophylactic uses of tetracycline together with acaricide applications for tick control are
the main measures to control A. phagocytophilum infection, especially in endemic areas [8].
However, these control measures may cause an impact on the environment and human
health, and the selection of resistant pathogens and ticks [5–8].

Vaccination is a promising alternative for the control of tick-borne diseases because
it is environmentally friendly by reducing acaricide and antibiotic use and constitutes
the safest and effective intervention. Vaccines producing a long-lasting immunity could
prevent or reduce tick infestations and pathogen transmission [9–11]. Currently, vaccines
are not available for the prevention and control of A. phagocytophilum. In the control of
tick-borne pathogens, the tick protective antigen Subolesin (SUB) appears to be a candidate
antigen that may contribute to the control of multiple tick species and the reduction of
tick-borne pathogens [10,11].

One of the main limitations for the development of effective vaccines for the prevention
and control of A. phagocytophilum infection and transmission is the identification of effective
protective antigens. Studying the molecular interactions between ticks and transmitted
pathogens would facilitate the identification of candidate tick antigens to reduce pathogen
infection and transmission while also affecting tick infestations. Recent results have shown
how the application of a vaccinomics approach to Ixodes scapularis-A. phagocytophilum
interactions allowed the identification and characterization of candidate tick protective
antigens for the control of vector infestations and A. phagocytophilum infection [12,13].
Studying the proteins involved in the processes by which A. phagocytophilum establishes
infection, it has been found that the major surface protein 4 (MSP4) localized on the bacterial
membrane plays a role during pathogen infection in ticks [14], and would be a possible
vaccine target, characterizing its potential protective capacity in immunized animals.

Previous results provided the first evidence for the role of A. phagocytophilum MSP4
and heat-shock protein 70 (HSP70) proteins during infection and multiplication in host
neutrophils [15]. In particular, MSP4 is involved in the interaction with host cells and may
be used to develop double-effect vaccines targeting infection in both vertebrate hosts and
tick vectors [15]. Previous vaccination trials in sheep with the A. phagocytophilum MSP4
showed only partial protection in lambs and differences between rabbit and sheep antibody
responses are probably associated with the recognition of non-protective epitopes by IgG
of immunized lambs [16].

Beyond that, the application of quantum vaccinomics allows the characterization of
vector–host–pathogen molecular interactions using omics technologies combined with
multiomics data integration and analysis [17]. Results could be used for the identification
and characterization of the protective epitopes or immunological quantum for the design
and production of chimeric protective antigens that otherwise do not develop a strong
protective immune response when using the entire antigen in the vaccine formulation.

2. Materials and Methods
2.1. Antibody IgG Binding to MSP4 Epitopes Microarray and Data Analysis

Peptide MSP4 microarray elongated with neutral GSGSGSG linkers at the C- and
N-terminus and translated into 282 different overlapping 15 aa peptides was printed in
duplicate (564 peptide spots each array copy). Sera from sheep and rabbits immunized with
MSP4 from a previous vaccination trial were pooled (n = 3) and used to identify candidate
protective regions or epitopes in A. phagocytophilum MSP4 (GenBank ID: AFD54597) to
increase vaccine efficacy by applying quantum vaccinomics. A high-resolution epitope
mapping of A. phagocytophilum MSP4 protein was performed (PEPperCHIP® Immunoassay,
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PEPperPRINT, Germany). The peptide microarray was assembled in an incubation tray
and blocked with 1% (w/v) bovine serum albumin (BSA) in 1× PBS 7.4 with 0.005% (v/v)
Tween-20 (PBST) for 30 min at room temperature. After it was washed with PBST three
times, the array was incubated with pooled sera overnight at 4 ◦C. The next day, it was
washed again, and the array was incubated with a goat anti-rabbit IgG (H + L)-Alexa
Fluor 532 nm (Thermo Fisher Scientific, Waltham, MA, USA) antibody, and donkey anti-
sheep IgG (H + L)-Cy3 antibody (Sigma-Aldrich , St. Louis, MO, USA), for 45 min at
room temperature (RT). The array was washed, dissembled from the tray, and dried with
centrifugation for 2 min at 2000 rpm. The resulting array was scanned with a GenePix
personal 4100a microarray scanner (Molecular Devices, San José, CA, USA). The median
fluorescent signal intensity of each spot was extracted using MAPIX software (Molecular
Devices). Candidate protective epitopes were identified by IgGs from sera of rabbits and
lambs vaccinated with the recombinant protein MSP4 in a previous study [16] using this
method [17].

For data analysis, the intensity of the raw fluorescence signal that corresponded to the
median signal intensity subtracted by the median background intensity of each spot was
considered and then averaged across duplicate spots. Epitopes significantly recognized
by IgG were defined as amino acids shared by overlapping peptides and normalized
with a Z-score [18,19]. Additionally, a heatmap (http://www.heatmapper.ca/expression/
(accessed on 4 March 2022) of IgG antibody binding to the peptides was visualized where
peptides that showed Z-scores > 2 were considered significant reactive peptides and were
used to express a MSP4 chimeric antigen for the control of anaplasmosis containing the
epitopes or regions that showed protection against the pathogen in rabbits (peptide+) and
another peptide containing the non-protective region found in lambs immunized with
MSP4 (peptide−) was also expressed.

2.2. Production and Characterization of the Recombinant Chimeric Antigen and
Vaccine Formulation

The coding sequences for new candidate protective chimeric antigens were amplified
from synthetic genes optimized for codon usage in Escherichia coli (Genscript Corporation,
Piscataway, NJ, USA) with sequence-specific primers using the A. marginale MSP1a chimera
expression system previously reported [20]. The inserted coding region is fused to MSP1a
and is under the control of the inducible tac promoter [21]. Recombinant BL21 E. coli were
propagated in 1 l flasks containing 200 mL Luria–Bertani (LB) broth supplemented with
10 g tryptonel−1, 5 g yeast extract l−1, 10 g NaCl l−1, 50 µg/mL ampicillin, and 0.5%
glucose (VWR, Radnor, PA, USA) for 2 h at 37 ◦C and 200 rpm and then for 5 h after
addition of 0.5 mM final concentration of isopropyl-ß-D-thiogalactopyranoside (IPTG) for
induction of recombinant protein [21]. Cell growth was monitored by measuring OD at
600 nm. The cells were harvested by centrifugation at 3900× g for 15 min at 4 ◦C, and
then 1 g of cell pellet was resuspended in 5 mL of disruption buffer (100 mM Tris–HCl,
pH 7.5, 150 mM NaCl, 1 mM PMSF, 5 mM MgCl2·6H2O and 0.1% (v/v) Triton X-100) and
disrupted using a cell sonicator (Model MS73; Bandelin Sonopuls, Berlin, Germany). After
disruption, the insoluble fraction containing the membrane-bound MSP1a chimera antigens
was collected by centrifugation at 12,000× g for 15 min at 4 ◦C and stored at −20 ◦C until
characterization and vaccine formulations. Protein concentration was determined using
bicinchoninic acid (BCA) (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s recommendations. For vaccine formulation, recombinant proteins were
adjuvated in Montanide ISA 50 V2 (Seppic, Paris, France), to a final protein concentration
of 100 µg/mL [14].

2.3. Western Blot Analysis of Recombinant Chimeric Protein Expression

Ten micrograms of each recombinant protein and insoluble E. coli fraction were loaded
onto a 12% SDS-polyacrylamide pre-cast gel (Genscript Corporation, Piscataway, NJ, USA)
and transferred to a nitrocellulose membrane. The membrane was blocked with 5% bovine
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serum albumin (BSA) (Sigma-Aldrich, St. Louis, MI, USA) for 1.5 h at RT and washed three
times with TBS-T (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 0.5% Tween 20). Purified IgG from
rabbits immunized with MSP1a at 1:500 dilution and serum samples from preimmunized
and immunized sheep and rabbits were used and 1:250 dilutions in TBS respectively to each
incubation membrane. The membranes were incubated overnight at 4 ◦C and then washed
four times with TBS-T. After that, the membranes were incubated with an anti-rabbit IgG-
horseradish peroxidase (HRP) conjugate (Sigma-Aldrich) or an anti-sheep IgG-peroxidase
(HRP) conjugate (Sigma-Aldrich) diluted 1:1000 in blocking solution (TBS with 3% BSA).
The membranes were washed four times with TBS-T and finally developed with TMB
(3,3′, 5,5′- tetramethylbenzidine) stabilized substrate for HRP (Promega, Madrid, Spain)
according to the manufacturer’s recommendations.

2.4. Immunization in Sheep and Rabbits

Six 1-year old sheep were selected and two groups of 3 sheep each were formed,
from the experimental sheep flock maintained at NEIKER (Alava, Spain), with similar live
weights being formed. One group was immunized with the chimeric antigen containing the
epitopes recognized by IgGs from MSP4-immunized rabbits (peptide+), and the other group
of sheep was immunized with the chimeric antigen containing the epitope recognized by
IgGs from the previous MSP4-immunized lambs (peptide−) [16]. Sheep from each group
were injected subcutaneously with 100 µg in 1 mL dose of the antigens in the loose skin of
the axilla (armpit) using a sterile syringe with a removable needle 20 G × 1′ ′ (9.0 × 25 mm)
under aseptic conditions. Sheep were immunized three times on days 0, 20, and 55 and
blood samples were collected from the jugular vein of each sheep before each immunization
and at the end of the experiment for serum preparation [16]. An additional immunization
was conducted in rabbits to confirm the effect of the protective chimera (peptide+) in
this host. Two groups of six rabbits each were immunized by injecting subcutaneously
using a 1-mL tuberculin syringe and a 22-G needle three times at weeks 0, 2, and 4 with
0.5 mL doses (50 µg) but using recombinant peptide + and adjuvant/saline alone as a
control. Blood was collected at times 0 and 2 weeks after the last immunization and used
for serum preparation.

2.5. Antibody Inhibition Assay with IgG from Immunized Sheep

Samples were prepared from Ixodes scapularis embryo-derived tick cells (ISE6) grown
in L15B300 medium and the human promyelocytic HL-60 cells maintained in RPMI1640
medium supplemented with 10% heat-inactivated fetal calf serum, 2 mM L-glutamine
and 25 mM Hepes buffer at 36.5 ◦C in a humidified atmosphere containing 5% CO2
(3 replicates each). The inhibitory effect of IgG antibodies from MSP4 immunized lambs
and rabbits (IgGs are from a previous study [16]) and from sheep immunized with the
chimeric antigens (peptide+ and peptide−) 15 days after the third immunization on A.
phagocytophilum human NY18 was evaluated using purified sera IgGs using the NAb
Protein G spin kit (Thermo Fisher Scientific, Waltham, MA, USA) following manufacturer’s
recommendations. Sheep and rabbit IgG antibodies from pre-immune sera were used
as a control [20,22]. Each cell line, ISE6 and HL60, was pooled separately and used to
seed 24-well plates. In addition, 1 × 106 cells were seeded in each well 48 h prior to
inoculation with A. phagocytophilum human NY18 isolate. Rabbit or sheep purified IgGs
(2 mg/mL) were mixed with the inoculum (1:1) for 120 min before being placed on the
cell monolayers. Each monolayer then received 100 µL of the inoculum plus IgG mix and
the plates were incubated at 34 ◦C for 60 min. The inoculum was removed from the wells
and cell monolayers were washed three times with PBS. Complete medium (1 mL) was
added to each well, then the ISE6 plates were incubated at 34 ◦C and HL60 plates were
incubated at 37 ◦C. After 7 days, cells from all wells were recovered and frozen at −80 ◦C
until A. phagocytophilum detection by PCR after DNA extraction using TriReagent (Sigma-
Aldrich) according to the manufacturer’s recommendations. A. phagocytophilum infection
levels were determined by msp4 real-time PCR with normalization against the level of
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tick 16S rRNA in ISE6 DNA samples and against human β-actin in HL-60 DNA samples
(delta Ct method) as described previously [16,22] using oligonucleotide primers MSP4-L
(5′-CCTTGGCTGCAGCACCACCTG-3′) and MSP4-R (5′-TGCTGTGGGTCGTGACGCG3′),
with PCR conditions of 5 min at 95 ◦C and 35 cycles of 10 s at 95 ◦C, 30 s at 55 ◦C and 30 s
at 60 ◦C. To analyze the infection levels, normalized Ct values were compared between
peptide +/− IgG treated cells and controls (preimmune IgG treated cells) by the Student’s
t-test with unequal variance (p = 0.05; n = 3 biological replicates).

2.6. Antibody Inhibition Assay with IgG from Immunized Rabbits

An additional inhibition assay on A. phagocytophilum human NY18 was performed
using IgGs purified from rabbits immunized with peptide + to confirm that peptide+
antibodies produced in rabbits may block infection as well as MSP4. HL-60 cells were
cultured, and the experiment was performed in the same conditions mentioned above
for HL60 cells, and the same IgG antibody purification protocol was used from rabbit
serum samples collected at times 0 and 15 days after the third immunization. A. phago-
cytophilum infection levels were determined by real-time PCR [16,22], and results were
compared between treatments by the Student’s t-test with unequal variance (p = 0.05; N = 6
biological replicates).

2.7. Peptide Sequence Alignment and A. marginale MSP4 Chimeric Antigen Design

In order to study a possible cross-protection against other pathogens an alignment
of the peptide + amino acid sequence obtained from microarray analysis was conducted
using Blastp (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=
BlastSearch&LINK_LOC=blasthome (accessed on 17 January 2022). The MSP4 chimeric
antigen search was performed using the compositional matrix adjustment method [23] for
analysis as implemented in Blastp. A conserved domains analysis was performed using
database CDSEARCH/cdd search with an E-value threshold of 0.01 using Blastp.

3. Results and Discussion
3.1. MSP4 Epitope Mapping and Antibody IgG Binding

The MSP4 epitope mapping was analyzed in a peptide microarray using the fluo-
rescence intensity of immunoreactivity of IgG antibodies in sera from rabbits and lambs
previously vaccinated with the recombinant protein MSP4 [16]. Then, the analysis was
focused on reactive epitopes with Z-score > 2. A representative epitope heatmap is shown
in Figure 1A where the Z-score is represented. Four reactive amino acid regions (R1, R2,
R3, and R4), from A. phagocytophilum MSP4, showed overlapping peptides with Z-score > 2
when recognized by IgG antibodies from MSP4-immunized rabbits but only one significant
peptide sequence (S1) was reactive to IgGs from an MSP4-immunized sheep.

The analysis of distinctive reactive epitopes showed that IgG antibodies from rabbits
immunized with MSP4 recognized immunogenic epitopes or overlapping amino acid
regions that were different from peptides recognized by IgG from MSP4-immunized sheep
(Table 1).

Table 1. A. phagocytophilum MSP4 (GenBank ID: AFD54597) predicted immunogenic peptides reactive
to IgGs from rabbit and sheep immunized with the recombinant protein.

IgGs host Start End Peptide Sequence

Rabbit 14 48 AAVCACSLLISGSSFAYSGNNDASDVSGVMNGSFY
Rabbit 78 123 NKNLSTLNVSDPASFTQHDPSFKFAKSLLTSFDGATGYAIGGARV
Rabbit 165 180 KIDSVKDISVMLNAC
Rabbit 230 246 LIAGGSYHGIFDEQYA
Sheep 122 157 VEVEVGYKKFETLAESDYKHVESHNFVAVGRDATL

Peptides with Z-score > 2. Numbers indicate the position of the amino acid in the MSP4 protein sequence.

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome


Vaccines 2022, 10, 1995 6 of 16Vaccines 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 1. Reactive epitopes recognized by IgGs from rabbits and lambs immunized with A. phago-

cytophilum MSP4. (A) heatmap of the IgG reactive epitopes in rabbit and sheep. Peptides with sig-

nificant Z-Score are indicated with R1 to R4 if they were recognized by rabbit IgG and S1 by sheep 

IgG; (B) reactive epitopes in MSP4 protein sequence. Red boxes indicate the epitopes recognized by 

rabbit IgG, and the blue box indicates an epitope recognized by sheep IgG. Reactive epitopes 

showed signal intensities with Z-score > 2. 

The analysis of distinctive reactive epitopes showed that IgG antibodies from rabbits 

immunized with MSP4 recognized immunogenic epitopes or overlapping amino acid re-

gions that were different from peptides recognized by IgG from MSP4-immunized sheep 

(Table 1).  

Table 1. A. phagocytophilum MSP4 (GenBank ID: AFD54597) predicted immunogenic peptides reac-

tive to IgGs from rabbit and sheep immunized with the recombinant protein. 

IgGs host Start End Peptide Sequence 

Rabbit 14 48 AAVCACSLLISGSSFAYSGNNDASDVSGVMNGSFY 

Rabbit 78 123 NKNLSTLNVSDPASFTQHDPSFKFAKSLLTSFDGATGYAIGGARV 

Rabbit 165 180 KIDSVKDISVMLNAC 

Rabbit 230 246 LIAGGSYHGIFDEQYA 

Sheep 122 157 VEVEVGYKKFETLAESDYKHVESHNFVAVGRDATL 

Peptides with Z-score > 2. Numbers indicate the position of the amino acid in the MSP4 protein 

sequence. 

Previous results showed that IgGs from rabbits immunized with MSP4 were poten-

tially protective against A. phagocytophilum blocking the infection, but IgGs from immun-

ized sheep did not provide protection against this pathogen [16]. Hence, the reactive 

epitopes identified in the MSP4 mapping by rabbit IgG recognition could be considered 

potentially protective or blocking. However, the reactive epitopes identified in MSP4 by 

IgGs from sheep did not provide protection against the pathogen. Previous studies have 

correlated reactive peptides identified by this approach to vaccine efficacy, suggesting 

that new chimeras could be designed [24]. Therefore, to improve the protection against A. 

phagocytophilum in sheep, a chimera containing the candidate protective epitopes identi-

fied in rabbits was designed. The chimera peptide + contained the four significant reactive 

regions identified with rabbit IgGs (AAVCACSLLISGSSFAYSGNN-

DASDVSGVMNGSFY-NKNLSTLNVSDPASFTQHDPSFKFAKSLLTSFDGATGYAIG-

GARV-KIDSVKDISVMLNAC-LIAGGSYHGIFDEQYA) (Table 1). Peptide—consisted of 

Figure 1. Reactive epitopes recognized by IgGs from rabbits and lambs immunized with A. phago-
cytophilum MSP4. (A) heatmap of the IgG reactive epitopes in rabbit and sheep. Peptides with
significant Z-Score are indicated with R1 to R4 if they were recognized by rabbit IgG and S1 by sheep
IgG; (B) reactive epitopes in MSP4 protein sequence. Red boxes indicate the epitopes recognized by
rabbit IgG, and the blue box indicates an epitope recognized by sheep IgG. Reactive epitopes showed
signal intensities with Z-score > 2.

Previous results showed that IgGs from rabbits immunized with MSP4 were poten-
tially protective against A. phagocytophilum blocking the infection, but IgGs from immunized
sheep did not provide protection against this pathogen [16]. Hence, the reactive epitopes
identified in the MSP4 mapping by rabbit IgG recognition could be considered poten-
tially protective or blocking. However, the reactive epitopes identified in MSP4 by IgGs
from sheep did not provide protection against the pathogen. Previous studies have cor-
related reactive peptides identified by this approach to vaccine efficacy, suggesting that
new chimeras could be designed [24]. Therefore, to improve the protection against A.
phagocytophilum in sheep, a chimera containing the candidate protective epitopes identified
in rabbits was designed. The chimera peptide + contained the four significant reactive
regions identified with rabbit IgGs (AAVCACSLLISGSSFAYSGNNDASDVSGVMNGSFY-
NKNLSTLNVSDPASFTQHDPSFKFAKSLLTSFDGATGYAIGGARV-KIDSVKDISVMLNAC-
LIAGGSYHGIFDEQYA) (Table 1). Peptide—consisted of the single significant reactive
region identified with sheep IgGs (VEVEVGYKKFETLAESDYKHVESHNFVAVGRDATL)
(Table 1).

An important point to be considered is that, usually, a potentially protective antigen is
one that is antigenic but also immunogenic producing a specific immune response. This
specific immune response or immunogenicity usually involves immunodominant domains,
residues, or epitopes in a molecule, the rest of the molecule being ineffective at producing
an immune response [25]. Herein, we mapped B-cell linear epitopes since the identification
of these epitopes is essential in the development of efficient and target-specific vaccines.
These protein regions are recognized by soluble or membrane antibodies and can contain
either linear or discontinuous epitopes [26]. Linear epitopes that are not exposed in the
native protein could also elicit strong immune responses producing antibodies [27,28],
and the sequence of these epitopes can determine the three-dimensional conformation
that confers the biological activity to the protein [29]. Therefore, the contribution of these
antibodies to protection could be a relevant tool to study and control the immune responses;
in addition, epitope recognition by B-cells and soluble antibodies constitute the core of the
adaptive immune response [30,31]. Alternatively, it has been found that the application
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of this approach to the identification of protective B-cell epitopes would also allow the
exclusion of any epitopes that could induce cross-reactive autoimmune antibodies [24,32].

Therefore, the results shown here provided the opportunity to predict specific epitopes
or regions recognized by antibodies that, depending on the host, may be candidates poten-
tially protective (rabbit) or non-protective (sheep) and could be used for the design and
production of new and more effective chimeric antigen candidates [17,24] (Figure 1B) for the
development of vaccines that induce enhanced immune responses with no adverse effects.

3.2. Characterization of Candidate Chimeric Antigens

The recombinant chimeric antigens were produced in E. coli using the MSP1a chimera
expression system because the peptides fused to the A. marginale MSP1a N-terminal region
are displayed on the E. coli surface and would be better recognized by the immune sys-
tem [20]. These recombinant chimeras were used for the preparation of antigen-specific
IgG antibodies in immunized sheep. To confirm the expression of the antigens, a Western
blot was performed using IgG antibodies previously produced in rabbits immunized with
the MSP1a protein, which is expressed bound to the peptides designed with the reactive
epitopes obtained in the microarray. Their presence and detection confirmed the expression
of the chimeric peptides at the predicted sizes of 73 kDa for the peptide+ corresponding to
11 kDa for the reactive peptide+ and 62 kDa for the MSP1a region and the predicted size of
67 kDa corresponding to the molecular weight of 5 kDa for the peptide- identified by sheep
IgG and 62 kDa from MSP1a (Figure 2A and Figure S2).

A second Western blot was also performed to characterize antigenically the recom-
binant peptides bound to MSP1a as a fusion protein using serum samples from sheep
immunized with these chimeric antigens (peptide+ and peptide-) and rabbits immunized
with peptide + and PBS adjuvated. These results indicated that surface-displayed peptide+
and peptide- epitopes on the fusion protein were recognized by the immune system of the
sheep and rabbits and, therefore, the epitopes were translated correctly and maintained
their antigenicity within the surface-exposed fusion protein (Figure 2B,C and Figure S2).

To confirm the immunogenicity of all components of the chimeras formulation, ad-
ditional Western blots were conducted to demonstrate the production of IgG antibodies
against MSP1a, MSP4 and the insoluble fraction of E. coli. Antibodies against MSP1a were
detected in both sheep and rabbits immunized with the recombinant chimeras, as well
as against the insoluble E. coli proteins that were part of the formulation (Figure 3A–C
and Figure S2). Specific signals were not detected when proteins were incubated with
pre-immune serum (Figure 3D,E and Figure S2). Purified recombinant MSP4 [16] was
detected by sera from Pep+ and Pep−immunized sheep as well as Pep+− immunised
rabbits. This finding confirms that, again, the MSP4 peptides identified by the microarray
method are present in the chimeras and remain immunogenic in the immunized animals
(Figure 3F–H and Figure S2).
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Figure 2. Production of the recombinant proteins and antibody detection of the chimeric
proteins by IgG antibodies produced in sheep and rabbit previously immunized with MSP1a
and the chimeric protein. Samples equivalent to 10 µg of total proteins were loaded on
a 12% polyacrylamide gel and for Western blot analysis, proteins were transferred to a
nitrocellulose membrane. (A) A Western blot was performed using IgG antibodies from
rabbits immunized with recombinant MSP1a antigen in order to confirm the size of the
chimeric MSP4 antigens. Peptide + (AAVCACSLLISGSSFAYSGNNDASDVSGVMNGSFY-
NKNLSTLNVSDPASFTQHDPSFKFAKSLLTSFDGATGYAIGGARV-KIDSVKDISVMLNAC-
LIAGGSYHGIFDEQYA) is the chimeric antigen that contained the epitopes or regions that showed
protection against A. phagocytophilum in rabbits and showed a molecular weight of 73 kDa. Peptide-
(VEVEVGYKKFETLAESDYKHVESHNFVAVGRDATL) contained the non-protective region found by
IgGs from sheep immunized with MSP4 showing a molecular weight of 67 kDa. Red boxes denote
the position of the recombinant antigens. Spectra (Thermo Fisher Scientific) was used as molecular
weight markers for protein electrophoresis. (B) In the Western blot, proteins were incubated with
sheep or rabbit antibodies against MSP4 chimeric proteins and developed with anti-sheep or
anti-rabbit conjugate coupled to horseradish peroxidase. The position of the chimeric proteins is
indicated by a red box. Spectra (Thermo Fisher Scientific) was used as molecular weight marker for
protein electrophoresis. Peptide + and peptide- transferred to the nitrocellulose membrane were
incubated with serum samples from sheep immunized with peptide+ (pep+) and peptide- (pep-).
Both chimeric proteins were recognized at the expected molecular weight. (C) Peptide + transferred
to the nitrocellulose membrane was incubated with serum samples from rabbit immunized with
the peptide+ (pep+) and an adjuvant/saline formulation (adj/sal). Peptide+ was recognized at
the expected molecular weight by pep + serum samples, and no signal was observed when the
membrane was incubated with serum samples from rabbits immunized with PBS adjuvated (adj/sal).
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Figure 3. Antibody detection of the protein components included in the chimeric protein formulation
by IgG antibodies produced in sheep and rabbit previously immunized with MSP1a and the chimeric
protein exposed in the E. coli membrane. Samples equivalent to 10 µg of the total proteins: recombi-
nant purified MSP1a (MSP1a), MSP1a expressed as an exposed antigen mixed with the insoluble E.
coli fraction (MSP1a + IF), the insoluble E. coli fraction alone and recombinant purified MSP4 were
loaded on a 12% polyacrylamide gel and for Western blot analysis, proteins were transferred to a
nitrocellulose membrane as was explained above. (A) A Western blot was performed using IgG
antibodies from sheep immunized with recombinant peptide+ (pep+) where MSP1a was detected
showing a molecular weight of 67 kDa, as expected, and proteins from the insoluble fraction were
also detected. (B) The same protein samples were also detected but using IgG antibodies from rabbit
immunized with recombinant peptide+ and (C) sheep immunized with recombinant peptide-. (D) A
Western blot using pre-immune serum samples from sheep and (E) rabbit were also used with the
protein samples showing no specific signal. Red arrows denote the position of the antigen MSP1a.
Spectra (Thermo Fisher Scientific) was used as molecular weight markers for protein electrophoresis,
(F) recognition of recombinant MSP4 protein at the expected molecular weight of 35 KDa by IgG
antibodies from sheep immunized with peptide+, (G) with peptide- and (H) IgG antibodies from
rabbits immunized with peptide+.

3.3. Inhibition of A. phagocytophilum Infection of Human HL60 and Tick ISE6 Cells

An antibody inhibition assay using IgGs from sheep immunized with the chimeric
antigens and from lambs and rabbits immunized with MSP4 from a previous study [16]
was conducted to further characterize the antibody response and the potential protective ca-
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pacity blocking the infection of A. phagocytophilum [33,34] of the new chimeric antigens con-
taining predicted candidate protective (peptide+) and non-protective epitopes (peptide−)
in immunized sheep in relation with the protective capacity of MSP4 (Figure 4A).
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Figure 4. Experimental design in sheep. (A) mapping of protective epitopes with IgG from rabbits and
lambs immunized with MSP4 [16]. Chimeric-antigens were designed based on protective epitopes
identified by rabbit (Peptide+) and sheep (Peptide−) IgGs and produced for sheep immunization.
The IgGs from the sera of immunized sheep were used to assess the efficacy of the protective response
to A. phagocytophilum by inhibition assay in tick ISE6 and human HL60 cells; (B) normalized msp4
levels in treated HL60 and ISE6 cells in the antibody inhibition assay; role of antibodies against
chimeric recombinant proteins from immunized sheep in the inhibition of A. phagocytophilum human
NY18 infection of HL60 and ISE6 cells. Purified IgGs antibodies against A. phagocytophilum MSP4
from immunized rabbits and sheep were used to characterize the inhibition of pathogen infection
of HL60 and ISE6 cells in comparison with the protective capacity of IgG from sheep immunized
with the new MSP4 chimeric antigens (peptide+/peptide−) obtained from the MSP4 microarray
analysis. Infection levels were determined by msp4 real-time PCR normalizing against human β-actin
for HL60 cells and against tick rpS4 for ISE6 cells. Results were compared between groups treated
with pre-immune/control and recombinant chimeric antigens antibodies by the Student’s t-test with
unequal variance (p < 0.05; n = 3 replicates per treatment). Relative infection levels were expressed in
arbitrary units.

While rabbit IgG antibodies against A. phagocytophilum MSP4 recombinant protein
inhibited pathogen infection of HL60 and ISE6 cells as in previous studies [16], IgGs
from sheep immunized with peptide+ affected pathogen infection, but IgGs from sheep
immunized with peptide− and IgGs from lambs immunized with MSP4 from a previous
study did not protect against A. phagocytophilum infection (Figure 4B). These results suggest
that the epitopes identified in the microarray assay using IgG antibodies from MSP4-
immunized rabbits could be potentially protective in the sheep host.
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Furthermore, the inhibition assay in HL60 cells treated with IgG antibodies produced
by peptide+-immunized rabbits showed a reduction in the infection of the cells with A.
phagocytophilum when pathogen levels were compared by real-time PCR to cells treated
with pre-immune antibodies and from saline-adjuvanted immunized rabbits. The IgG
antibodies produced against the antigen peptide+ remained potentially protective in the
rabbit host blocking the pathogen infection (Figure 5).
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Figure 5. Experimental design of antibody inhibition assay in rabbits. (A) The IgGs from rabbits
immunized with peptide+ and adjuvant/PBS alone were used to assess the efficacy of the protective
response to A. phagocytophilum by inhibition assay in human HL60 cells in the conditions mentioned in
the previous assay; (B) normalized msp4 levels in treated HL60 cells; antibody inhibition assay using
IgGs from rabbits immunized with peptide + compared to rabbits immunized with adjuvant/saline
and pre-immune sera. Results were analyzed using a Student’s t-test with unequal variance (* p < 0.05;
n = 6 replicates per treatment). Asterisks denote statistically significant differences between groups.
Relative infection levels were expressed in arbitrary units.

These results evidenced differences in the IgG response between MSP4 immunized
rabbits and lambs and provided support that the design of new chimeric candidate protec-
tive antigens implementing quantum vaccinomics can improve the protective capacity of
antigens in different hosts. In addition, future directions towards intelligent vaccine design
should account for host-related factors, including age, sex, genetic factors, microbiota,
pregnancy, and immune history which are factors that may influence vaccine efficacy, and
also the optimization or personalization of vaccine dose, and use of adjuvants [35–37].

3.4. Anaplasma Species Peptide Sequence Alignment

Peptide sequence alignment showed the amino acid sequences from Anaplasma
species with homology with the peptides identified in this study by microarray analysis
(Table 2).
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Table 2. Peptide sequence alignment using Blastp showing homologies with different
Anaplasma species.

Peptide 1: AAVCACSLLISGSSFAYSGNNDASDVSGVMNGSFY
Organisms Results

Anaplasma phagocytophilum (taxid 948) Hits: 135, Score: 70.5
Uncultured Anaplasma sp. (taxid 319051) Hits: 21, Score: 70.1
Anaplasma platys (taxid 949) Hits: 2, Score: 46.2
Anaplasma ovis (taxid 142058) Hits: 1, Score: 40.4
Anaplasma marginale (taxid 770) Hits: 146, Score: 37.4

Peptide 2: NKNLSTLNVSDPASFTQHDPSFKFAKSLLTSFDGATGYAIGGARV
Organisms Results

Anaplasma phagocytophilum (taxid 948) Hits: 146, Score: 93.2
Uncultured Anaplasma sp. (taxid 319051) Hits: 58, Score: 93.6
Anaplasma marginale (taxid 770) Hits: 154, Score: 58.9

Peptide 3: KIDSVKDISVMLNAC
Organisms Results

Anaplasma phagocytophilum (taxid 948) Hits: 137, Score: 51.5
Uncultured Anaplasma sp. (taxid 319051) Hits: 56, Score: 51.5
Anaplasma marginale (taxid 770) Hits: 146, Score: 31.6

Peptide 4: LIAGGSYHGIFDEQYA
Organisms Results

Anaplasma phagocytophilum (taxid 948) Hits: 164, Score: 54.5
Uncultured Anaplasma sp. (taxid 319051) Hits: 27, Score: 49.4
Anaplasma sp. Hits: 4, Score: 39.2
Anaplasma marginale (taxid 770) Hits: 144, Score: 36.7

Score: The highest alignment score calculated from the sum of the rewards for matched amino acids and penal
ties for mismatches and gaps; Hits: Number of identified sequences.

The protective peptides identified and selected for the design of chimeric antigens
showed homology with amino acid sequences present in Anaplasma species. Additionally, in
the putative conserved domains analysis, peptides 2 and 3 showed identity with sequence
domains of a surface Ag 2 (pfam01617) that is a member of the porin superfamily (cl21487)
and with a bacterial surface antigen present in A. marginale, Ehrlichia chaffeensis, Rickettsia
spp. and Wolbachia spp. [38,39] (Figure S1). This result suggested a possible cross-protection
against A. marginale and other tick-borne pathogens, but further experiments need to be
conducted to confirm its efficacy.

Importantly, MSP4 has been characterized as a highly conserved protein in different
Anaplasma strains with conserved epitopes and high antigenicity [38,40,41], and previous
studies also showed serological cross-reactivity between A. marginale and A. phagocytophy-
lum [42]. These findings suggest that this antigen may have a great potential for controlling
infection of these pathogens that are the most important disease-producing pathogens of
the genus Anaplasma [1,43].

One epitope (DGATGYAI) present in the peptide 2 sequence recognized by IgGs from
MSP4 immunized rabbits was previously aligned to a region of A. phagocytophylum HSP70
(DGQTAVTI) and found as a B-cell reactive epitope [16]. HSP70 is a conserved protein
implicated in infection processes [44,45] like MSP4, and is involved in tick–pathogen and
host–pathogen interactions [14]. Furthermore, some serum cross-reactivity was found
between these two proteins [16] probably caused by this common B-cell epitope present in
peptide 2. The recognition of IgG antibodies against this epitope on MSP4 could be possibly
identified by these antibodies on HSP70, present on the bacterial membrane, and may
influence the control of A. phagocytophylum infection as evidenced in this study (Figure 4).
However, further analysis of the epitopes recognized on A. phagocytophylum HSP70 by IgG
antibodies against the MSP4 chimeric antigen, peptide+, would be necessary to confirm
this hypothesis.
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Quantum vaccinomics was proposed as a novel platform for the design and devel-
opment of new chimeric antigens to achieve more effective vaccines by the combination
of protective epitopes [17]. The characterization of molecular interactions between hosts
and pathogens using omics technologies is also possible by identifying and characterizing
immunogenic and protective epitopes as well as the domains in protein–protein interac-
tions [46,47]. The application of the strategies proposed in this approach allowed the design
and production of the chimeric vaccine antigen, peptide+, improving vaccine efficacy in
the control of A. phagocytophylum infection in sheep, thus validating the application of this
approach for the design of new and more effective vaccine candidates.

Despite the relatively small percentage of linear B-cell epitopes, most methods have de-
veloped focusing on B-cell epitope predictions [48–50], and vaccine development research
has received a growing interest in the ability to detect antibodies that recognized specific epi-
topes to predict vaccine efficacy [51,52]. However the main obstacle could be the 3D nature
of the B-cell epitopes and that the current conformational B-cell epitope prediction methods
are based on antigen structure-based prediction and mimotope-based prediction [53,54].
Comparing the prediction methods with quantum vaccinomics, this approach could be
considered more reliable because, using antibodies from animals previously infected by a
pathogen or exposed to a candidate antigen of interest, it is possible to identify epitopes
or domains involved in vaccine protection. These identified domains could also provide
information on cell interactome and regulome of vector–host–pathogen interactions.

4. Conclusions

Although in previous studies MSP4 appeared not to be protective in sheep, contrary
to evidence that suggested it might be an effective vaccine candidate for the control of
anaplasmosis, the application of the tools provided by quantum vaccinomics resulted
in the identification and combination of potential protective epitopes. The design of
chimeric antigens allowed for more efficient epitope recognition by the immune system
allowing peptides from MSP4 to be protective against A. phagocytophylum in different hosts.
Nevertheless, additional in vivo experimental vaccination and infection trials in different
hosts should be conducted to establish their efficacy.

5. Patents

The results of this study were part of the patent application by de la Fuente Garcia, J.,
Contreras Rojo, M. Vacuna para La prevención de la infección de Anaplasma phagocytophilum
(Rickettsiales: Anaplasmataceae). Filing date: 30 September 2022. P202230845.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10121995/s1, Figure S1: Surface Ag 2 alignment in A.
marginale, Ehrlichia chaffeensis, Rickettsia spp., Wolbachia spp with Peptide 2 and Peptide 3. Figure
S2: Entire Western blots including the intensity ratio of each band that was relevant in the study.
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