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Abstract: Purpose: This paper studies a simple SVIR (susceptible, vaccinated, infected, recovered) type of
model to investigate the coronavirus’s dynamics in Saudi Arabia with the recent cases of the coronavirus.
Our purpose is to investigate coronavirus cases in Saudi Arabia and to predict the early eliminations
as well as future case predictions. The impact of vaccinations on COVID-19 is also analyzed. Methods:
We consider the recently introduced fractional derivative known as the generalized Hattaf fractional
derivative to extend our COVID-19 model. To obtain the fitted and estimated values of the parameters,
we consider the nonlinear least square fitting method. We present the numerical scheme using the newly
introduced fractional operator for the graphical solution of the generalized fractional differential equation
in the sense of the Hattaf fractional derivative. Mathematical as well as numerical aspects of the model
are investigated. Results: The local stability of the model at disease-free equilibrium is shown. Further, we
consider real cases from Saudi Arabia since 1 May–4 August 2022, to parameterize the model and obtain
the basic reproduction numberRv

0 ≈ 2.92. Further, we find the equilibrium point of the endemic state
and observe the possibility of the backward bifurcation for the model and present their results. We present
the global stability of the model at the endemic case, which we found to be globally asymptotically stable
whenRv

0 > 1. Conclusion: The simulation results using the recently introduced scheme are obtained and
discussed in detail. We present graphical results with different fractional orders and found that when the
order is decreased, the number of cases decreases. The sensitive parameters indicate that future infected
cases decrease faster if face masks, social distancing, vaccination, etc., are effective.

Keywords: generalized fractional derivative; real cases; backward bifurcation; numerical results

1. Introduction

Mathematical models are recognized as crucial in epidemiology for understanding
the dynamics of diseases and making predictions about their long-term behavior. With the
passage of time and the emergence of new infectious diseases in humans populations,
mathematical models have been used to determine the peak infection curve, the days to
eradication, and the number of possible future cases. In the case of the coronavirus disease,
the early prediction of the peak of the infection, the basic reproduction number, and the
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possible elimination of the disease, have been shown by simple types of SIR, etc. The emer-
gence of the coronavirus infection resulted in a huge number of illnesses and fatalities
globally at a time when many countries were experiencing a financial crisis. According
to reports, many infected cases in Saudi Arabia resulted in death. To date, the kingdom
has recorded 9271 deaths and 812,093 total cases [1]. Following the implementation of
the World Health Organization’s (WHO’s) recommendations by the Saudi government,
the number of new cases was found to be lower in comparison to recent instances. It is
commonly known that the coronavirus outbreak is continuing in many nations throughout
the world, with two, three, or more waves. In Saudi Arabia, three waves of COVID-19 have
been previously detected, and the fourth wave is currently ongoing, with the expectation
that it will terminate in the near future. In comparison to the past waves of infections,
the present cohort of patients will not yield as many infected cases.

Mathematical models are used to study biological and physical problems widely in the
literature to understand the complicated nonlinear process of nonlinear problems see [2–5]. Both
integer and non-integer order problems have been studied in the literature in the recent past,
and some recommendations about the disease control controls have been given; see [6–10].
For applications of mathematical models to study COVID-19’s dynamics and their possible
controls, one can see [11–20]. For instance, the COVID-19 infection model incorporating the
lockdown phenomenon has been studied in [11]. The concept of the Continuous Markov-Chain
in the modeling of COVID-19 has been presented in [12]. The study of Omicron and its dynamical
analysis for the second wave has been proposed in [13]. A fractional modeling approach to study
SARS-CoV-2 using real cases is discussed in [14]. Modeling and control measures for COVID-19
have been discussed in [15]. The authors of [16] collected coronavirus infection cases from
Ethiopia and built a mathematical model and studied their analysis. The outbreak of coronavirus
infections throughout the world resulted in many people experiencing stress and tension; this
impact has been used in the modeling of coronavirus by the authors of [17]. The reported
cases of the coronavirus in Saudi Arabia have been considered in a mathematical study by the
authors of [18]. The self-isolation study through a mathematical model of the coronavirus disease
has been discussed in [19]. In another study, the authors utilized the concept of mathematical
modeling to design a new mathematical model for the reported cases in Saudi Arabia [20]. Some
other related work studying the COVID-19 infection can be found in the literature. In one study,
the authors considered a mathematical model for the reported cases in India and established
the optimal control model for its possible disease eliminations [9]. One of the good controls for
COVID-19 infection by using face masks has been explored in [21]. COVID-19 infection and its
coinfection with cholera has been documented in [22]. The specific applications to Turkish data
through a mathematical model are considered in [23]. A COVID-19 infection model with waning
immunity has been discussed in [24]. In [25], the authors considered the mathematical analysis of
COVID-19 infection. The coinfection model of dengue and COVID-19 from a clinical perspective
and the future challenges have been addressed in [26]. The diffusion process and its relation to
the modeling of COVID-19 have been investigated in [27]. A delay differential equations model
to study COVID-19 is suggested in [28]. For some other research papers regarding COVID-19,
we refer the readers to see [29–32]. The authors of [29] utilize the real data of COVID-19 infection
in Sri Lanka and present results regarding infection minimization. The authors of [30] present a
mathematical model to predict future cases of COVID-19 infection. A mathematical model has
been constructed to study the second wave of COVID-19 in Italy in [31]. A mathematical model
has been designed and analyzed using the cases in Thailand [32].

Vaccines can be regarded as a useful control for any viral disease. For example,
the authors proposed a vaccination model with treatment to study the epidemic disease
in [33]. In the past, infections of many diseases have been controlled or reduced using
vaccination, such as Polio, Hepatitis B, Flu (Influenza), Rubella, Hepatitis A, Tetanus, and
many more. With the passage of time and the emergence of new infectious diseases that
humans society faces, researchers are always looking for safe and effective vaccines. In this
regard, various vaccines around the world have been introduced by different researchers
and found effective against the coronavirus. COVID-19 vaccines provide immunity to
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individuals and protect them from future illness. It is safe and most people can use it
without any fear [34–37].

This paper investigates the dynamics of the coronavirus infection in Saudi Arabia
using recently reported cases through the fractional-order vaccination model. We use the
recent cases of the fourth wave in Saudi Arabia and implement a mathematical model first
in the integer order and then extend it to the generalized order model. The model is directly
fitted to the cases in which the vaccine is present and studies the equilibrium points analysis.
We observe the possibility of a backward bifurcation phenomenon, where the disease-free
equilibrium coexists with the endemic state and hence the global asymptotical stability of
the disease-free equilibrium does not exist. We divide the work section-wise: Section 2 gives
details of the newly fractional derivative considered by Hattaf [38]. Further, it discusses
the formulation of the problem and further extends the model into the fractional order
system. Furthermore, we study the equilibrium points, the basic reproduction, backward
bifurcation, and the local asymptotical stability of the disease-free case and explain the
algorithm for the numerical simulation of the fractional model. In Section 3, we discuss the
graphical results and present results regarding disease controls. The results are summarized
briefly in Section 4.

2. Materials and Methods
2.1. Background Results

Here, we give some important results regarding fractional calculus and its onward
use in the results of the paper.

Definition 1. Let q ∈ [0, 1), q1, q2 > 0, and g ∈ H1(l1, l2). Then, for the function g(t) with another
function φ(t) for the order q, the generalized fractional derivative in the sense of Caputo is given by [38]:

CDq,q1,q2
l1,t,φ g(t) =

N(q)
1− q

1
φ(t)

∫ t

l1
Eq1

[
−µq(t− ξ)q2

] d
dξ

(φg)(ξ)dξ, (1)

where φ ∈ C1(l1, l2), φ, φ′ > 0 on [a, b], N(q), defining the normalization function and satisfying
N(0) = N(1) = 1, µq = q/1 − q, and Eq1(t) = ∑+∞

k=0
tk

Γ(q1k+1) , denotes the Mittag–Leffler
function of the parameter q1.

Below, for Definition (1), we can write the corresponding fractional integral as

Definition 2 ([38]). For the newly fractional derivative Dq,q1
l1,φ , the corresponding fractional integral

can be expressed as

Dq,q1
l1,φ g(t) =

1− q
N(q)

g(t) +
q

N(q)
RLJ q1

l1,φ
g(t) (2)

where RL Iq1
l1,φ of order q1 denotes the standard weighted Riemann–Liouville fractional integral and

is defined by

RL Jq1
l1,φg(t) =

1
Γ(q1)

1
φ(t)

∫ t

l1
(t− ξ)q1−1φ(ξ)g(ξ)dξ. (3)

Theorem 1 ([39]). Suppose y = 0 is an equilibrium point of

Dq,q1
0,φ y(t) = f (y(t)) (4)

and V(y) is a continuously differentiable function in a neighborhood U ∈ Rn of the origin holds the
conditions below:

(i) V(0) = 0 and V(y) > 0 for all y ∈ U\{0};
(ii) Dq,q1

0,φ V(y) ≤ 0 for all y ∈ U\{0}.
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Then, y = 0 is stable.

2.2. Model Formulation

We consider an SVIR model and denote its total population by N(t). The model
consists of four components: the healthy individuals that have the ability to become
infected after close contact with infected COVID-19 people is shown by S(t); individuals
that are vaccinated are given by V(t); individuals that are infected are given by I(t);
and those recovered from infection of COVID-19 or vaccination are given by R(t). We
write N(t) = S(t) + V(t) + I(t) + R(t). The population of healthy individuals is obtained
through the birth rate Λ, while the natural mortality rate in each compartment is given
by µ. Healthy individuals become infected when they have close contact with infected
people, and hence the route of the transmission is βSI/N, while vaccinated individuals
after close contact with infected people are shown through the route β1VI/N. The portion
of healthy individuals to be vaccinated is shown by ω. The vaccinated and the infected
individuals are recovered, respectively, by the rate γ1 and γ. The disease mortality of
the COVID-19 infected people in the infected compartment is given by d1. With these
assumptions, the COVID-19 model with vaccination is given by the following nonlinear
differential equations: 

dS
dt = Λ− βSI

N − (µ + ω)S,
dV
dt = ωS− β1VI

N − (µ + γ1)V,
dI
dt = βSI

N + β1VI
N − (γ + µ + d1)I,

dR
dt = γ1V + γI − µR,

(5)

with the non-negative initial conditions

S(0) ≥ S0, V(0) ≥ V0, I(0) ≥ I0, R(0) ≥ R0.

We consider the following biologically feasible region for the model (5),

Γ =
{
(S, V, I, R) ∈ R4

+ : S, V, I, R ≥ 0, and N ≤ Λ/µ
}

,

which is positively invariant for any trajectory of the system for an initial condition, which
will remain in Γ for every time t ≥ 0. Therefore, the region is positively invariant, and its
dynamical results can be studied within Γ. It can be observed from model (5) that the equation
R can be eliminated without any loss of generality, as it does not appear in the rest of the
equation. The results of R can be easily obtained using the relation R = N − S−V − I. Using
this fact, in the following, we focus our study to analyze the fractional model without the last
equation. There are no transmission rates from equations R to the rest of the equations, so one
can ignore and reduce it, while the results of recovery cases can be obtained using the equation
R = N − S−V − I.

2.3. A Fractional Model

We apply the recently introduced fractional derivative by Hattaf given in Definition 1
to our model (5) and obtain the following generalized fractional order model:

H Dq,q1
0,φ S(t) = Λ− βSI

N − (µ + ω)S,

H Dq,q1
0,φ V(t) = ωS− β1VI

N − (µ + γ1)V,

H Dq,q1
0,φ I(t) = βSI

N + β1VI
N − (γ + µ + d1)I,

(6)

and the related initial conditions

S(0) ≥ S0, V(0) ≥ V0, I(0) ≥ I0. (7)
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2.4. Analysis of the Model

This section considers the mathematical results involved in the fractional order system (6).
In a dynamical system, first, we obtain the possible equilibrium points of the disease model (6).
In general, the models often formulated for the disease-related human population consist of
two equilibrium points, the infection-free and the infected. The infection-free equilibrium can
be denoted by P0 of the model (6), which one can obtain as follows:

P0 =
(

S0, V0, 0
)
=
( Λ

µ + ω
,

Λω

(γ1 + µ)(µ + ω)
, 0
)

.

Another important concept in disease epidemiology is the computation of the basic
reproduction number. The basic reproduction tells us about the disease’s progress, and
whether it can be controlled or spread within the population. For our SVIR-type model
(6), we can determine this number using the last equation of the system (6) within the
disease-free case P0 and obtain the following result:

Rv
0 =

β1ω

(γ1 + µ + ω)(γ + d1 + µ)︸ ︷︷ ︸
R1

+
β(γ1 + µ)

(γ1 + µ + ω)(γ + d1 + µ)︸ ︷︷ ︸
R2

.

The basic reproduction, or in this case the vaccine reproduction numberRv
0, consists

of two parts: the first part R1 is associated with vaccine cases, while the other one R2
is related to cases without vaccination. It is obvious that the vaccine reduces the basic
reproduction number, as vaccines for any disease in the literature prove that vaccines are
the best control of disease. We obtain the basic reproduction number with no vaccination
by putting ω = 0, and obtain the following:

R0 =
β

(γ + d1 + µ)
.

2.5. Endemic Equilibria

Here, we shall investigate the endemic equilibrium of the vaccine model (6) given by P1

P1 = (S, V, I) = (S∗, V∗, I∗) (8)

and can determined by equating H Dq,q1
0,φ S(t) = H Dq,q1

0,φ V(t) = H Dq,q1
0,φ I(t) = 0, and obtain

the following, 
S∗ = Λ

βλ∗+µ+ω ,

V∗ = ωS∗
β1λ∗+γ1+µ ,

I∗ = βλ∗S∗+β1λ∗V∗
γ+d1+µ .

(9)

Inserting (9) into the following expression, and obtain

λ∗ =
I∗

N∗
, (10)

We obtain the following,

a0λ2 + a1λ + a2 = 0, (11)
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where

a0 = ββ1,

a1 = β(γ1 + µ) + β1(−β + γ + d1 + µ + ω),

a2 = (γ1 + µ + ω)(γ + d1 + µ)(1−Rv
0).

(12)

Here, it can be seen that a0 > 0 and a2 can be positive ifRv
0 < 1, while it is negative if

Rv
0 > 1. The result for the endemic equilibria can be summarized in the following form:

Theorem 2. The coronavirus model (6) has the following:

1. There is exists a unique endemic equilibrium if a2 < 0⇐⇒ Rv
0 > 1,

2. There exists a unique endemic equilibrium if a1 < 0 and a2 = 0→ Rv
0 = 1,

3. We can have two endemic equilibria if a2 > 0→ Rv
0 < 1, a1 < 0 and its related discriminant

is positive
4. Above the other cases, there is no possible equilibria.

It is clear from the first part (i) of the Theorem 2 that we have a unique positive
endemic equilibrium wheneverRv

0 > 1. Further, the third part of Theorem 2 tells us about
the occurrence of the phenomenon of backward bifurcation in the COVID-19 infection
model (6). This means that disease-free equilibrium coexists with endemic equilibrium,
and the model will not be globally asymptotically stable. In such a case, the disease will
persist in the population for a long time and need vaccination and other control measures
for its elimination and control. To achieve the mathematical expression and its graphical
result, we set the discriminant a2

1 − 4a0a2 = 0 and then solve further for the critical values
of Rv

0 denoted byRc, which is given by

Rc =

√
1−

a2
1

4a0(γ1 + µ + ω)(γ + d1 + µ)
. (13)

Therefore, the backward bifurcation may occur for the values ofRv
0 such thatRc < Rv

0 < 1.
Consider the listed value Λ = 1273.94, β = 0.6, β1 = 0.2, γ = 0.05, γ1 = 0.04,
µ = 1/(74.87× 365), d1 = 0.024 and ω = 0.15. The related bifurcation plot is given in
Figure 1. In Figure 1, one can see that β is the bifurcation parameter that can cause the backward
bifurcation. In such cases, the model may or may not be globally asymptotically stable at the
disease-free equilibrium.

R
c
           Ro 

0 0.5 1 1.5 2 2.5 3

β

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1. Backward bifurcation graph for the system (6).
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2.6. Stability Analysis

The stability analysis of Model (5) can be studied for the disease-free case. We present
these results in the following theorem:

Theorem 3. The fractional-order SVIR model is locally asymptotically stable, provided that
Rv

0 < 1.

Proof. We have the Jacobian matrix of the system (6) evaluated for the disease-free case P0,
and it is given by

J(P0) =


−(µ + ω) 0 − βS0

S0+V0

ω −(µ + γ1) − β1V0

S0+V0

0 0 βS0

S0+V0 − (γ + µ + d1) +
β1V0

S0+V0

.

The Jacobian matrix J(P0) can be expanded, and we can obtain the eigenvalues as follows:
λ1 = −(µ + ω) < 0, λ2 = −(γ1 + µ) < 0 and λ3 = −(γ + d1 + µ)(1−Rv

0). The first
two eigenvalues are obviously negative, while the third eigenvalue can be negative ifRv

0 < 1.
Therefore, all the roots of the Jacobian matrix contain negative real parts, so the fractional-order
system (6) at the disease-free equilibrium point P0 is locally asymptotically stable provided that
Rv

0 < 1.

Global Stability

To show the global stability of the model at P0 when Rv
0 ≤ 1, we construct the

Lyapunove function given by

V(I) = I.

We have

H Dq,q1
0,φ V(I) = H Dq,q1

0,φ I,

≤ βSI
N + β1VI

N − (γ + µ + d1)I,

≤ (γ1 + µ + d1)(1−Rv
0)I.

Therefore, the above result can be stated as follows:

Theorem 4. The SVIR model is globally asymptotically stable ifRv
0 ≤ 1.

2.7. Global Stability at Endemic State

We need the following results in the proof of the following theorem, with the assumption
βSI ≤ N and β1VI ≤ N:

Λ = βS∗ I∗ + µS∗ + ωS∗,
ωS∗−β1V∗ I∗

I∗ = (µ + γ),

(γ + µ + d1) = βS∗ I∗+β1V∗ I∗
I∗ ,

Theorem 5. The SVIR epidemic model is globally asymptotically stable ifRv
0 > 1.

Proof. We define the Lyapunove function given by

L(S, V, I) = S∗Ψ
( S

S∗
)
+ V∗Ψ

( V
V∗
)
+ I∗Ψ

( I
I∗
)

, (14)
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where Ψ(y) = y− 1− ln y, for y > 0. It is clear that Ψ(y) attains its global minimum at
y = 1 and Ψ(1) = 0. Therefore, Ψ(y) ≥ 0 for every y > 0. Thus, L(S, V, I) ≥ 0 with
L(S∗, V∗, I∗) = 0. Applying the Corollary 2 given in [40], we have

H Dq,q1
0,φ L(t) ≤ (1− S∗

S
)H Dq,q1

0,φ S + (1− V∗

V
)H Dq,q1

0,φ V + (1− I∗

I
)H Dq,q1

0,φ I. (15)

Using the equation from system (6) into (15), and calculating the terms of Equation (15),
we have(

1− S∗
S

)
H Dq,q1

0,φ S = (1− S∗
S )[Λ− βSI − (µ + ω)S],

= (1− S∗
S )[βS∗ I∗ + µS∗ + ωS∗ − βSI − µS−ωS],

= βS∗ I∗
(

1− S∗
S

)(
1− SI

S∗ I∗

)
+ µS∗

(
1− S∗

S

)(
1− S

S∗

)
+ωS∗

(
1− S∗

S

)(
1− S

S∗

)
,

= βS∗ I∗
(

1− S∗
S −

SI
S∗ I∗ +

I
I∗

)
+ µS∗

(
2− S∗

S −
S
S∗

)
+ωS∗

(
2− S∗

S −
S
S∗

)
.

(16)

(
1− V∗

V

)
H Dq,q1

0,φ V =
(

1− V∗
V

)
[ωS− β1VI − (µ + γ1)V],

= (1− V∗
V )[ωS− β1VI −

(
ωS∗
V∗ −

β1 I∗V∗
V∗

)
V],

= ωS∗
(

1− V
V∗ +

S
S∗ −

SV∗
VS∗

)
+β1V∗ I∗

(
V
V∗ − 1− VI

V∗ I∗ +
I
I∗

)
(17)

(
1− I∗

I

)
H Dq,q1

0,φ I =
(

1− I∗
I

)
[βSI + β1VI − (µ + γ + d1)I],

=
(

1− I∗
I

)
[βSI + β1VI −

(
βS∗ I∗+β1V∗ I∗

I∗

)
I],

= βS∗ I∗
(

1− I
I∗ −

S
S∗ +

SI
S∗ I∗

)
+β1V∗ I∗

(
1− I

I∗ −
V
V∗ +

VI
V∗ I∗

)
.

(18)

Using Equations (16)–(18) in Equation (15), we have

H Dq,q1
0,φ L = −µS∗

(
S∗
S + S

S∗ − 2
)
− βS∗ I∗

(
S∗
S + S

S∗ − 2
)

−ωS∗
(

S∗
S + V

V∗ +
SV∗
VS∗ − 3

)
.

(19)

Therefore, H Dq,q1
0,φ L(t) ≤ 0 whenRv

0 > 1. It follows from Theorem 1 that the endemic
equilibrium P1 of the fractional-order model (6) when Rv

0 > 1 is globally asymptotically
stable.

2.8. Numerical Scheme and Its Results

This section discusses the numerical scheme for the new fractional generalized derivative
and obtains numerical simulations. We follow the same stepping as mentioned in [41].
The generalized fractional derivative is given by

Dq,q1
0,φ y(t) = g(t, y(t)). (20)
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Equation (20) is converted into the following form:

y(t)− y(0)φ(0)
φ(t)

=
1− q
N(q)

g(t, y(t)) +
q

N(q)Γ(q1)

1
φ(t)

∫ t

0
(t− ξ)q1−1φ(ξ)g(ξ, y(ξ))dξ. (21)

Considering that tn = n∆t, with n ∈ N, we have

y(tn+1) =
y0φ(0)
φ(tn)

+
1− q
N(q)

g(tn, y(tn))

+
q

N(q)Γ(q1)φ(tn)

∫ tn+1

0
(tn+1 − ξ)q1−1φ(ξ)g(ξ, y(ξ))dξ,

(22)

which leads to the following,

y(tn+1) =
y0φ(0)
φ(tn)

+
1− q
N(q)

g(tn, y(tn))

+
q

N(q)Γ(q1)φ(tn)

n

∑
k=0

∫ tk+1

tk

(tn+1 − ξ)q1−1l(ξ, y(ξ))dξ,
(23)

where l(ξ, y(ξ)) = φ(ξ)g(ξ, y(ξ)). One can approximate the function l in the interval
[tk, tk+1] as it is given in [42]. The Lagrange polynomial interpolation passing these points
(tk−1, l(tk−1, yk−1)) and (tk, l(tk, yk)) is as follows:

Pk(ξ) = ξ−tk
tk−1−tk

l(tk−1, y(tk−1)) +
ξ−tk−1
tk−tk−1

l(tk, y(tk))

≈ l(tk−1,y(k−1))
∆t (tk − ξ) +

l(tk ,y(k))
∆t (ξ − tk−1).

(24)

Thus,

y(tn+1) = y(0)φ(0)
φ(tn)

+ 1−q
N(q)φ(tn)

l(tn, yn)

+ q
N(q)Γ(q1)φ(tn)

∑n
k=0

[
l(tk ,yk)

∆t
∫ tk+1

tk
(ξ − tk−1)(tn+1 − ξ)q1−1dξ

+
l(tk−1,yk−1)

∆t
∫ tk+1

tk
(ξ − tk)(tn+1 − ξ)q1−1dξ

] (25)

The integrals inside Equation (28) can be determined as follows:∫ tk+1
tk

(ξ − tk−1)(tn+1 − ξ)q1−1dξ = hq1+1

q1(q1+1) A1
n,k,q1

,∫ tk+1
tk

(tk − ξ)(tn+1 − ξ)q1−1dξ = hq1+1

q1(q1+1) A2
n,k,q1

(26)

where

A1
n,k,q1

= [(n− k + 1)q1(n− k + 2 + q1)− (n− k)q1(n− k + 2 + 2q1)],

A2
n,k,q1

= [(n− k)q1(n− k + 1 + q1)− (n− k + 1)q1+1],
(27)

Finally, we achieve the required scheme as follows:

y(tn+1) = y(0)φ(0)
φ(tn)

+ 1−q
N(q)φ(tn)

g(tn, yn)

+ qhq1

N(q)Γ(q1+2)φ(tn)
∑n

k=0

[
φ(tk)g(tk, yk)A1

n,k,q1

+φ(tk−1)g(tk−1, yk−1)A2
n,k,q1

] (28)
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2.9. Sensitivity Analysis

Sensitivity analysis is critical for determining how best to minimize coronavirus
mortality and morbidity, as well as the relative relevance of the many factors responsible
for its transmission and prevalence. In this subsection, we will find the model parameters
that have a large influence onRv

0. The following formula should be used to determine the
sensitivity analysis of the parameters involved in the basic reproduction numberRv

0 [43].

Definition 3. The normalized forward sensitivity index of a variable, w, for which differentiability
depends on a parameter, q, is defined as

w

∏
q

:=
∂w
∂q
× q

w
. (29)

Using the formula mentioned in the above definitions, we calculate the analytical

expression ofRv
0, ∏

Rv
0

q := ∂Rv
0

∂p ×
q
Rv

0
for each of the different parameters β = 0.28, β1 = 0.2,

γ = 0.05, γ1 = 0.04, µ = 1/(74.87× 365), d1 = 0.024, and ω = 0.15. We now calculate the
sensitivity index ofRv

0 with respect to the parameter β as

Rv
0

∏
β

:=
∂Rv

0
∂β
× β

Rv
0
= 0.272026.

In a similar way, we can calculate the rest of the indices as shown in Table 1.

Table 1. Sensitivity indices ofRv
0 associated to their parameters.

Parameter Sensitivity Index

β 0.272026
β1 0.727974
ω −0.0613474
γ1 0.0612913
µ −0.000438186
γ −0.675342
d1 −0.324164

It can be observedfrom the values given in Table 1 that the parameter β1, followed
by γ, d1, β, and so on, can increase or decrease the basic reproduction number. Upon
decreasing the contact among the susceptible and infected, and increasing the recovery rate
by vaccinating the individuals, the number of infected individuals shall decrease.

3. Results and Discussion

We consider the following numerical values and the initial conditions in our numerical
simulation of the model (6): Λ = 1273.94, β = 0.28, β1 = 0.2, γ = 0.05, γ1 = 0.04,
µ = 1/(74.87 × 365), d1 = 0.024, and ω = 0.15, while S(0) = 35942012, I(0) = 99,
V(0) = 10, and R(0) = 0. Using the real cases observed in Saudi Arabia, we plotted the
model versus the data and obtained the results graphically in Figure 2. The cases have been
given for the period (1 May–4 August 2022) and are the recently reported cases in the country.
In Figure 2a the data are fitted to the model when φ(t) = 1, q = q1 = 1, while Figure 2b is
obtained for different values of q and q1. It can be observed that the behavior of the data show
some good agreement with the model for the fractional case. Figure 3 shows the behavior of
the model variables for various values of q and keeping q1 fixed. Figure 4 is given to show
the behavior of the model when q is fixed and q1 varies for various values. Varying both the
values of q and q1, we have plotted the results graphically in Figure 5. The contact rates β
and β1 have a great impact on the disease spread and control, which is shown graphically in
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Figure 6. When the value of β (the contact among the healthy and the infected compartments,
such as social distancing, avoiding gatherings, using face masks, etc.) and β1 (the contact
among healthy and vaccinated people) decrease, the number of infected people decreases.
We give the results of the model numerically in Figures 7 and 8 when φ(t) = (1 + q)q1

φ(t) = (1 + exp(−t))q1 , respectively, for many values of the fractional-order parameters q
and q1. One of the advantages of this new fractional derivative is the use of the function φ(t),
where one can fit the data well using an appropriate value for φ(t). We also compare the
present scheme given in [41] with [42]. We provide such a comparison in Figures 9 and 10.
In Figure 9, we fix φ(t) = 1, q = q1 = 1 and show the comparison of the present method
with the Atangana–Taufik scheme shown in [42]. Similarly, when q = 0.9, 0.7, we show the
comparison of the results in Figure 10. It should be noted that the present scheme generalizes
the Atangana–Taufik method, so we put φ(t) = 1. The comparison of the basic reproduction
number with and without vaccination is shown in Figure 11. It is clear from the comparison
results that the present scheme is matched perfectly with the scheme given in [42].
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Figure 2. The data versus the model fitting for the cases 1 May–4 August 2022. The circle denotes
real data while the bold curve denotes the model solution. Subfigure (a) represents the comparison of
data versus model when q = q1 = 1, while subfigure (b) is the comparison of data versus model for
various values of q and q1.
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Figure 3. The plot displays the behavior of the model for various values of q and q1 = 1. Subfigure
(a) shows the simulation of healthy population when varying q and keeping q1 fixed. Subfigure (b) is
the simulation of vaccinated population when q1 = 1 is fixed and varying q. Subfigure (c) shows the
simulation of infected population for various values of q and fixed q1. Subfigure (d) is the simulation
of recovered individuals when varying q and fixing q1.
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Figure 4. The plot display the behavior of the model for various values of q1 and q = 1. Subfigure
(a) shows the simulation of healthy population when fixing q and varying q1. Subfigure (b) shows the
simulation of vaccinated population when fixing q and varying q1. Subfigure (c) shows the simulation
of infected population when fixing q and varying q1. Subfigure (d) shows the simulation of recovered
population when fixing q and varying q1.
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Figure 5. The plot displays the behavior of the model for various values of q and q1. Subfigure
(a) shows the simulation of healthy population for various values of q and q1. Subfigure (b) shows
the simulation of vaccinated population for various values of q and q1. Subfigure (c) shows the
simulation of infected population for various values of q and q1. Subfigure (d) shows the simulation
of recovered population for various values of q and q1.
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Figure 6. The behavior of the infected population for different values of β, β1, and ω. Subfigure
(a) shows different values of β, while Subfigure (b) is given for various values of β1, and (c) is given for
various values of ω.
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Figure 7. The behavior of the model for different values of q and q1 with φ(t) = (1 + q)q1 . Subfigure
(a) shows the simulation of the healthy population for various values of q and q1 with φ(t) = (1+ q)q

1.
Subfigure (b) shows the simulation of the vaccinated population for various values of q and q1 with
φ(t) = (1 + q)q

1. Subfigure (c) shows the simulation of the infected population for various values of
q and q1 with φ(t) = (1 + q)q

1. Subfigure (d) shows the simulation of the recovered population for
various values of q and q1 with φ(t) = (1 + q)q

1.
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Figure 8. The behavior of the model for different values of q and q1 with φ(t) = (1 + exp(−t))q1 .
Subfigure (a) shows the simulation of healthy population for various values of q and q1 with
φ(t) = (1 + exp(−t))q1 . Subfigure (b) shows the simulation of vaccinated population for vari-
ous values of q and q1 with φ(t) = (1 + exp(−t))q1 . Subfigure (c) shows the simulation of infected
population for various values of q and q1 with φ(t) = (1 + exp(−t))q1 . Subfigure (d) shows the
simulation of recovered population for various values of q and q1 with φ(t) = (1 + exp(−t))q1 .
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Figure 9. Comparison of the present method with Atangana–Taufik method, for q = 1, q1 = 1, and
φ(t) = 1. Subfigure (a) shows the comparison of the schemes for healthy population when φ(t) = 1
and q = q1 = 1. Subfigure (b) shows the comparison of the schemes for vaccinated population when
φ(t) = 1 and q = q1 = 1. Subfigure (c) shows the comparison of the schemes for infected population
when φ(t) = 1 and q = q1 = 1. Subfigure (d) shows the comparison of the schemes for recovered
population when φ(t) = 1 and q = q1 = 1.
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Figure 10. Comparison of the present method with Atangana–Taufik method, for q = 0.9, 0.7, q1 = 1
and φ(t) = 1. Subfigure (a) shows the comparison of the schemes for healthy population when
φ(t) = 1 and q = 0.9, 0.7, q1 = 1. Subfigure (b) shows the comparison of the schemes for vaccinated
population when φ(t) = 1 and q = 0.9, 0.7, q1 = 1. Subfigure (c) shows the comparison of the
schemes for infected population when φ(t) = 1 and q = 0.9, 0.7, q1 = 1. Subfigure (d) shows the
comparison of the schemes for recovered population when φ(t) = 1 and q = 0.9, 0.7, q1 = 1.
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Figure 11. Comparison of the basic reproduction number with vaccination and without vaccination.
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4. Conclusions

We investigated the dynamics of coronavirus infection cases from Saudia Arabia using
the fractional model. The new fractional derivative considered was recently reported in the
literature and is known as the generalized Hattaf fractional derivative. We presented the
background results for the new fractional derivative and then considered the model using
the Hattaf derivative. The equilibrium points are obtained, and their stability is discussed.
It can be observed that the fractional model is locally asymptotically stable whenR0 < 1,
and it is unstable otherwise. Further, we obtain the global stability of the model when
the basic reproduction numberR0 > 1. Considering the reported cases of the COVID-19
in Saudi Arabia, the model is fitted to the data, and their results are obtained for both
integer and non-integer cases. For the behaviors of the fractional-order parameters q and
q1, we have presented some numerical results that demonstrate the effectiveness of the new
fractional derivative. The basic reproduction number without vaccination is R0 = 3.78,
while with vaccination, it isRv

0 = 2.92. One of this generalized fractional derivatives is the
use of the new function that results when dealing with data of a different nature, which are
difficult to fit using other fractional operators. The parameters’ values that decrease the
future cases have been shown graphically.
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