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Abstract: The outbreak of the coronavirus disease (COVID-19) has caused a lot of disruptions around
the world. In an attempt to control the spread of the disease among the population, several measures
such as lockdown, and mask mandates, amongst others, were implemented by many governments in
their countries. To understand the effectiveness of these measures in controlling the disease, several
mathematical models have been proposed in the literature. In this paper, we study a mathematical
model of the coronavirus disease with lockdown by employing the Caputo fractional-order derivative.
We establish the existence and uniqueness of the solution to the model. We also study the local and
global stability of the disease-free equilibrium and endemic equilibrium solutions. By using the
residual power series method, we obtain a fractional power series approximation of the analytic
solution. Finally, to show the accuracy of the theoretical results, we provide some numerical and
graphical results.

Keywords: COVID-19 epidemic model; lockdown; fractional-order differential equations; stability of
equilibrium solutions; fractional power series

1. Introduction and Preliminaries

The study of mathematical models of infectious diseases has attracted the attention of
many researchers since they provide a better understanding of their evaluations, existence,
stability, and control [1–6]. Most of the mathematical models of infectious diseases are
composed of a system of integer-order differential equations. However, in the last few
decades, fractional-order differential equation has been used in the modeling of biological
phenomena because they provide a greater degree of accuracy than the integer-order mod-
els [7–13]. The theory of fractional calculus, which involves differentiation and integration
of non-integer orders, is as old as the classical calculus of integer orders. However, this
theory has gained considerable attention from many researchers in recent years due to
the numerous applications found in the sciences, engineering, economics, control theory,
and finance, amongst others. The increasing interest in using fractional calculus in the
modeling of real-world phenomena is due to its various properties which are not found in
classical calculus. Unlike the integer-order derivatives, which are local in nature, most of
the fractional-order derivatives (for example, the Caputo and Riemman–Liouville fractional
order derivatives [14,15]) are non-local and possess the memory effects which make it more
superior because in many situations the future state of the model depends not only upon
the current state but also on the previous history. For this realistic property, the usage
of fractional-order systems is becoming popular to model the behavior of real systems
in various fields of science and engineering. Many researchers have therefore expanded
the integer-order models to fractional-order models via various mathematical techniques.
Recently, several authors have used fractional-order models to understand the dynamics of
the COVID-19 epidemic to achieve the best strategies to stop the spread of the disease, chose
a better effective immunization program, allocate scarce resources to control or prevent
infections and also predict the future course of the outbreak [16–27].
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Motivated by the above works and the high interest in finding the best solution to
control the COVID-19 pandemic, we study a fractional-order model to understand the
dynamics of the COVID-19 infections when the population is under lockdown. Most of the
COVID-19 models in the literature, to the best of our knowledge, do not include the impact
of the preventive measures adopted by many governments around the world to control
the virus. Lockdown was one of the preventive measures and that makes our model quite
unique and interesting.

Several definitions of fractional derivatives and integrals have been provided in the
literature. For the purpose of this work, we present the definitions and some properties
of the Riemann–Liouville fractional integral, Caputo fractional derivative and other re-
lated fractional-order derivatives. For more information about the Riemann–Liouville
fractional integral and the Caputo derivative, we refer the interested reader to [14,15] and
the references therein.

Definition 1 ([14]). The Riemann–Liouville fractional integral of order α > 0 of a function f is
given by

Jα
a f (t) =

1
Γ(α)

∫ t

a

f (z)
(t− z)1−α

dz, (1)

where Γ denotes the Gamma function defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0.

Definition 2 ([14]). The Caputo fractional derivative of order α > 0 is given by

Dα
a f (t) =

1
Γ(n− α)

∫ t

a

f (n)(z)
(t− z)α−n+1 dz, t > a, n− 1 < α ≤ n, n ∈ N. (2)

The Caputo derivative satisfies the following properties:

1. Dα
a (b1 f (t) + b2g(t)) = b1Dα

a f (t) + b2Dα
a g(t), b1, b2 ∈ R.

2. Dα
a (Jα

a f (t)) = f (t).

3. Jα
a (Dα

a f (t)) = f (t)−
n−1

∑
k=0

f (k)(a)
k!

(t− a)k.

4. Dα
a (c) = 0, c ∈ R.

5. Dα
a (t− a)λ = Γ(λ+1)

Γ(λ−α+1) (t− a)λ−α, for λ > n− 1.

6. Dα
a (t− a)k = 0, for k = 0, 1, 2, · · · , n− 1.

Most fractional-order differential equations do not have a closed-form solution, and
thus approximation and numerical methods are extensively used. One way to find an
approximated solution of a system of fractional-order differential equations is by using
the technique of fractional power series. The following is the definition of the fractional
power series.

Definition 3 ([28]). The fractional power series about t = t0 is defined as

∞

∑
m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + · · · , (3)

where n − 1 < α ≤ n for some n ∈ N and cm for m = 0, 1, 2, · · · are the coefficients of the
power series.

The following result hold for the Caputo derivative.
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Theorem 1 ([28]). Suppose the fractional power series representation of f is of the form

f (t) =
∞

∑
m=0

cm(t− t0)
mα.

If Dmα
a f (t) for m = 0, 1, 2, 3 · · · are continuous on the interval (t0, t0 + ρ), then

cm =
Dmα

a f (t0)

Γ(1 + mα)
, where Dmα

a = Dα
a Dα

a · · ·Dα
a (m-times) and ρ is the radius of convergence.

Remark 1. We note that the kernel function in the definition of the Caputo derivative (t− z)n−1−α

has a singularity at z = t. Recently, some new fractional derivatives with non singular kernels were
introduced in the literature and we present them here for the readers’ reference.

In 2015, Caputo annd Frabrizio [29] proposed the following generalization of the
Caputo derivative as follows:

Definition 4. The Caputo–Fabrizio fractional-order derivative (CF) of order α is defined as follows:

CFDα
a f (t) =

M(α)

(1− α)

∫ t

a
f ′(z) exp

{
−α(t− z)

1− α

}
dz, 0 < α ≤ 1 (4)

where M(α) is a normalization function such that M(0) = M(1) = 1. The Caputo–Fractional
derivative of a constant function is zero, but unlike the Caputo derivative in (2), the kernel does not
have a singularity at z = t.

The Caputo–Fabrizio fractional-order had also been generalized by Atangana and
Baleanu in 2016 as follows:

Definition 5 ([30]). Let f ∈ H1(a, b), a < b and α ∈ [0, 1]. The Atangana–Baleanu fractional-
order derivative in the Caputo sense is given by

ABCDα
a f (t) =

B(α)
(1− α)

∫ t

a
f ′(z)Eα

{
−α(t− z)

1− α

}
dz (5)

where B(α) is a normalization function such that B(0) = B(1) = 1, Eα(·) is the one parameter
Mittag–Leffler function (see Remark 3) and H1(a, b) is the Sobolev space of order one defined
as follows:

H1(a, b) = {u ∈ L2(a, b) : u′ ∈ L2(a, b)}.

We refer the interested reader to [29,30] and the references therein for more information
about these fractional derivatives.

Remark 2. It is worth pointing out that recently, Hattaf [31] also introduced some new generaliza-
tions of the Attangana–Baleanu fractional-order derivatives by introducing a weight function and
thus giving rise to the definition of several fractional-order derivatives with non-singular kernels.

Next, we present the definition of the two-parameter Mittag-Leffler function, which
will be utilized later in the paper.

Definition 6 ([28,32]). The two-parameter Mittag-Leffler function denoted by Eα,β, is defined as

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, Re(α), Re(β) > 0, β ∈ C. (6)
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Remark 3. When β = 1 in (6), then we have the one parameter Mittag-Leffler function which is
denoted by Eα(·). That is, Eα(z) = Eα,1(z)

2. Model Formulation

In order to understand the impact of lockdown in preventing the spread of COVID-19
infection, Baba et al. [33] proposed the following model governed by a system of nonlinear
ordinary differential equations:

dS
dt = Λ− βSI − λ1SL− dS + γ1 I + γ2 IL + θ1SL,

dSL
dt = λ1SL− dSL − θ1SL,

dI
dt = βSI − γ1 I − α1 I − dI − λ2 IL + θ2 IL,

dIL
dt = λ2 IL− dIL − θ2 IL − γ2 IL − α2 IL,

dL
dt = µI − φL,

(7)

subjected to the initial conditions

S(0) = S0 > 0, SL(0) = S0
L > 0, I(0) = I0 > 0, IL(0) = I0

L > 0 and L(0) = L0 > 0.

In this model, the authors considered a population of total size N(t) at time t with a
constant recruitment rate of Λ. The population is divided into four compartments denoted
by S(t), SL(t), I(t) and IL(t). The S(t) class denotes the susceptible individuals that are not
under lockdown. The group SL(t) contains those individuals who are susceptible and are
under lockdown. The group who are infected and are not under lockdown are represented
by I(t), while those individuals who are infected and are under lockdown are denoted by
IL(t). Finally, the cumulative density of the lockdown program is denoted by L(t). The
authors have studied the local stability of the equilibrium solutions in relation to the basic
reproduction number.

In order to include the memory effects and the past history to get a better understand-
ing of the dynamics of COVID-19 infections under lockdown, we reformulate the model (7)
by using the Caputo fractional derivative as follows:

Dα
0 S(t) = Λ− βSI − λ1SL− dS + γ1 I + γ2 IL + θ1SL

Dα
0 SL(t) = λ1SL− dSL − θ1SL

Dα
0 I(t) = βSI − γ1 I − α1 I − dI − λ2 IL + θ2 IL

Dα
0 IL(t) = λ2 IL− dIL − θ2 IL − γ2 IL − α2 IL

Dα
0 L(t) = µI − φL,

(8)

where Dα
0 denotes the Caputo derivative for 0 < α ≤ 1; under the initial conditions

S(0) = S0 > 0, SL(0) = S0
L > 0, I(0) = I0 > 0, IL(0) = I0

L > 0 and L(0) = L0 > 0.

We explore some interesting results of the fractional-order COVID-19 model (8), de-
scription of the parameters shown in Table 1. In particular, after proving the existence of a
unique positive global solution of the model, we study the local and global stability of the
various equilibrium points of the fractional-order model using the comparison theory of
fractional differential inequality and fractional La-Salle invariance principle. Moreover, we
apply the method of residual power series technique to approximate the solution of the
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fractional-order system (8). Finally, we provide numerical simulations to illustrate some of
the theoretical results and error analysis to show how good the approximated solution is.

Table 1. Description of the parameters used in the COVID-19 epidemic model (8).

Parameters Description of the Parameters

Λ Recruitment rate

β Infection contact rate

λ1 Imposition of lockdown on susceptible group

λ2 Imposition of lockdown on infected group

γ1 Recovery rate of the infected group

γ2 Recovery rate of the infected group under lockdown
α1 Death rate of the infected group

α2 Death rate of the infected group under lockdown

d Natural death rates

θ1 Rate of transfer of susceptible lockdown individuals to susceptible class

θ2 Rate of transfer of susceptible lockdown individuals to infected class

µ rate of implementation of the lockdown program

φ rate of depletion of the lockdown program

Remark 4. In [17], the authors also discussed a slightly different extension of the model in (7)
to fractional calculus where they include the order of the fractional derivative as powers on the
parameters. They established the existence and uniqueness of solutions to their model using the
Schauder and Banach fixed point theorems.

Denote the set Ω as follows,

Ω =

{
(S, SL, I, IL, L) ∈ R5

+ : S + SL + I + IL ≤
Λ
d

and L ≤ µΛ
φd

}
.

Theorem 2. For any t ≥ 0 and X(0) ∈ Ω there exist a unique positive solution
X(t) = (S(t), SL(t), I(t), IL(t), L(t)) of system (8). Moreover, the set Ω attracts all solutions of
system (8), and thus it is positively invariant.

Proof. Denote the vector field associated with system (8) by f (X(t)). Then f (X(t)) can be
written as f (X(t)) = A + (S(t)B + C + I(t)D)X(t), where

A =

Λ
0
0
0
0

 B =

0 0 −β 0 −λ1
0 0 0 0 λ1
0 0 β 0 0
0 0 0 0 0
0 0 0 0 0

 C =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −λ2
0 0 0 0 λ2
0 0 0 0 0


and

D =

−d θ1 γ1 γ2 0
0 −d− θ1 0 0 0
0 0 −γ− 1− α1 − d θ2 0
0 0 0 −d− θ − 2− γ2 − α2 0
0 0 µ 0 −φ

.

Clearly, f (X(t)) and ∂ f (X)
∂X are continuous for all X(t) ∈ Ω. Moreover,

|| f (X(t))|| ≤ ||A||+ ||(S(t)B + I(t)C + D)X|| ≤ k1 + k2||X||,

where k1 = ||A|| and k2 = max{1, Λ
d }||B + C + D|| are two positive constants. Thus by

Theorem (3.1) and remark (3.2) of [34], the system (8) has a unique solution.
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Now, to prove that Ω is positively invariant, let N(t) = S(t) + SL(t) + I(t) + IL(t).
Then adding the first four equations of system (8), we have

Dα
0 N(t) = Λ− dN(t)− α1 I − α2 IL.

Taking the Laplace transform on both sides yields

L(Dα
0 N(t)) =

Λ
s
− dL(N(t))− α1L(I(t))− α2L(IL(t)).

Simplifying this equation, we have the following inequality

L(N(t)) ≤ Λs−1

sα + d
+

sα−1N(0)
sα + d

.

Taking the inverse Laplace transform and using the fact that

L−1

[
s−(α−β)

sβ − a

]
= tα−1Eβ,α(atβ), α, β > 0, sα > |a|,

where Eα,β(.) is the Mittag-Leffler function defined in (6), we have

N(t) ≤ ΛtαEα,α+1(−dtα) + N(0)Eα,1(−dtα)

= ΛtαEα,α+1(−dtα) + N(0)
(
−dtαEα,α+1(−dtα) +

1
Γ(1)

)
≤ ΛtαEα,α+1(−dtα) +

Λ
d

(
−dtαEα,α+1(−dtα) +

1
Γ(1)

)
=

Λ
dΓ(1)

=
Λ
d

. (9)

Consequently, inequality (9) and the last equation of system (8), implies that
Dα

0 L(t) ≤ µΛ
d − φL(t). Similar to the above discussion, taking the Laplace transform

and using the Mittag-Leffler function, it follows that L(t) ≤ µΛ
φd for any t > 0.

In conclusion, for any X(0) ∈ Ω we have N(t) ≤ Λ
d and L(t) ≤ µΛ

φd for any t ≥ 0, and
thus Ω is positively invariant.

3. Equilibrium Points and Basic Reproduction Number

One way to see what will happen to the population eventually is to explore when the
system is at equilibrium. By setting

Dα
0 S(t) = Dα

0 SL(t) = Dα
0 I(t) = Dα

0 IL(t) = Dα
0 L(t) = 0

we get the following equilibrium points

E0 =

(
Λ
d

, 0, 0, 0, 0
)

, E1 = (S1, 0, I1, 0, 0),

and
E2 = (S∗, S∗L, I∗, I∗L , L∗),

where

S1 =
γ1 + α1 + d

β
, I1 =

Λβ− d(γ1 + α1 + d)
β(α1 + d)

(10)

S∗ =
γ1 + α1 + d

β
+

λ2µ(d + γ2 + α2)I∗

βφ(d + θ2 + γ2 + α2)
, S∗L =

λµS∗ I∗

φ(d + θ1)
(11)
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I∗L =
λ2µ(I∗)2

φ(d + θ2 + α2 + γ2)
, L∗ =

µI∗

φ

and I∗ = max{ Ĩ, 0}, where Ĩ is the solution of the equation k1 Ĩ2 + k2 Ĩ + k3 = 0, where

k1 = −µ(λ2 − θ2)

φ

[
1− γ2

α2 + γ2 + d
− θ1λ1

βφ(d + θ1)
+

µλ1

βφ

]
k2 = −(γ1 + α1 + d)

[
1 +

λ1µ

βφ
− γ1

(α1 + γ1 + d)(d + θ1)βφ
+

µd(λ2 − θ2)

(α1 + γ1 + d)βφ

]
and

k3 = Λ− d(γ1 + α1 + d)
β

.

The disease-free equilibrium E0 is the case when the pathogen has suffered extinction
and, in the long run, everyone in the population is susceptible. The endemic equilibrium
E1 is the state where the disease cannot be totally eradicated and remains in the population
without a lockdown, while E2 is the endemic equilibrium point in the presence of lockdown.
The basic reproduction number of the model, denoted byR0, is a constant that is used to
approximate the expected number of cases directly generated by one case in a population
where all individuals are susceptible to infection. One way to calculateR0 is using the next
generation matrix approach [35]. The rate at which secondary infections are produced is
given by

F(E0) :=

(
∂Fi
∂xj

)
(E0) =

[
βΛ
d θ2

0 0

]
,

where i, j ∈ {1, 2} and xj ∈ {I, IL} for j = 1, 2.
Similarly, the transfer of infection from compartment i to j is given by

V(E0) :=

(
∂Vi
∂xj

)
(E0) =

[
γ1 + α1 + d 0

0 d + θ2 + γ2 + α2

]
,

where i, j ∈ {1, 2} and xj ∈ {I, IL} for j = 1, 2.
Now define the next generation matrix G as

G = FV−1 =

[
βΛ

d(γ1+α1+d)
θ2

d+θ2+γ2+α2

0 0

]
.

HenceR0 is the dominant eigenvalue of G and it is given by

R0 =
βΛ

d(γ1 + α1 + d)
. (12)

4. Local and Global Asymptotic Stability of the Disease-Free and Endemic
Equilibrium Points

We use the following theorem to prove the local asymptotic stability of the disease-free
equilibrium point E0.

Theorem 3 ([36]). Given a fractional-order system of differential equation

Dα
0 x(t) = f (x), 0 < α ≤ 1. (13)

Let x0 be an equilibrium point of the given system, and let A = D( f (x0)) be the Jacobian
matrix of f evaluated at x0. Then x0 is locally asymptotically stable if and only if |arg(λi)| > απ

2 ,
for all eigenvalues λi of the matrix A.

Theorem 4. The disease-free equilibrium point E0 is locally asymptotically stable ifR0 < 1.
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Proof. After calculating the associated Jacobian matrix of system (8), it can be shown that
the characteristic equation of the Jacobian matrix satisfies

(λ + d)(λ + φ)(λ + d + θ1)(λ + d + θ2 + γ2 + α2)

(
λ +

(
− βΛ

d
+ γ1 + α1 + d

))
= 0.

Note that R0 < 1 iff − βΛ
d + γ1 + α1 + d > 0. As a result, all the eigenvalues are

negative real numbers, and hence |arg(λ)| = π > απ
2 for any 0 < α ≤ 1. Thus by

Theorem 3 the disease-free equilibrium point E0 is locally asymptotically stable.

Definition 7 ([32,37]). An equilibrium point x∗ of system (8) is Mittag-Leffler stable if

||x(t)− x∗|| ≤ {m(x0 − x∗)Eα(−λtα)}b,

where ||.|| is any norm on R3, λ > 0, b > 0, m(0) = 0 and m(x) ≥ 0, where m(x) is locally
Lipschitz on Ω with Lipschitz constant m0, and Eα(·) is a one-parameter Mittag-Leffler function
which can be defined in terms of the two-parameter Mittag-Leffler function as Eα(·) = Eα,1(·).

Remark 5. Since Mittage-Leffler stability implies global asymptotic stability (see Remark 4.4
in [38]), it is sufficient to prove the disease-free equilibrium point E0 is Mittage-Leffler stable on Ω.

Note that a similar result is provided in Definition 5 [39] for a generalized Hattaf fractional
(GHF) derivative which encloses the popular forms fractional derivatives with non-singular kernels.

Theorem 5. IfR0 < 1, then the disease-free equilibrium point E0 is Mittage-Leffler stable on Ω.

Proof. Define the positive definite Lyapunov function

V(t) = c1

(
Λ
d
− S(t)

)
+ SL(t) + I(t) + IL(t) + c2L(t), (14)

where c1 and c2 are two positive constants that will be determined later in the proof. By
linearity of the Caputo fractional derivative, we have

Dα
0 V(t) = −c1Dα

0 S(t) + Dα
0 (SL(t) + I(t) + IL(t)) + c2Dα

0 L(t)

= −c1(Λ− βS(t)I(t)− λ1S(t)L(t)− dS(t) + γ1 I(t) + γ2 IL(t) + θ1SL(t))

+ (λ1S(t)L(t)− dSL(t)− θ1SL(t) + βS(t)I(t)− γ1 I(t))

− (γ1 + α1 + d)I(t)− (d + γ2 + α2)IL(t)

= −c1

(
Λ
d
− S(t)

)
− (c1θ + θ1 + d)SL(t)− (c1γ1 + γ1 + α1 + d− c2µ)I(t)

− (c1γ2 + d + γ2 + α2)IL(t)− c2φL(t) + c1βS(t)I(t) + c1λ1S(t)L(t)

+ λ1S(t)L(t) + βS(t)I(t). (15)

Now since

c1βS(t)I(t) + c1λ1S(t)L(t) + λ1S(t)L(t) + βS(t)I(t) = (1 + c1)(βS(t)I(t) + λ1S(t)Lt))

≤ (1 + c1)
Λ
d
(βI(t) + λ1L(t)),

then Equation (15) can be rewritten as

Dα
0 V(t) ≤ −c1

(
Λ
d
− S(t)

)
− (c1θ + θ1 + d)SL(t)

−
(

γ1 + α1 + d− c2µ− βΛ
d

(1 + c1)

)
I(t)− (c1γ2 + d + γ2 + α2)IL(t)
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−
(

c2φ− (c1 + 1)λ1
Λ
d

)
L(t). (16)

IfR0 = βΛ
d(γ1+α1+d) < 1 then we can choose c1, c2 > 0 such that

γ1 + α1 + d− c2µ− βΛ
d

(1 + c1) > 0, c2φ− (c1 + 1)λ1
Λ
d

> 0.

Thus the inequality in (16) becomes

Dα
0 V(t) ≤ −c3V(t) (17)

where

c3 = min
{

c1, c1θ + θ1 + d, γ1 + α1 + d− c2µ− βΛ
d

(1 + c1), c1γ2 + d + γ2 + α2,

c1φ− (c1 + 1)
λ1Λ

d

}
> 0.

Now taking the Laplace transform of inequality (17) results

LV(t) ≤ sα−1

sα + c3
V(0). (18)

Thus using (2), we have

V(t) ≤ L−1
(

sα−1V(0)
sα + c3

)
= V(0)Eα(−c3tα), ∀t ≥ 0. (19)

Let ||x(t)|| = |S(t)| + |SL(t)| + |I(t)| + |IL(t)| + |L(t)| be the norm defined on the
solution x(t) = (S(t), SL(t), I(t), IL(t), L(t)) of system (8). Then from Equation (14) it
follows that

c4||x(t)− E0|| ≤ V(t) ≤ c5||x(t)− E0||, ∀t ≥ 0 (20)

where c4 = min{1, c1, c2} and c5 = max{1, c1, c2}. As a result, from inequality (19) and (20)
it follows that ||x(t)− E0|| ≤ M(x0 − E0)Eα(−c3tα), where M(S, SL, I, IL, L) := c4

c5
(S(t) +

SL(t) + I(t) + IL(t) + L(t)). In conclusion, the disease-free equilibrium point is Mittage-
Leffler stable, and thus it is globally asymptotically stable.

Remark 6. The proof of the local stability of the endemic equilibrium point E1 is similar to Theorem 4.
Thus we will provide proof of the global stability of E1 by constructing a Lyapunov function.

Theorem 6 ([40]). Let x0 ∈ Γ be an equilibrium point for the non-autonomous fractional-order
system Dα

0 x(t) = f (t, x). Also let L : [0, ∞)× Γ → R be a continuously differentiable function
such that

W1(x) ≤ L(t, x(t)) ≤W2(x)

and
Dα

0 L(t, x(t))) ≤ −W3(x)

for all α ∈ (0, 1) and all x ∈ Γ, where W1, W2, W3 are continuous positive definite functions on Γ.
Then the equilibrium point x0 is globally asymptotically stable.

Now using Theorem 6 we will show that the endemic equilibrium point E1 of system (8)
is globally asymptotically stable under some conditions.

Theorem 7. IfR0 > 1, then E1 is globally asymptotically stable in Ω.



Vaccines 2022, 10, 1773 10 of 25

Proof. Consider the Lyapunov function

V(S, SL, I, IL, L) = L1(S) + L2(I) + L3(SL, IL, L), (21)

where

L1 = S(t)− S1 − S1 ln
(

S(t)
S1

)
, L2 = I(t)− I1 − I1 ln

(
I(t)
I1

)
and

L3 = SL(t) + IL(t) + kL(t),

and k is a positive constant to be determined later in the proof. Using Lemma 3.1 and
Remark 3.1 of [41] we have

Dα
0 L1 = Dα

0

[
S(t)− S1 − S1 ln

(
S(t)
S1

)]
≤
(

1− S1

S(t)

)
Dα

0 S(t) (22)

Dα
0 L2 = Dα

0

[
I(t)− I1 − I1 ln

(
I(t)
I1

)]
≤
(

1− I1

I(t)

)
Dα

0 I(t), (23)

and by the linearity property of the fractional Caputo derivative, it follows that

Dα
0 L3(t) = Dα

0 SL(t) + Dα
0 IL(t) + kDα

0 L(t). (24)

Now using Equations (10), (22)–(24) and the fact that

Dα
0 V = Dα

0 L1 + Dα
0 L2 + Dα

0 L3,

we have

Dα
0 V ≤

(
1− S1

S(t)

)
Dα

0 S(t) +
(

1− I1

I(t)

)
Dα

0 I(t) + Dα
0 SL(t) + Dα

0 IL(t) + kDα
0 L(t)

≤ −d− βI1

S
(S− S1)

2 +

(
γ1 + α1 + d− βΛ

d

)
(I − I1)

2

+ (S1λ1 − kφ)L− dSL. (25)

Choose any k > S1λ2
φ and note that if R0 > 1 then γ1 + α1 + d − βΛ

d < 0. Thus if
R0 > 1 then Dα

0 V ≤ 0 and also Dα
0 V = 0 if and only if S = S1, I = I1 and SL = IL = L = 0.

Therefore the largest compact invariant set in

E = {(S, SL, I, IL, L) ∈ Ω : Dα
0 V = 0}

is the singleton set containing the endemic equilibrium E1. Thus by Theorem 6, we conclude
that the endemic equilibrium is globally asymptotically stable in Ω.

Since the proof of the local stability of the endemic equilibrium point with lockdown
E2 is similar to the proof of (4), we will provide the proof of the global stability of the
endemic equilibrium point with lockdown E2.

Theorem 8. If µλ2 I∗ − µθ2 I∗ − α2φL∗ − φ2 < 0, then the endemic equilibrium point with
lockdown, E2, is globally asymptotically stable in Ω.

Proof. We start by defining a Lyapunov function

V =(S− S∗ − S∗ ln(S)) + (SL − S∗L − S∗L ln(SL)) + (I − I∗ − I∗ ln(I))

(IL − I∗L − I∗L ln(IL)) + (L− L∗ − L∗ ln(L)),
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where E2 = (S∗, S∗L, I∗, I∗L, L∗) is the endemic equilibrium point with lockdown given in
Equation (11). Note that V(E2) = 0 and using Lemma 3.1 and Remark 3.1 of [41] we have
the following

Dα
0 V ≤

(
1− S∗

S

)
Dα

0 S(t) +
(

1−
S∗L
SL

)
Dα

0 SL(t) +
(

1− I∗

I

)
Dα

0 I(t)

+

(
1−

I∗L
IL

)
Dα

0 IL(t) +
(

1− L∗

L

)
Dα

0 L(t)

≤ (S− S∗)
(

Λ
S

βI − d
)
+ S∗λ1L− d(SL − S∗L)−

S∗Lλ1SL
SL

+ S∗Lθ1

+ (I − I∗)(βS− α1 − d) + I∗γ1 + λ2 I∗L− θ2 I∗ IL
I

− (IL − I∗L)(d + α2)− I∗L

(
λ2 IL

IL
− θ2 − γ2

)
+ (L− L∗)

(
µI
L
− φ

)
Using Equation (11) we have the following inequality

Dα
0 V ≤

(
−βI∗ − λ1µI∗

φ
− d
)
(S− S∗)2 − (d + θ)(SL − S∗L)

2

+ (µλ2 I∗ − µθ2 I∗ − α2φL∗ − φ2)(I − I∗)2

− (d + α2)I2
L + (d + α2)I∗L IL − (λ2 IL + d + α2 + θ2 + γ2)(I∗L)

2

− φ2L2 + (µI + µI∗)φL + (µ2 I I∗ − I2µ2 − µ2(I∗)2).

Let f (IL) := −(d + α2)I2
L + (d + α2)I∗L IL − (λ2 IL + d + α2 + θ2 + γ2)(I∗L)

2. Then it
follows that

((d + α2)I∗L)
2 − 4((d + α2))((λ2 IL + d + α2 + θ2 + γ2)(I∗L)

2) < 0.

Thus it follows that f (IL) < 0. Similarly, it can be shown that if
g(L) := −φ2L2 + (µI + µI∗)φL + (µ2 I I∗ − I2µ2 − µ2(I∗)2), then g(L) < 0 since

((µI + µI∗)φ)2 − 4(φ2)(µ2 I I∗ − I2µ2 − µ2(I∗)2) < 0

and the fact that (µ2 I I∗ − I2µ2 − µ2(I∗)2) < 0. Thus under the given assumption that
µλ2 I∗ − µθ2 I∗ − α2φL∗ − φ2 < 0 it can be concluded that Dα

0 V ≤ 0 and Dα
0 V = 0 if and

only if S = S∗, SL = S∗L, I = I∗. This result, together with the last two equations of (8), will
imply that IL = I∗L and L = L∗. As a result, the endemic equilibrium point E2 is globally
asymptotically stable.

5. Approximate Solution

In this section, we present a solution of the fractional-order model by using the residual
power series method, which consists of expressing the solution as fractional power series
expanded about the initial point t = t0.

Consider the following fractional-order model:

Dα
0 S(t) = Λ− βSI − λ1SL− dS + γ1 I + γ2 IL + θ1SL

Dα
0 SL(t) = λ1SL− hSL

Dα
0 I(t) = βSI − pI − λ2 IL + θ2 IL

Dα
0 IL(t) = λ2 IL− rIL

Dα
0 L(t) = µI − φL,

(26)
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where Dα
0 denotes the Caputo derivative for 0 < α ≤ 1 with h = d + θ1, p = γ1 + α1 + d

and r = d + θ2 + γ2 + α2 ; under the initial conditions

S(0) = S0 > 0, SL(0) = S0
L > 0, I(0) = I0 > 0, IL(0) = I0

L > 0 and L(0) = L0 > 0.

Similar to the procedure in [42], we do the following steps in order to obtain a fractional
power series solution for the nonlinear fractional-order model in (26).

Step 1: Suppose that the fractional power series of S(t), SL(t), I(t), IL(t) and L(t)
around t = 0 are as follows:

S(t) =
∞

∑
k=0

ak
Γ(1 + kα)

tkα,

SL(t) =
∞

∑
k=0

bk
Γ(1 + kα)

tkα,

I(t) =
∞

∑
k=0

ck
Γ(1 + kα)

tkα, (27)

IL(t) =
∞

∑
k=0

dk
Γ(1 + kα)

tkα,

L(t) =
∞

∑
k=0

ek
Γ(1 + kα)

tkα,

where 0 ≤ t < η for some η > 0. Now, we let Sn(t), SL,n(t), In(t), IL,n(t) and Ln(t)
denote the n-th truncated power series approximation of S(t), SL(t), I(t), IL(t) and L(t),
respectively. That is,

Sn(t) =
n

∑
k=0

ak
Γ(1 + kα)

tkα,

SL,n(t) =
n

∑
k=0

bk
Γ(1 + kα)

tkα,

In(t) =
n

∑
k=0

ck
Γ(1 + kα)

tkα, (28)

IL,n(t) =
n

∑
k=0

dk
Γ(1 + kα)

tkα

Ln(t) =
n

∑
k=0

ek
Γ(1 + kα)

tkα.

Step 2: Next, we define the residual functions for the model in (26) as follows:

ResS(t) = Dα
0 S(t)−Λ + βS(t)I(t) + λ1S(t)L(t) + dS(t)− γ1 I(t)

− γ2 IL(t)− θ1SL(t)

ResSL(t) = Dα
0 SL(t)− λ1S(t)L(t) + hSL(t)

ResI(t) = Dα
0 I(t)− βS(t)I(t) + pI(t) + λ2 I(t)L(t)− θ2 IL(t) (29)

ResIL(t) = Dα
0 IL(t)− λ2 I(t)L(t) + rIL(t)

ResL(t) = Dα
0 L(t)− µI(t) + φL(t).

Hence, the n-th residual functions for S(t), SL(t), I(t), IL(t) and L(t), respectively, are
as follows:

ResSn(t) = Dα
0 Sn(t)−Λ + βSn(t)In(t) + λ1Sn(t)Ln(t) + dSn(t)− γ1 In(t)

− γ2 IL,n(t)− θ1SL,n(t)
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ResSL,n(t) = Dα
0 SL,n(t)− λ1Sn(t)Ln(t) + hSL,n(t)

ResIn(t) = Dα
0 In(t)− βSn(t)In(t) + pIn(t) + λ2 In(t)Ln(t)− θ2 IL,n(t) (30)

ResIL,n(t) = Dα
0 IL,n(t)− λ2 In(t)Ln(t) + rIL,n(t)

ResLn(t) = Dα
0 Ln(t)− µIn(t) + φLn(t).

Now, we observe that
ResSn(t) = ResSL,n(t) = ResIn(t) = ResIL,n(t) = ResLn(t) = 0, and

lim
n→∞

ResSn(t) = ResS(t), lim
n→∞

ResSL,n(t) = ResSL(t), lim
n→∞

ResIn(t) = ResI(t),

lim
n→∞

ResIL,n(t) = ResIL(t) and lim
n→∞

ResLn(t) = ResL(t) for all t ≥ 0.

Since the Caputo derivative of any constant is zero, it is straightforward to see that for
k = 1, · · · , n

D(k−1)α
0 ResS(0) = D(k−1)α

0 ResSn(0), D(k−1)α
0 ResSL(0) = D(k−1)α

0 ResSL,n(0)

D(k−1)α
0 ResI(0) = D(k−1)α

0 ResIn(0), D(k−1)α
0 ResIL(0) = D(k−1)α

0 ResIL,n(0)

and D(k−1)α
0 ResL(0) = D(k−1)α

0 ResLn(0).

Step 3: To obtain the coefficients ak, bk, ck, dk and ek, for k = 1, · · · , n, we substitute
the n-th truncated series of S(t), SL(t), I(t), IL(t) and L(t) into (30) and then apply the
Caputo fractional derivative operator D(n−1)α

0 on Sn(t), SL,n(t), In(t), IL,n(t) and Ln(t), and
evaluate the result at t = 0. We obtain the following algebraic system of equations.

D(n−1)α
0 ResSn(0) = 0,

D(n−1)α
0 ResSL,n(0) = 0,

D(n−1)α
0 ResIn(0) = 0 (31)

D(n−1)α
0 ResIL,n(0) = 0,

D(n−1)α
0 ResLn(0) = 0.

for n = 1, 2, 3, · · · .
Step 4: We solve the algebraic system (31) for the values of ak, bk, ck, dk, ek for

k = 1, 2, 3, · · · , n to get the n-th residual power series approximate solution of the sys-
tem in (26).

Step 5: We repeat the procedure to obtain a sufficient number of coefficients. Higher
accuracy for the solution can be achieved by evaluating more terms in the series solution.

By following the steps outlined in above, we derive a recursive formula for the
coefficients as follows:

First, we note that the coefficients a0, b0, c0, d0 and e0 are given by the initial conditions.
That is,

a0 = S0, b0 = S0
L, c0 = I0, d0 = I0

L and e0 = L0.

The first truncated power series approximations will have the forms:

S1(t) = a0 +
a1

Γ(1 + α)
tα,

SL,1(t) = b0 +
b1

Γ(1 + α)
tα,
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I1(t) = c0 +
c1

Γ(1 + α)
tα,

IL,1(t) = d0 +
d1

Γ(1 + α)
tα, and

L1(t) = e0 +
e1

Γ(1 + α)
tα.

Thus, the first residual functions are:

ResS1(t) = Dα
0

(
a0 +

a1

Γ(1 + α)
tα

)
−Λ + β

(
a0 +

a1

Γ(1 + α)
tα

)(
c0 +

c1

Γ(1 + α)
tα

)
+ λ1

(
a0 +

a1

Γ(1 + α)
tα

)(
e0 +

e1

Γ(1 + α)
tα

)
+ d
(

a0 +
a1

Γ(1 + α)
tα

)
− γ1

(
c0 +

c1

Γ(1 + α)
tα

)
− γ2

(
d0 +

d1

Γ(1 + α)
tα

)
− θ1

(
b0 +

b1

Γ(1 + α)
tα

)
,

ResSL,1(t) = Dα
0

(
b0 +

b1

Γ(1 + α)
tα

)
− λ1

(
a0 +

a1

Γ(1 + α)
tα

)(
e0 +

e1

Γ(1 + α)
tα

)
+ h
(

b0 +
b1

Γ(1 + α)
tα

)
,

ResI1(t) = Dα
0

(
c0 +

c1

Γ(1 + α)
tα

)
− β

(
a0 +

a1

Γ(1 + α)
tα

)(
c0 +

c1

Γ(1 + α)
tα

)
+ p

(
c0 +

c1

Γ(1 + α)
tα

)
+ λ2

(
c0 +

c1

Γ(1 + α)
tα

)(
e0 +

e1

Γ(1 + α)
tα

)
− θ2

(
d0 +

d1

Γ(1 + α)
tα

)
,

ResIL,1(t) = Dα
0

(
d0 +

d1

Γ(1 + α)
tα

)
− λ2

(
c0 +

c1

Γ(1 + α)
tα

)(
e0 +

e1

Γ(1 + α)
tα

)
+ r
(

d0 +
d1

Γ(1 + α)
tα

)
and

ResL1(t) = Dα
0

(
e0 +

e1

Γ(1 + α)
tα

)
− µ

(
c0 +

c1

Γ(1 + α)
tα

)
+ φ

(
e0 +

e1

Γ(1 + α)
tα

)
.

Evaluating ResS1(t), ResSL,1(t), ResI1(t), ResIL,1(t) and ResL1(t) at t = 0, we have

ResS1(0) = a1 −Λ + βa0c0 + λ1a0e0 + da0 − γ1c0 − γ2d0 − θ1b0,

ResSL,1(0) = b1 − λ1a0e0 + hb0,

ResI1(0) = c1 − βa0c0 + pc0 + λ2c0e0 − θ2d0,

ResIL,1(0) = d1 − λ2c0e0 + rd0,

ResL1(0) = e1 − µc0 + φe0.

By solving the equations

ResS1(0) = 0, ResSL,1(0) = 0, ResI1(0) = 0, ResIL,1(0) = 0 and ResL1(0) = 0,

we have that

a1 = Λ− βa0c0 − λ1a0e0 − da0 + γ1c0 + γ2d0 + θ1b0,

b1 = λ1a0e0 − hb0,

c1 = βa0c0 − pc0 − λ2c0e0 + θ2d0,

d1 = λ2c0e0 − rd0,
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e1 = µc0 − φe0.

Now, the second truncated power series approximations will have the forms:

S2(t) = a0 +
a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α,

SL,2(t) = b0 +
b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α,

I2(t) = c0 +
c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α,

IL,2(t) = d0 +
d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α, and

L2(t) = e0 +
e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α.

So, the second residual functions are:

ResS2(t) = Dα
0

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α

)
−Λ

+ β

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α

)(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)
+ λ1

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α

)(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α

)
+ d
(

a0 +
a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α

)
− γ1

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)
− γ2

(
d0 +

d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α

)
− θ1

(
b0 +

b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α

)
,

ResSL,2(t) = Dα
0

(
b0 +

b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α

)
− λ1

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α

)(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α

)
+ h
(

b0 +
b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α

)
,

ResI2(t) = Dα
0

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)
− β

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α

)(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)
+ p

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)
+ λ2

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α

)
− θ2

(
d0 +

d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α

)
,

ResIL,2(t) = Dα
0

(
d0 +

d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α

)
− λ2

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α

)
+ r
(

d0 +
d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α

)
and
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ResL2(t) = Dα
0

(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α

)
− µ

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α

)
+ φ

(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α

)
We apply the operator Dα

0 to ResS2(t), ResSL,2(t), ResI2(t), ResIL,2(t) and ResL2(t) and
then evaluate the result at t = 0 to get

Dα
0 ResS2(0) = a2 + β[a0c1 + a1c0] + λ1[a0e1 + a1e0] + da1 − γ1c1 − γ2d1 − θ1b1,

Dα
0 ResSL,2(0) = b2 − λ1[a0e1 + a1e0] + hb1,

Dα
0 ResI2(0) = c2 − β[a0c1 + a1c0] + pc1 + λ2[c0e1 + c1e0]− θ2d1,

Dα
0 ResIL,2(0) = d2 − λ2[c0e1 + c1e0] + rd1,

Dα
0 ResL2(0) = e2 − µc1 + φe1.

By solving the equations

Dα
0 ResS2 (0) = 0, Dα

0 ResSL,2 (0) = 0, Dα
0 ResI2 (0) = 0, Dα

0 ResIL,2 (0) = 0 and Dα
0 ResL2 (0) = 0,

we have

a2 = −β[a0c1 + a1c0]− λ1[a0e1 + a1e0]− da1 + γ1c1 + γ2d1 + θ1b1,

b2 = λ1[a0e1 + a1e0]− hb1,

c2 = β[a0c1 + a1c0]− pc1 − λ2[c0e1 + c1e0] + θ2d1,

d2 = λ2[c0e1 + c1e0]− rd1,

e2 = µc1 − φe1.

Similarly, the third truncated power series approximations are given by

S2(t) = a0 +
a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α +

a3

Γ(1 + 3α)
t3α,

SL,2(t) = b0 +
b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α +

b3

Γ(1 + 3α)
t3α,

I2(t) = c0 +
c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α,

IL,2(t) = d0 +
d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α +

d3

Γ(1 + 3α)
t3α, and

L2(t) = d0 +
e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α +

e3

Γ(1 + 3α)
t3α.

So, the third residual functions are:

ResS3(t) = Dα
0

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α +

a3

Γ(1 + 3α)
t3α

)
−Λ

+ β

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α +

a3

Γ(1 + 3α)
t3α

)
×
(

c0 +
c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
+ λ1

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α +

a3

Γ(1 + 3α)
t3α

)
×
(

e0 +
e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α +

e3

Γ(1 + 3α)
t3α

)
+ d
(

a0 +
a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α +

a3

Γ(1 + 3α)
t3α

)
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− γ1

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
− γ2

(
d0 +

d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α +

d3

Γ(1 + 3α)
t3α

)
− θ1

(
3 +

b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α +

b3

Γ(1 + 3α)
t3α

)
,

ResSL,3(t) = Dα
0

(
b0 +

b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α +

b3

Γ(1 + 3α)
t3α

)
− λ1

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α +

a3

Γ(1 + 3α)
t3α

)
×
(

e0 +
e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α +

e3

Γ(1 + 3α)
t3α

)
+ h
(

b0 +
b1

Γ(1 + α)
tα +

b2

Γ(1 + 2α)
t2α +

b3

Γ(1 + 3α)
t3α

)
,

ResI3(t) = Dα
0

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
− β

(
a0 +

a1

Γ(1 + α)
tα +

a2

Γ(1 + 2α)
t2α +

a3

Γ(1 + 3α)
t3α

)
×
(

c0 +
c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
+ p

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
+ λ2

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
×
(

e0 +
e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α +

e3

Γ(1 + 3α)
t3α

)
− θ2

(
d0 +

d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α +

d3

Γ(1 + 3α)
t3α

)
,

ResIL,3(t) = Dα
0

(
d0 +

d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α +

d3

Γ(1 + 3α)
t3α

)
− λ2

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
×
(

e0 +
e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α +

e3

Γ(1 + 3α)
t3α

)
+ r
(

d0 +
d1

Γ(1 + α)
tα +

d2

Γ(1 + 2α)
t2α +

d3

Γ(1 + 3α)
t3α

)
and

ResL3(t) = Dα
0

(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α +

e3

Γ(1 + 3α)
t3α

)
− µ

(
c0 +

c1

Γ(1 + α)
tα +

c2

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α

)
+ φ

(
e0 +

e1

Γ(1 + α)
tα +

e2

Γ(1 + 2α)
t2α +

e3

Γ(1 + 3α)
t3α

)
We apply the operator D2α

0 to ResS3(t), ResSL,3(t), ResI3(t), ResIL,3(t) and ResL3(t) and
then evaluate the result at t = 0 to get

D2α
0 ResS3(0) = a3 + β

[
a0c2 +

a1c1Γ(1 + 2α)

Γ(1 + α)2 + a2c0

]
+ λ1

[
a0e2 +

a1e1Γ(1 + 2α)

Γ(1 + α)2 + a2e0

]
+ da2 − γ1c2 − γ2d2 − θ1b2,
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D2α
0 ResSL,3(0) = b3 − λ1

[
a0e2 +

a1e1Γ(1 + 2α)

Γ(1 + α)2 + a2e0

]
+ hb2,

D2α
0 ResI3(0) = c3 − β

[
a0c2 +

a1c1Γ(1 + 2α)

Γ(1 + α)2 + a2c0

]
+ pc2

+ λ2

[
c0e2 +

c1e1Γ(1 + 2α)

Γ(1 + α)2 + c2e0

]
− θ2d2,

D2α
0 ResIL,3(0) = d3 − λ2

[
c0e2 +

c1e1Γ(1 + 2α)

Γ(1 + α)2 + c2e0

]
+ rd2,

D2α
0 ResL3(0) = e3 − µc2 + φe2.

By solving the equations

Dα
0 ResS3 (0) = 0, Dα

0 ResSL,3 (0) = 0, Dα
0 ResI3 (0) = 0, Dα

0 ResIL,3 (0) = 0 and Dα
0 ResL3 (0) = 0,

we have

a3 = −β

[
a0c2 +

a1c1Γ(1 + 2α)

Γ(1 + α)2 + a2c0

]
− λ1

[
a0e2 +

a1e1Γ(1 + 2α)

Γ(1 + α)2 + a2e0

]
− da2 + γ1c2 + γ2d2 + θ1b2,

b3 = λ1

[
a0e2 +

a1e1Γ(1 + 2α)

Γ(1 + α)2 + a2e0

]
− hb2,

c3 = β

[
a0c2 +

a1c1Γ(1 + 2α)

Γ(1 + α)2 + a2c0

]
− λ2

[
c0e2 +

c1e1Γ(1 + 2α)

Γ(1 + α)2 + c2e0

]
− pc2 + θ2d2,

d3 = λ2

[
c0e2 +

c1e1Γ(1 + 2α)

Γ(1 + α)2 + c2e0

]
− rd2,

e3 = µc2 − φe2.

By continuing in this direction, we deduce that the coefficients an, bn, cn, dn and en for
n ≥ 2 are given by the recursive formula

an = −βΓ(1 + (n− 1)α)
n−1

∑
i=0

cn−1−iai
Γ(1 + iα)Γ(1 + (n− 1− i)α)

− λ1Γ(1 + (n− 1)α)
n−1

∑
i=0

en−1−iai
Γ(1 + iα)Γ(1 + (n− 1− i)α)

− dan−1 + γ1cn−1 + γ2dn−1 + θ1bn−1,

bn = λ1Γ(1 + (n− 1)α)
n−1

∑
i=0

en−1−iai
Γ(1 + iα)Γ(1 + (n− 1− i)α)

− hbn−1,

cn = βΓ(1 + (n− 1)α)
n−1

∑
i=0

cn−1−iai
Γ(1 + iα)Γ(1 + (n− 1− i)α)

− λ2Γ(1 + (n− 1)α)
n−1

∑
i=0

en−1−ici
Γ(1 + iα)Γ(1 + (n− 1− i)α)

− pcn−1 + θ2dn−1,

dn = λ2Γ(1 + (n− 1)α)
n−1

∑
i=0

en−1−ici
Γ(1 + iα)Γ(1 + (n− 1− i)α)

− rdn−1,

en = µcn−1 − φen−1. (32)

Remark 7. It is worth noting that these recursive formulas for the coefficients will ensure that we
obtain higher-order approximate solutions as compared with similar results in the literature with
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a smaller order of the approximate solutions. Thus, due to this recursive nature of the coefficients,
we can calculate an, bn, cn, dn and en for any large n values if necessary. For the purpose of the
numerical simulation given in Section 6, we used n = 25. That is, the coefficients an, bn, cn, dn, en
for n = 1, 2, 3, . . . 25 are computed and the approximated fractional power series solutions of
system (8) are plotted in section 6, numerical simulation and examples.

6. Numerical Simulations and Examples

The following table provides the description of the different parameters used in
the COVID-19 model. The parameter values under column “data set 1” yield a basic
reproduction number R0 = 0.2373. Similarly, if the parameters under the column “data
set 2” are used, then we have R0 = 4.5707. In Section 6.1, we simulate both the exact
and approximated solutions of system (8) using the values under “data set 1” of Table 2
for various α values (α = 0.5, 0.75, 0.95 and 1). In Section 6.2, we simulate the exact and
approximated solutions of system (8) using the parameter values under “data set 2” of
table Table 2. Moreover, in both cases (R0 < 1 and R0 > 1) the relative errors, due to
approximating the exact solution of system (8) by the residual power series method, are
computed for different α values as indicated in Tables 3 and 4.

Table 2. Input parameter values used to simulate the trajectories of the solution of the model as
shown in Figures 1–4. The parameters under the column data set 1 will resultR0 = 0.2373 < 1, and
the parameters under data set 2 yieldR0 = 4.5707 > 1.

Parameters Description of the Parameters Data Set 1 Data Set 2 Reference

Λ Recruitment rate 400 400 [38,43]

β Infection contact rate 1.7× 10−5 1.8× 10−4 [44]

λ1 Imposition of lockdown on susceptible group 2× 10−4 2× 10−5 [38,43]

λ2 Imposition of lockdown on infected group 0.002 0.002 [38,43]

γ1 Recovery rate of the infected group 0.16979 0.16979 [38,43]

γ2
Recovery rate of the infected group un-
der lockdown 0.16979 0.16979 [38,43]

α1 Death rate of the infected group 0.03275 0.03275 [44]

α2
Death rate of the infected group un-
der lockdown 0.03275 0.03275 [44]

d Natural death rates 0.096 0.06 [38,43]

θ1
Rate of transfer of susceptible lockdown
individuals to susceptible class 0.2 0.52 [38,43]

θ2
Rate of transfer of susceptible lockdown
individuals to infected class 0.02 0.2 [38,43]

µ
rate of implementation of the lock-
down program 5× 10−4 5× 10−5 [38,43]

φ rate of depletion of the lockdown program 0.06 0.06 [38,43]

6.1. Exact and Approximated Solutions of System (8) WhenR0 < 1

Using data set 1, the basic reproduction numberR0 is calculated to be 0.2373. Thus by
Theorems 4 and 5, the disease-free equilibrium point is both locally and globally asymptoti-
cally stable. The disease-free equilibrium point is calculated to be E0 = (4167, 0, 0, 0, 0). The
simulations in Figures 1 and 2 support the fact that the trajectories of system (8) converges
to this equilibrium point E0 = (4167, 0, 0, 0, 0).
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Figure 1. Numerical simulation of the trajectories of the solution of system (8) whenR0 < 1.

Figure 2. Approximated solution of system (8) using the residual power series method whenR0 < 1.
Note that the values of the parameters used in this figure are the same as the one in Figure 1.

In Figures 1 and 2 the exact and approximated solutions of system (8) are plotted
for 0 ≤ t ≤ 100, respectively. In order to show the accuracy of the residual power series
method for approximating the solution of system (8), we have calculated the relative error
of each state variable for various α values. A time step size ∆t = 2−6 is considered and
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for each state variables x(t) ∈ {S(t), SL(t), I(t), IL(t), L(t)} the values x(i∆t) are calculated
where 0 ≤ i ≤ 6400. The relative error for the state variable x(t) is computed using

Relx(t) = max
0≤i≤6400

{
|Exact(x(i∆t))− Appr(x(i∆t))|

Exact(x(i∆t))

}
, (33)

where Exact(x(i∆t)) and Appr(x(i∆t)) represent the exact and approximated values of the
variable x(t) at t = i∆t for 0 ≤ i ≤ 6400. As can be seen from Table 3, the relative error of
each state variable decreases as the value of α increases from 0.5 to 1.

Table 3. Relative error of the state variables for different values of α whenR0 < 1.

α = 0.5 α = 0.75 α = 0.95 α = 1

S 3.876× 10−6 3.143× 10−6 2.025× 10−6 1.202× 10−6

SL 4.302× 10−6 2.710× 10−6 7.094× 10−7 4.851× 10−7

I 6.813× 10−7 2.421× 10−7 8.059× 10−8 3.140× 10−8

IL 1.783× 10−6 0.448× 10−6 2.220× 10−7 1.504× 10−7

L 1.570× 10−6 2.097× 10−6 1.313× 10−6 9.177× 10−7

6.2. Exact and Approximated Solutions of System (8) WhenR0 > 1

The basic reproduction number is calculated using the parameter values under data
set 2. The value ofR0 is found to be 4.5707, and also the condition λ2 < θ2 is satisfied. Thus
by Remark 6 and Theorem 7 the endemic equilibrium point E1 = (1458, 0, 3370, 0, 0), which
is calculated using Equation (10), is both locally and globally asymptotically stable. Note
that both Figures 3 and 4 show that the trajectories of the solution of system (8) converges
to the equilibrium point E1.

Figure 3. Numerical simulation of the trajectories of the solution of system (8) whenR0 > 1.
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Figure 4. Approximated solution of system (8) using the residual power series method whenR0 > 1.
The values of the parameters used in this figure are the same as in Figure 3.

Similar to the previous discussion, the relative errors of the state variables are calcu-
lated for various α values using Equation (33).

Table 4. Relative error of the state variables for different values of α whenR0 > 1.

α = 0.5 α = 0.75 α = 0.95 α = 1

S 4.013× 10−6 1.571× 10−6 3.014× 10−7 2.624× 10−7

SL 8.201× 10−5 2.930× 10−5 5.466× 10−6 2.181× 10−6

I 1.099× 10−6 8.205× 10−7 3.272× 10−7 6.142× 10−8

IL 4.240× 10−6 3.279× 10−6 1.142× 10−6 8.529× 10−7

L 5.014× 10−5 1.792× 10−5 7.263× 10−6 1.817× 10−6

7. Conclusions and Discussion

In this paper, a fractional-order COVID-19 epidemic model with lockdown is proposed
and analyzed. In particular, some of the most important epidemiological constants, such as
the equilibrium points (E0, E1 and E2) and the basic reproduction numberR0, are calculated.
The existence and uniqueness of a positive global solution of the fractional-order system (8)
is established. Moreover, by implementing various techniques such as the comparison
theory of fractional-order differential equations, Mittage-Leffler stability (Theorem 5), and
fractional La-Salle invariance principle (Theorem 6), the local and global stabilities of the
equilibrium points are discussed. Additionally, the method of residual power series is
used to approximate the solution of system (8). As can be seen in Equation (32), the coeffi-
cients an, bn, cn, dn and en have recursive nature. That is, for any n ≥ 1, each coefficients
an, bn, cn, dn and en can be determined from the previous ones an−1, bn−1, cn−1, dn−1 and
en−1. Thus we can calculate as many coefficients as we need in order to get a very good
approximation of the solution of system (8). Moreover, it is very interesting to note that as
the value of α increases from 0.5 to 1, the trajectories of the solution of the fractional-order
system are converging to the case where α = 1. That is, the solutions of the fractional-order
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differential equation converge to the solutions of the system of the ordinary differential
equation as the order α increases towards 1. In Section 5, numerical simulations and ex-
amples are presented to show the stability of the equilibrium points when R0 < 1 and
R0 > 1. The exact solutions of system (8) for various α values are shown in Figures 1 and 3.
Similarly, the approximated solutions of system (8) using the residual power series method
are included in Figures 2 and 4. Finally, in order to see the accuracy of the approximated
solutions, we provided the relative errors for different α values as shown in Tables 3 and 4.
The model that is studied in this paper can be used to predict and understand how
COVID-19 infection spreads in the presence of a lockdown. In addition to understanding
the dynamics of the infection, it is very important to determine the relative importance of
the various parameters used in the model. One such technique is the study of the sensitivity
of the parameters in relation to the basic reproduction numberR0, and the two endemic
equilibrium points E1 and E2, which are considered to be the most important values in the
study of deterministic epidemic models. One such approach is to calculate the normalized
sensitivity index (NSI), denoted by SIκ , where κ is the given parameter. For example, if
κ is one of the parameters in R0, then the NSI of κ is defined as SIκ = κ

R0

∂R0
∂κ . Using this

result, we have calculated the NSI of the parameters β and γ1, which are directly affected
by the infection. As a result, we have SIβ = 1, and SIγ1 = −γ1

γ1+α1+d < 0. Thus in order to
decreaseR0, the expected number of infections generated by one case, we have to either
decrease the infection contact rate β or increase the recovery rate of the infected group
γ1. This further implies imposing some prevention actions, such as avoiding contact with
people who are infected, wearing masks, and keeping a distance from an infectious person,
will help to decrease the value ofR0, which directly leads to mitigating the infection. By
modifying this model, one can study other aspects of the infection, such as the impact of
vaccination, the effect of population diffusion, and other important factors that determine
the transmission and persistence of the infection.
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