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Abstract: Ischemia/reperfusion (I/R) injury is the central cause of global death in cardiovascular
diseases, which is characterized by disorders such as angina, stroke, and peripheral vascular disease,
finally causing severe debilitating diseases and death. The increased rates of morbidity and mortality
caused by I/R are parallel with aging. Aging-associated cardiac physiological structural and functional
deterioration were found to contribute to abnormal reactive oxygen species (ROS) production during
I/R stress. Disturbed redox homeostasis could further trigger the related signaling pathways that lead
to cardiac irreversible damages with mitochondria dysfunction and cell death. It is notable that sirtuin
proteins are impaired in aged hearts and are critical to maintaining redox homeostasis via regulating
substrate metabolism and inflammation and thus preserving cardiac function under stress. This review
discussed the cellular and functional alterations upon I/R especially in aging hearts. We propose that
mitochondria are the primary source of reactive oxygen species (ROS) that contribute to I/R injury in
aged hearts. Then, we highlight the cardiomyocyte protection of the age-related proteins Sirtuin1
(SIRT1) and Sirtuin1 (SIRT3) in response to I/R injury, and we discuss their modulation of cardiac
metabolism and the inflammatory reaction that is involved in ROS formation.
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1. Introduction

Ischemic heart disease, symbolized by the constriction in the coronary blood vessel, is one of the
most significant cardiac problems with a higher death rate among the elderly population [1]. Compared
to adult hearts, aged hearts are more vulnerable to ischemic insults and sustain greater injury during
ischemia/reperfusion (I/R) [2]. In clinical, aging augmented in vivo reactive oxygen species (ROS)
levels in acute myocardial infarction (AMI) patients [2]. The findings of proteomics analyses showed
that the downregulation of elevated mitochondrial ROS levels protects old mice against age-related
decline, supporting the theory that decreased ROS levels could be a beneficial factor on the extension
of life span in the elder population [3–5]. Uncontrolled cardiac ROS generation caused by pathological
alterations involved in myocardial I/R injury can promote oxidative damage to cellular proteins and
other biomolecules, as well as mitochondrial dysfunction and cell death [6]. These discoveries advance
the understanding of the mechanisms of abnormal redox homeostasis in order to develop potentially
effective approaches to protect hearts from I/R injury, especially in the older population.

Sirtuins are a family of highly conserved proteins with homology to the yeast silent information
regulator 2 (SIR2). Growing studies have implicated that sirtuins play vital roles in delaying cellular
senescence and extending mammal lifespan [7]. Since they were identified in mammals, sirtuins
have been implicated in many essential cellular processes and functions, including longevity [8],
DNA damage repair [9], metabolism [10], and inflammation [11]. Sirtuin1 (SIRT1) has an evolutionary
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relationship to SIR2 and has been most intensively investigated in the cardiovascular system with
effective deacetylase activity controlling cellular processes such as cell apoptosis, autophagy, and cell
proliferation [12,13]. SIRT1 can diminish oxidative stress by activating cardioprotective molecules
and inhibit apoptosis-related signaling pathways against cardiac I/R [14]. Sirtuin3 (SIRT3), as the
central control of mitochondrial protein deacetylation, protects cardiomyocytes from aging and
oxidative stress [15–18]. SIRT3 deficiency aggravates the cardiac susceptibility to I/R stress with severe
mitochondria abnormalities and exacerbates a higher level of myocardial I/R injury with aging [19,20].

In this review, we will mainly focus on the functions of age-related sensors SIRT1 and SIRT3 via
modulating redox homeostasis in response to myocardial I/R stress. This makes them potential targets
for developing better cell-based therapeutic strategies for elderly patients against I/R-induced injury.

2. Role of Longevity Gene Sirtuins in Myocardial I/R

Sirtuins are mammalian homologs of yeast Sir2, a silent information regulator 2, which has the
capacity to deacetylase numerous proteins in a nicotinamide adenine dinucleotide (NAD+)-dependent
manner [10,21]. To date, seven members of the sirtuin family have been reported in mammals with
various enzymatic activity and subcellular localization. All of them have the common catalytic
domain that consists of 275 amino acids accounting for protein deacetylation [22,23]. In addition,
ADP ribosylation is the main activity for Sirtuin4 (SIRT4) instead of deacetylase activity, which is also
typical for Sirtuin6 (SIRT6) [24,25]. In addition, Sirtuin5 (SIRT5) has weak deacetylase activity but
effective demalonylase and desuccinylase activity [26,27].

SIRT1, SIRT6, and Sirtuin7 (SIRT7) localize predominately in the nucleus, and more evidence
regarding SIRT1 and SIRT6 but not SIRT7 are reported to imply important functional links to
aging [28,29]. The elimination of SIRT1 expression causes only 50% of individuals to be born and only
20% to survive to maturity in mouse models. Such mice have developmental defects with phenotypic
abnormalities in the eye and heart [30]. Furthermore, overexpressing SIRT1 in the mice hypothalamus
can increase the lifespan by 16% in females and 9% in males [31]. Sirtuin2 (SIRT2) can be found mostly
in the cytoplasm, and SIRT3, SIRT4, and SIRT5 are located in mitochondria [23]. SIRT3 is thought to
be the central control of mitochondrial protein deacetylation due to the hyperacetylation of global
mitochondrial proteins in the absence of SIRT3, but not SIRT4 or SIRT5 [32]. More interestingly, SIRT3 is
the only sirtuin that has been reported to impact longevity in humans based on the fact that a certain
polymorphism in the SIRT3 gene can be found more often in elder people [33,34]. SIRT3 has exhibited
the capacity to reverse aging-associated degeneration via the control of mitochondrial homeostasis
consistently [35]. Taken together, these results support that sirtuins play critical roles in maintaining
mammalian longevity.

Sirtuins have beneficial roles in regulating cellular homeostasis with aging in a wide range of
cardiovascular diseases including myocardial I/R [10]. For example, SIRT1 possesses many capabilities to
protect hearts from myocardial I/R injury, including maintaining redox and metabolic homeostasis [36],
repressing inflammatory reaction [37], inhibiting apoptosis [14], and promoting autophagy [38]. In our
I/R model of cardiac specific SIRT1 knockout mice, the heart showed significantly enlarged infarction
size, metabolic disorder, and excessive cardiac ROS levels [36]. We also found that the deletion
of SIRT1 in cardiomyocytes caused the hyperacetylation of liver kinase B1 (LKB1) and impaired
the phosphorylation of adenosine monophosphate protein kinase (AMPK) during ischemia [36].
These promote the significance of SIRT1 in the repression of energetic consuming processes via
LKB1/AMPK during I/R stress. Moreover, SIRT1 deficiency leads to inflammatory-like phenotype
alterations in the heart during I/R as well as upregulated inflammatory cytokines such Interleukin-1β
(IL-1β), Tumor necrosis factoas-α (TNF-α) and Interleukin-6 (IL-6) during I/R injury [14,37], which is
caused by the activation of the Nod-like receptor protein-3 (NLRP3) inflammasome. SIRT1 is also a
potential target for cardiac apoptosis during I/R. It has been proven that the SIRT1-induced inhibition
of p53 transcription is closely involved in the survival of cardiomyocytes, since p53-mediated apoptosis
was activated as a result of the decreased SIRT1 during cardiac ischemia [14,39]. Furthermore,
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SIRT1-related autophagic regulation has been recognized to maintain cardiac function as the result
of the deacetylation of autophagy-related protein (ATG) family members, such as ATG5, ATG7 and
ATG8, and forkhead box class O protein (FoxO) [38].

The underlying role of SIRT3 in the alleviation of I/R injury in the heart is mainly related to the
post-translational modification of mitochondrial bioenergetic processes [40]. Defected cardiac SIRT3
level causes an upregulation of ROS generation and the hyperacetylation of proteins associated with
mitochondria oxidative phosphorylation (OXPHOS), fatty acid oxidation, and the tricarboxylic acid
(TCA) cycle, as well as oxidative stress [20]. Recent research revealed the three ways that SIRT3 regulates
cardiac autophagy during I/R stress, which are autophagosome formation-related AMPK/mTOR
activation, the Foxo3a-mediated Pink1/Parkin pathway, and mitochondrial ROS homeostasis via
superoxide dismutase 2 (SOD2) [41,42]. In this way, SIRT1 and SIRT3 have multiple beneficial effects
on protecting hearts against I/R injury and suggest the significance of them as potential targets for
cardioprotection, especially in the elder population. Considering the importance of ROS, which are
primary toxic by-products of aerobic metabolism that lead to macromolecular damage in cardiovascular
disease [6], this review focuses on summarizing the latest evidence regarding the role of SIRT1 and
SIRT3 in redox homeostasis during cardiac I/R stress.

3. Reactive Oxygen Species in Age-Related Ischemic Heart Disease

ROS consist of unstable molecules containing oxygen with high instability and a short half-life [43].
They are physiologically related to regulate cellular homeostasis and mediate signal transduction
for cardiac development, contractile function, and calcium handling [44]. Cardiac mitochondria are
significantly abundant, and the high adenosine triphosphate (ATP) consumption of the beating heart
depends on the oxidative energy generated by the mitochondria electron transport chain (ETC) [45].
Mitochondria ETC is the major endogenous source of the ROS (especially superoxide and hydroxyl
radical) [46,47], especially complex I and III [48]. Complex I, as first enzyme of mitochondria ETC,
catalytically transfers two electrons from the nicotinamide adenine dinucleotide hydride (NADH)
matrix to coenzyme Q (CoQ) and leaks electrons to O2 [49]. The crystal structure of the hydrophilic
domain in complex I [50] reveals that most of the cofactors in the enzyme are shielded from solvent.
Therefore, it is most likely that O2 accesses complex I and produces superoxide through the two sites,
site IF (FMN site) and site IQ (CoQ binding site), and then releases ROS to the matrix [51,52]. Complex
III is another critical place for electron leakage through the Q-cycle resulting in superoxide production
in the Qo site and releasing ROS into both the mitochondrial matrix and intermembrane space [53–55].
In this process, ubisemiquinone in the Qo site carries a single electron and directly transfers to O2 in
complex III, generating superoxide via a nonenzymatic reaction [49,56].

Mitochondrial dysfunction, especially the impairment of ETC, is one of the important factors
involved in cardiac dysfunctions induced by I/R injury. Upon myocardial ischemia, limited oxygen
availability is intimately related to the mitochondrial OXPHOS arrest, leading to dramatically reduced
ATP synthesis [57,58]. In order to counterbalance this situation, the troubled cardiomyocytes switch
to anaerobic glycolysis to meet the metabolic demand accompanied with the aggregation of protons
and lactate, eventually resulting in decreasing the intracellular pH [59] and promoting calcium
overload in the cell [60,61]. ROS generation is associated with increased electron leakage as a result of
impaired ETC, especially within three minutes of ischemia [62,63]. Ischemia directly increased the
production of oxyradicals generated by complex I with compromised activity in the first 10–20 min [64].
During ischemia, the functional change of the Qo site in complex III can disturb the electron flux,
leading to increased ROS production [65]. Reperfusion was characterized by a sudden restoration of
oxygen delivery, and the ATP generation was rapidly switched from anaerobic glycolysis to aerobic
mitochondrial OXPHOS with removing accumulated H+ in the extracellular space [66,67]. Although
reperfusion intervention is the most effective strategy to salvage the ischemic heart [68–70], there are
still complications such as the generation of ROS, cytokines, and chemokines exacerbating injury via
the accumulation of cellular damage and mitochondrial abnormalities [71,72]. I/R causes substantial
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mitochondria swelling and cell death, altered cardiac metabolism such as glycolysis disturbance
and TCA cycle dysfunction, as well as increased inflammatory reaction [48]. The accumulation of
succinate in the TCA cycle presents in the heart during ischemia, and its rapid oxidization induces
the enhanced mitochondrial ROS production as the result of complex I-involved reverse electron
transport (RET) during early reperfusion [6,73–75]. These highlight that the redox response during
ischemia in stimulated cardiomyocytes is an indispensable element for the process of cell injury during
reperfusion [76,77].

Aging is a complicated and progressive process that involves alterations in both physiology and
metabolism in every organ and system [77,78]. Compared to young adults, elder patients have diastolic
dysfunction with a lower ratio of the early to late ventricular filling velocities (E/A) and a longer left
ventricular isovolumetric relaxation time (LVRT) [79]. In addition, the cardiac systolic function which
presents by ejection fraction (EF) and fractional shorting (FS) show a significant decrease in response to
I/R stress along with aging [80,81]. The hearts lose the capacity to recover from ischemia in clinical
settings with a lower survival rate in old patients [82]. Animal experiments also showed blunted
functional recovery and enlarged infarct size following I/R in the aged heart [36,83,84]. Thus, it is
critical to understand the mechanisms of the increased myocardial damage caused by I/R in the aged
heart in order to develop potentially effective strategies for myocardial protection.

Diminished mitochondria electron transport chain (ETC) activity and elevated ROS production
contribute significantly to the pathogenesis of aging hearts, leading to increased oxidative damage,
including lipid peroxidation and mtDNA damage [22,85–89]. Thus, mitochondria, as the main
source of ROS, are a potential cause for the increased injury in the aged heart [90–92]. A previous
study demonstrated that ischemic damage increased the formation of oxyradicals conducted by
complex III in the aging heart which overlapped with the pre-existing aging defects [91]. Increased
myocyte apoptosis and the oxidative modification of mitochondrial proteins also supports the greater
mitochondria-derived oxidative damage in the aged heart during I/R [93,94]. Moreover, the impairment
of mitochondrial OXPHOS and the excessive ROS with aging during myocardial I/R exacerbates
impaired metabolic flexibility [93], resulting in more severe contractile dysfunction [95] and the
intolerance to I/R stress in the aged heart [36,84,93]. These findings prompt a close relationship between
ROS and age-related cardiac dysfunction upon I/R stress, and an effective therapeutic management in
substrate metabolism is essential to protect myocardium from I/R injury, in particular for the elderly.
However, a recent study has observed elevated levels of substrate metabolites but no transcriptional
changes in energy metabolic pathways in early heart failure [96]. It suggests that the post-translational
modifications contribute to the alterations in energy metabolism that occur in the early stages of heart
disease. As a major post-translational modification for cellular signaling, protein acetylation and
deacetylation is regulated by deacetylase, such as sirtuin proteins. The activity of sirtuins is coupled
with the cellular NAD+ level, indicating their close relationship between cellular energy and redox
status. Thereby, we will mainly focus on the deacetylase functions of longevity sensor SIRT1 and SIRT3
via modulating redox homeostasis in response to cardiac I/R stress.

4. Role of SIRT1 in the Redox Homeostasis during Myocardial I/R

SIRT1 is the closest mammalian homolog to the yeast Sir2 protein in sequence and is expressed
throughout the body, for example, in adipose tissue, liver, heart, and muscle [97]. In the cardiomyocytes,
SIRT1 is predominantly located in the nucleus [98]; meanwhile, SIRT1 is also reported to play important
roles in cytoplasm and mitochondria fraction [98,99]. Alcendor et al. revealed that the overexpression
of SIRT1 in mouse cardiac muscle could protect the heart from oxidative stress and alleviate age-related
cardiac hypertrophy [100]. Beyond these, SIRT1 has a pivotal role in repressing inflammation and
regulating the metabolic process upon stress stimulation, as well as some putative beneficial effect
associated with its activation concerning its role in the lifespan extension [36,98,101]. It is notable that
the SIRT1 protein expression level declines with aging in hearts [102]. In addition, its activity is also
impaired due to the defected NAD+ in aged hearts [103]. More interesting, the reduction of SIRT1
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in senescence hearts increases their susceptibility of hearts to I/R injury [20]. These results indicate
that SIRT1 is indispensable in aged hearts in response to I/R stress. We next aim to summarize the
roles of SIRT1 in regulating ROS-related pathways, which is critical for the modulation of substrate
metabolism and inflammatory response in aged hearts during I/R injury.

SIRT1 induces a substrate metabolism shift for ATP production. SIRT1 interacts with and directly
deacetylates peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC-1α) [104],
which is a key switch of mitochondrial biogenesis and fuel usage, to increase its transcriptional
activity [105] (Figure 1). As a transcriptional co-activator of the nuclear receptor PPARγ, deacetylated
PGC-1α more effectively recruits transcription factor-like estrogen-related receptor α (ERRα), to elevate
its synthesis against ROS generation and damage, which are associated with glucose metabolism,
fatty acid oxidation, and mitochondrial biogenesis [104,106,107]. PGC-1α also regulates fuel utilization
as demonstrated by an ex vivo isolated working heart experiment in which PGC-1α-/- mice exhibited
decreased palmitate oxidation with increased glucose oxidation [108]. The findings demonstrated that
PGC-1α deficiency may lead to mitochondrial dysfunction and disturbed oxidative metabolism. It is
demonstrated that SRT1720, one specific Sirt1 activator, protects the heart from I/R injury through
directly increasing the deacetylation of PGC-1α [98]. Collectively, the activation of PGC-1α by SIRT1
and enhanced mitochondria biogenesis may restore energy metabolism in the impaired myocardium
and ameliorate I/R injury.
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Figure 1. Sirtuin1 (SIRT1)-mediated downstream events associated with reactive oxygen species (ROS)
production during myocardial ischemia and reperfusion (I/R).

SIRT1 can not only inhibit ROS generation but also influence the antioxidant defense system.
FoxO1, an important forhead transcription factor in the cardiovascular system [109], participates in the
process of substrate metabolism and cell proliferation [110]. SIRT1 also has the capacity to deacetylase
FoxO1 and repress its transcriptional activity during I/R, which acts as a pivotal part in controlling
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the increase of manganese superoxide dismutase (MnSOD) and inhibiting oxidative stress in cardiac
myocytes [111,112] (Figure 1). Consistently, the upregulation of FoxO1 was significantly enhanced
with the increased expression of antioxidant MnSOD in cardiac-specific SIRT1 transgenic mice under
ischemic stress [111,112]. Moreover, the increase of MnSOD induced by SIRT1 was attenuated in the
FoxO1 knockdown tissues [14]. Additionally, the well-recognized immunoresponse-related nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, which is activated during
myocardial I/R, can also drive the expression of the antioxidant MnSOD [113].

In addition to mitochondria, the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)
oxidases (NOX) family is another resource for cytoplasmic superoxide radicals generation [114].
As before, NF-κB, a key factor for the immune system, participates in the transactivation of the
NADPH oxidase family [115,116]. A substantial amount of literature indicates that the stimulation
of SIRT1-related signaling attenuates myocardial I/R injury by inhibiting oxidative damage and
inflammatory response [37]. In ischemic cardiomyopathy, these pathophysiological functions of
SIRT1 on inflammatory reaction are mainly mediated by the deacetylation of NF-κB [117] (Figure 1).
Both animal models and clinical surgery showed that NF-κB is activated by myocardial I/R [118,119],
and its inhibition appears to contribute to a reduced infarct size [120]. These findings indicate that
SIRT1 may inhibit NF-κB by deacetylation, thereby repressing the ROS generated by the NOX family
during I/R. Furthermore, inducible nitric oxide synthase (iNOS) is also upregulated by NF-κB and
thus increases the production of ROS [121], suggesting SIRT1 may be involved in the inhibition of
cytoplasmic ROS produced by iNOS also. It is notable that aging appeared to be involved in the
upregulation of NF-κB and DNA-binding activity in mouse cardiac muscle, which may be even higher
in response to I/R stress [122,123]. These findings suggest that the impaired SIRT1 in aged hearts
causes the hyperactivation of NF-κB in response to I/R stress, leading to an excessive production of
cytoplasmic ROS mediated by NOX and iNOS.

5. Role of SIRT3 in the Metabolic Homeostasis during Myocardial I/R

SIRT3 expresses at a high level in the tissues with high metabolic turnover and mitochondrial
content, playing a critical effect on the heart and its role in cardiac physiology and pathology [21].
The overexpression of SIRT3 in mouse embryonic fibroblasts reduces cellular ROS by 40% [124].
However, both SIRT3-/- hearts as well as cardiomyocytes cultured from SIRT3-deficient hearts exhibit
increased ROS levels [19,125]. These data raise the concept that SIRT3 plays a very important role in
the cardiac ROS level. The protein level and activity of SIRT3 also decrease with aging in hearts due
to the defected NAD+ [20,126,127]. The deficiency of SIRT3 in aging hearts increases their sensitivity
to ischemic insults and I/R injury [19]. Thus, understanding the mechanism of SIRT3 in regulating
ROS-related pathways during myocardial I/R injury is important for revealing its role in aged hearts.

As has been shown, plenty of SIRT3 studies revealed its function coupled with cardiac
metabolism [128] (Figure 2). In the heart, increased pyruvate dehydrogenase (PDH) protein acetylation
with the defected SIRT3 is associated with the inhibition of its activity [129–131]. A few studies have
shown that PDH contributes to ROS generation by controlling the glucose metabolism step from
pyruvate to acetyl coenzyme A (acetyl-CoA) first entering TCA cycle [132,133]. In isolated rat hearts,
the low ATP/Adenosine diphosphate (ADP) ratio during ischemia limited the phosphorylation of
PDH and kept only 45% PDH activation of the total enzyme content [134]. The impairment of PDH
activity upon early reperfusion may due to the observed high levels of NADH and acetyl CoA and then
returned slowly after following reperfusion [134–136]. It also has been implicated that the attenuated
SIRT3 would lead to the hyperacetylation of long-chain acyl CoA dehydrogenase (LCAD) to the
suppressed activity in heart and aging liver [99,126]. LCAD controls the first entry of acetyl CoA
generated by fatty acid oxidation to the TCA cycle and assists ROS generation. During the reperfusion
period, fatty acid oxidation recovers quickly and dominates as a source of oxygen consumption,
as well as ROS generation. Due to the essential roles of PDH and LCAD in modulating glucose and
fatty acid oxidation and the following contribution to ROS generation, the role of SIRT3 involved in
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deacetylating PDH and LCAD could be a way to control the metabolic balance and ROS generation
during myocardial I/R. However, Muoio group recently reported that SIRT3 deletion has no impact on
mitochondrial respiratory function [137] but may alter the local redox environment.
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reperfusion (I/R).

On the other hand, Lombard et al. implicated that SIRT3 is the leader that controls mitochondrial
deacetylation, since the significant hyperacetylation of a wide range of mitochondrial proteins was
observed in SIRT3-deficient mice [32]. SIRT3 has the capacity to deacetylase complex I subunit NDUFA9
and complex II subunit SDHA in the mitochondria ETC and augment its activity to maintain the ATP
level [138,139] (Figure 2). The deletion of SIRT3 increased the sensitivity to I/R injury and showed
increased ROS leakage out and a lowered level of cellular ATP [20,140]. These indicate that SIRT3
could maintain the redox and energy homeostasis through the direct deacetylation of mitochondria
ETC complex members. Previous research demonstrated that SIRT3 deacetylates and triggers the
enzyme activity of isocitrate dehydrogenase 2 (IDH2), which utilizes NADP+ and produces NADPH
in the TCA cycle during I/R (Figure 2). The deletion of IDH2 amplifies the liver susceptibility to
I/R injury, which is associated with more severe mitochondrial oxidative injury [141,142]. In turn,
the upregulation of NADPH is essential for the ROS clearance by mitochondrial glutathione peroxidase
(GPX) linked with the process of converting oxidized glutathione (GSSG) into glutathione (GSH).
These data suggest that SIRT3 could increase the NADPH level via the deacetylation of IDH2,
which increases the GSH and inhibits ROS formation during I/R. In addition, FoxO3, another member
of the forkhead transcription factors family, controls cardiac metabolism [143], which is another target
for SIRT3-mediated deacetylation [144] (Figure 2). It binds to the gene promoters of MnSOD and
induces its transcriptional expression, thereby detoxifying the cellular ROS levels. It is notable that the
SIRT3/FoxO3a/MnSOD signaling pathway also plays an important role during I/R in the heart [145,146].

Moreover, macrophages isolated from SIRT3 knockout mice show significant changes in
mitochondrial redox homeostasis, which are accompanied by pro-inflammatory-like phenotype
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alterations as a result of the activation of the NLRP3 inflammasome, as well as the NF-κB pathway [147].
These data implicate that SIRT3 may be involved in the regulation of the cytoplasmic ROS level.
One study observed an unchanged phosphorylation at endothelial NOS (eNOS) Ser1177, which is
replaced by a decreased phosphorylation of eNOS Thr495 following the transient deletion of SIRT3,
which is equivalent to an increased enzymatic activity [148]. SIRT3 deficiency may cause a compensatory
effect that is secondary to an increased mitochondrial ROS accumulation. Thus, the increased eNOS
activity does not generate an increase in NO upon SIRT3 deficiency. However, the increased eNOS
coupling may contribute to counteract increased ROS levels upon SIRT3 deficiency [148]. However,
several questions still need to be addressed to fully understand the function of SIRT3 on cytoplasm
ROS level upon myocardial I/R.

6. Conclusions

Taken together, the balance between the synthesis and clearance of ROS is crucial to maintain
healthy homeostasis of the cardiomyocytes under both physiology and I/R stress. Aging markedly
increased the damage induced by I/R injury with more severe cardiac dysfunction and myocardial
infarction due to the increased free radicals leading to more ROS generation. Age-related excessive
ROS production during I/R injury plays a vital role in a series of cellular transductions that lead to
mitochondria dysfunction and cardiomyocytes death and finally to severe organ injury.

SIRT1 and SIRT3 have been proposed to be aging-related proteins that mediate the response
to I/R stress, especially in aging. Recent studies revealed that defect SIRT1 or SIRT3 increased
the sensitivity of hearts to I/R stress as well as enhanced the cardiac ROS level, especially in aged
individuals. These indicated that SIRT1 and SIRT3 have robust functions in modulating cardiac
ROS production under I/R stress. Notably, ROS and SIRT1/SIRT3 are major regulators of substrate
metabolism, which modulates the inflammatory responses during myocardial ischemia and reperfusion.
Both metabolic and inflammatory homeostasis are disturbed in aging during the I/R process. It seems
that there is an optimal balance between the levels of ROS production and either metabolism or
inflammation with the regulation of SIRT1/SIRT3, which confers the most favorable benefits on the
protection of the aging heart from more severe I/R injury. Further studies should aim to determine
the activity of SIRT1 and SIRT3 on enzyme alterations that drive ROS production in cardiomyocytes
involved in the process of IR stress.

Previous findings revealed the discovery of one of the first sirtuin-activating compounds (STACs),
resveratrol, via a screen for molecules. Resveratrol increases the activity of human SIRT1 and extends the
lifespan of yeast [149]. In addition to SIRT1, resveratrol has been reported to activate SIRT3 and SIRT5,
as well as other non-sirtuin targets [10]. After that, several generations of STACs with increasing potency
and specificity are generated, including SRT1720 and SRT2104 [150]. STACs bind to the STAC-binding
domain in the N terminus of SIRT1 and increase the binding affinity of a substrate for SIRT1 [151].
Honokiol is believed to be a specific SIRT3 activator, although it may also activate SIRT1 [16,152].
It is also necessary to implement the studies with cardiac-specific transgenic mice that inhibit the
expression of SIRT1 and SIRT3 in combination with STACs in order to confirm the mechanisms of
individual sirtuins. Those studies could contribute to improving the therapeutically effects in a clinical
setting and provide appropriate therapeutic approaches for age-related ischemic disease.
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