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Abstract: Maslinic acid (MA), a natural compound of the triterpenoid group derived from olive,
prevents the generation of pro-inflammatory cytokines and oxidative stress. In human umbilical vein
endothelial cells (HUVECs) treated with lipopolysaccharide (LPS), we characterized the effects of MA
on the regulation of heme oxygenase (HO)-1, cyclooxygenase (COX-)2, and inducible nitric oxide
synthase (iNOS). MA was tested in the lung tissues of LPS-treated mice, to determine its effect on
levels of iNOS expression and representative inflammatory mediators such as interleukin (IL)-1α
and tumor necrosis factor (TNF)-α. We show that MA induced the expression of HO-1, reduced
LPS-induced NF-κB-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, resulting in the
downregulation of STAT-1 phosphorylation. Furthermore, our data show that MA induced the
nuclear translocation of Nrf2, increased the binding of Nrf2 to ARE, and decreased IL-1α production
in LPS-treated HUVECs. The MA-induced reduction in iNOS/NO expression was reversed by RNAi
suppression of HO-1. In mice treated with LPS, MA significantly downregulated levels of iNOS in
lung tissue and TNF-α in the bronchoalveolar lavage fluid. Taken together, our findings indicate that
MA exerts a critical anti-inflammatory effect by modulating iNOS via the downregulation of NF-κB
and p-STAT-1. Thus, we propose that MA may be an ideal substance to treat inflammatory diseases.
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1. Introduction

In response to oxidative stress and inflammatory injury, heme oxygenase-1 (HO-1) considerably
influences the progression of a variety of severe diseases, such as lung disease, systemic autoimmune
disease, and cancer [1,2]. HO-1 suppresses the synthesis of inflammatory mediators such as tumor
necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 [2]. HO-1 has been shown to have a protective
effect against sepsis in ‘Cecal ligation and puncture’-induced sepsis in mice models [2,3]. HO-1 has
been successfully used to treat various vascular inflammatory disorders [2]. The expression of the HO-1
gene is regulated by nuclear factor erythrocyte 2-related factor 2 (Nrf2) that binds to the antioxidant
response elements (AREs) on the promoters of the antioxidant enzyme genes. The expression of the
antioxidant enzymes is triggered in response to oxidative and other forms of stress [4]. The Nrf2-ARE
pathway is thus considered an important target in the treatment of inflammatory diseases [4].
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Maslinic acid (MA, 2-α,3-β-dihydroxyolean-12-en-28-oic acid) is a natural compound of the
triterpenoid group, derived from olive, and is known by the botanical name Olea europaea, meaning
European olive. MA is also found in a variety of medicinal plants [5,6]. MA has been shown to have
antimalarial [7], antiprotozoan [8], antioxidant [9], and anti-inflammatory [10] activities. However, it is
not known how MA regulates HO-1 and inflammatory mediators such as NO, IL-1β, and TNF-α in
endothelial cells in vitro or in mice tissue stimulated with lipopolysaccharide (LPS). In our study, we
determined the effects of MA on the induction of HO-1 and the reduction of inflammatory mediators.
We further explored the mechanism by which MA acts as an anti-inflammatory compound.

2. Materials and Methods

2.1. Cell Culture and Reagents

Human umbilical vein endothelial cells (HUVECs) were obtained from Cambrex Bio Science
(Charles City, IA, USA) and maintained according to an established method [11–13]. HUVEC cells
used for our study were between culture passages 3 and 5. MA, LPS (from Escherichia coli), dimethyl
sulfoxide (DMSO), penicillin G, and streptomycin were obtained from Sigma Chemical Co. (St. Louis,
MO, USA). Human HO-1 siRNA duplexes were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA).

2.2. Animal Care, LPS-Injected Lung Injury Model, and Analysis of Bronchoalveolar Lavage Fluid (BALF)

Male C57BL/6 mice, 6 or 7 weeks old (average weight: 27 g), were obtained from Orient Bio Co.
(Seongnam, Korea) and used after an acclimatization period of 12 days, as previously described [14,15].
LPS (15 mg/kg i.p.) with normal saline (the vehicle control) was injected into the peritoneal space
using a 28-gauge needle. Six hours after the LPS injection, MA (0.07–0.7 mg/kg) was intravenously
administered. This protocol was approved by the Animal Care Committee at Kyungpook National
University (IRB No. KNU 2017-102). BALF was collected using an intratracheal phosphate buffered
saline (PBS) injection by subsequent gentle aspirations. The BALF was pelleted at 3000 rpm for 10 min
at 4 ◦C, and the supernatant was stored at −80 ◦C for subsequent studies.

2.3. Enzyme-Linked Immunosorbent Assays (ELISA) for iNOS, PGE2, HO-1, STAT-1 (Both Total and
Phosphorylated Forms), TNF-α, and IL-1β

ELISA kits (R&D Systems, Minneapolis, MN, USA) were used to measure the levels of the total
and phosphorylated STAT1 protein. The supernatants of the cell culture media were used to analyze
the concentrations of PGE2, HO-1, IL-1β, TNF-α, and iNOS (Aviva Systems Biology, San Diego, CA,
USA) using ELISA kits.

The supernatants of the cell culture media were used to analyze the concentrations of PGE2, HO-1,
IL-1β α, and TNF-α, using ELISA kits from R&D Systems, whereas iNOS was analyzed using ELISA
kit from Aviva Systems Biology, San Diego, CA, USA.

2.4. Nitrite Determination

The level of nitrite (NO2
–) in the medium was measured to estimate the level of nitric oxide. The

culture supernatant was mixed with an equal volume of the Griess, and the mixture was incubated for
15 min at room temperature. The reactions were analyzed on a microplate reader (λ = 540 nm). All
measurements were conducted in triplicates.

2.5. Subcellular Fractionation and Western Blotting

The cells were detached and harvested via centrifugation. The cytosolic and nuclear extracts were
made on ice, according to a previously described protocol [11]. For Western blotting, antibodies against
COX2, Nrf2, iNOS, lamin B, and β-actin (Santa Cruz, CA, USA) were used. Lamin B and β-actin were
used as the loading controls for the nuclear and cytosolic extracts, respectively.
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2.6. Quantitative Real-Time PCR (qPCR)

RNA was purified with TRI Reagent (Invitrogen, waltham, MA, USA) extraction. The purified
RNA was reverse-transcribed with a PX2 Thermal Cycler (Thermo Scientific, waltham, MA, USA)
using 0.5 mg/µL oligo(dT)-adapter primer (Invitrogen) and M-MLV reverse-transcriptase (Invitrogen)
in a 20 µL reaction mixture. The expression levels of COX-2 and iNOS were normalized against that of
β-actin. For PCR analysis, the following sets of primers were designed and used: COX-2 forward:
5′-CCC CAT TAG CAG CCA GTT-3′, COX-2 reverse: 5′-CAT TCC CCA CGG TTT TGA-3′; iNOS
forward: 5′-GTT CTC AGC CCA ACA ATA CAA GA-3′, iNOS reverse: 5′-GTG GAC GGG TCG ATG
TCA C-3′; β-actin forward: 5′-TCGTGCGTGACATCAAAGA-3′; and β-actin reverse: 5′-CAT ACC
CAA GAA GGA AGG CT-3′.

2.7. Plasmid Transfection

NF-κB luciferase reporter vector, an ARE luciferase reporter vector, HO-1 siRNA, and nonsense
control siRNA using SuperFect (Qiagen, Valencia, CA, USA) were used for transfections. After 4 h
post-transfection, the transfection medium was replaced with fresh medium.

2.8. ARE Luciferase Reporter Assay

Cells were rinsed with cold PBS and lysed with a lysis buffer supplied with a dual luciferase kit
(Promega, Madison, WI, USA). The luciferase activities were measured using a TD-20/20 luminometer
(Tumer Designs, Sunnyvale, CA, USA). All the transfections were conducted in triplicate. We present
our data as the ratio of luciferase activities of Firefly to Renilla.

2.9. Histopathological Examination with Hematoxylin and Eosin H&E Staining

The mice (n = 5) were injected with LPS. After 6 h, they were administered with MA (12.4 mg/kg,
i.v.) and then euthanized and sacrificed. H&E staining was used to analyze the histopathological
changes in the lungs [16]. Pulmonary architecture scores were analyzed from grade 1 to grade 4, as
previously described [11].

2.10. Statistical Analysis

The data are shown as the mean values with a standard deviation (SD) of three independent
experiments. When a one-way analysis of variance (ANOVA) indicated a significant difference between
different groups, post-hoc analysis of the differences between the individual groups was done with
Tukey’s tests. A p-value of < 0.05 was considered as statistically significant.

3. Results and Discussion

3.1. Effect of MA on Levels of iNOS and COX-2 in LPS-Treated HUVECs

To investigate the effect of MA on the expression of genes involved in inflammation, two
representative pro-inflammatory proteins, COX-2 and iNOS, were examined. Six hours after stimulation
with LPS, HUVECs were treated with different concentrations of MA for another 6 h. The results
from qPCR, ELISA, and immunoblot analyses showed that the expression levels of COX-2 and iNOS
decreased with administration of MA in a dose-dependent manner (Figure 1A–D). To confirm this,
the levels of their corresponding products—PGE2 and NO, respectively—were measured, and they
were also found to be reduced following MA treatment (Figure 1E,F). This indicated that MA primarily
suppressed LPS-induced NO production by downregulating iNOS expression.
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Figure 1. Maslinic acid (MA) suppressed COX-2 and iNOS levels in lipopolysaccharide (LPS)-treated
human umbilical vein endothelial cells (HUVECs). After LPS stimulation (1 µg/mL, 6 h), HUVECs
were treated with indicated concentrations of MA for 6 h, and the levels of iNOS protein (A,B), COX-2
protein (B) (Uncropped pictures of the Western blot was shown in Figure S1), iNOS mRNA (C), COX-2
mRNA (D), NO (E), and PGE2 (F) were analyzed. The results represent the mean value with SD from
three independent experiments conducted in triplicates on different days. D denotes 0.2% DMSO
treatment, which was used as the vehicle control. * p < 0.05 versus LPS.

3.2. Effect of MA on NF-κB Activity, STAT-1 Phosphorylation, and the Level of HO-1 Protein in LPS-Treated
HUVECs

Because NF-κB is critical for expression of inflammatory genes, we determined whether MA
inhibited NF-κB activity. Figure 2A shows that MA inhibited NF-κB luciferase reporter activity in a
dose-dependent manner. Since the JAK/STAT signaling pathway plays an essential regulatory role
in the expression of COX2 and iNOS in an LPS-activated state [17,18], we investigated whether MA
reduced phosphorylation of STAT-1. We indeed found that MA reduced phosphorylation of STAT-1
(Figure 2B). We also found that MA significantly upregulated HO-1 expression (Figure 2C).

3.3. Effect of MA on Nuclear Translocation of Nrf2, ARE Reporter Activity, and Anti-Inflammatory Action

Since the expression of antioxidant proteins, including HO-1, is dependent on Nrf2, we investigated
whether MA activates Nrf2. We found that MA induced the nuclear translocation of Nrf2 (Figure 3A)
and increased ARE luciferase reporter activity (Figure 3B). To confirm that the MA-induced inhibition
of iNOS expression was mediated by the upregulation of HO-1, a small interference RNA (siRNA)
suppression of HO-1 was conducted. With the suppression of HO-1, the suppression of iNOS expression
and NO production by MA were considerably reverted to MA untreated levels (Figure 3C,D). This
indicates that MA promoted HO-1 expression, partly through the downregulation of iNOS expression.
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The anti-inflammatory effect of MA was also validated by its suppression of IL-1β production in
LPS-treated HUVECs (Figure 3E).
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Figure 2. MA suppressed NF-κB activity and phosphorylation level of STAT-1 and upregulated
HO-1 protein levels. After LPS stimulation (1 µg/mL, 6 h), HUVECs were treated with indicated
concentrations of MA for 6 h. (A) NF-κB activity was analyzed in cells that were transfected with
NF-κB luciferase reporter vector. (B) LPS-mediated phosphorylation of STAT1 (p-STAT1) was measured
with ELISA. (C) Heme oxygenase (HO)-1 expression from the extracted proteins were analyzed with
ELISA. The results represent the mean value with SD from three independent experiments conducted
in triplicates on three different days. D denotes 0.2% DMSO treatment, which was used as the vehicle
control. * p < 0.05 versus LPS.
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weight of 27 g for the mice used in this study, the average blood volume was calculated to 
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Figure 3. MA induced the nuclear translocation of Nrf2 and anti-inflammatory action in HUVECs. (A)
HUVECs were harvested, and cytosolic and nuclear fractions were extracted (CE and NE, respectively)
after treatment with MA (2–20 µM) for 6 h. Western blotting was employed with indicated antibodies
(Left panel), (Uncropped pictures of the Western blot (upper panel and lower panel) was shown
in Figures S2 and S3, respectively), and the densitometric intensity of Nrf2 normalized to Lamin B
or β-actin is shown (Right panel). (B) ARE luciferase reporter activity was measured with lysates
from cells transfected with ARE. (C,D) HO-1 expression was suppressed with siRNA to determine
whether MA-mediated HO-1 expression was responsible for iNOS (C) and NO (D) inhibition. (E) IL-1β
concentrations were measured with an ELISA kit. The results represent the mean value with SD from
three independent experiments conducted in triplicates on three different days. D denotes 0.2% DMSO
treatment, which was used as the vehicle control. * p < 0.05 versus LPS, # p < 0.05 versus LPS + MA, or
+ p < 0.05 versus LPS + MA + HO-1 siRNA.

3.4. Effect of MA on TNF-α and iNOS Protein in an LPS-Induced Lung Injury Model

Next, we investigated whether MA produced an anti-inflammatory effect in vivo. As shown in
Figure 4A, TNF-α production in LPS-treated BALF was significantly reduced. Based on an estimated
circulating blood volume of 72 mL/kg for mice [19–21] and an average weight of 27 g for the mice
used in this study, the average blood volume was calculated to be 2 mL. Thus, an injection of 0.07,
0.18, 0.35 or 0.7 mg/kg of MA yielded an estimated concentration of up to 2, 5, 10 or 20 µM in the
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peripheral blood, respectively. In the lung tissue, iNOS protein level was almost completely reversed
following the administration of MA (Figure 4B), indicating an anti-inflammatory effect of MA in vivo.
Histological analysis also revealed that MA considerably alleviated the pulmonary injury caused by
LPS (Figure 4C,D).Antioxidants 2019, 8, x FOR PEER REVIEW 7 of 9 
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Figure 4. In LPS-injected mice, MA suppressed the levels of TNF-α and iNOS and alleviated lung
tissue injury. LPS (15 mg/kg, i.p.) was injected first and MA (0.07–0.7 mg/kg, i.v.) was administered
6 h after LPS injection. Control mice were not injected with LPS. Five mice were used for each LPS
and MA treated/LPS nontreated, control group. Lung tissue and bronchoalveolar lavage fluid (BALF)
were collected when the mice were sacrificed 1 d after the LPS challenge, and the levels of TNF-α (A)
and iNOS (B) were analyzed. The results represent the mean value with SD from three independent
experiments performed in triplicates on three different days. D denotes 0.2% DMSO, which was used
as the vehicle control. (C) Hematoxylin and eosin (H&E) staining of lung tissues from each group
was conducted and representative images from three independent experiments performed on three
different days are shown. The bar represents 100 µm. (D) Histopathological scores for the lung tissue
were recorded as described in the methods section. * p < 0.05 versus LPS.

4. Conclusion

Our study demonstrated that MA induced the expression of HO-1 in HUVECs, in both tim- and
dose-dependent manners. Notably, MA also inhibited LPS-induced COX2/PGE2 and iNOS/NO levels
and NF-κB activity. NF-κB is involved in numerous processes, such as cell proliferation, cell adhesion,
developmental signals, the regulation of differentiation, and protection against cell apoptosis [22].
Moreover, during periods of inflammation, NF-κB regulates immune responses by the production of
pro-inflammatory mediators. High levels of NO are also involved in airway inflammatory responses
through the regulation of chemokine secretion, while LPS-induced expression of iNOS and COX-2
requires sufficient activation of NF-κB. MA is a natural pentacyclic triterpene, which can be found in
various natural sources [5,6]. Studies investigating the mechanism of MA in inflammation showed that
it regulates the production of reactive species and the expression of the corresponding inflammatory
enzymes [10,23,24]. MA also reduces the cellular cytokines, such as NF-κB, COX2 [25], matrix
metalloproteinases (MMPs), urokinase-type plasminogen activator (uPA), and hypoxia inducible
factor-1α (HIF-1α), which promote tumor growth and progression [25]. Thus, our data indicate that
the MA-induced inhibition of expression of pro-inflammatory mediators (iNOS, NO, COX2, and IL1-β)
and the MA-induced production of HO-1 were mediated through the suppression of NF-κB activity.
Additionally, the MA-induced inhibition of expressions of TNF-α and iNOS in the BALF of LPS-treated
mouse may be mediated by HO-1 induction. Collectively, based on our results and previously
published reports, we propose that MA exerts its anti-inflammatory action through the regulation of



Antioxidants 2020, 9, 106 7 of 8

HO-1 induction. The induction of HO-1 inhibits NF-kB activation and/or oxidative enzyme activity,
which reduces the availability of the substrates for COX2 and STAT-1 phosphorylation. Furthermore,
MA-induced translocation of Nrf2 from cytosol into the nucleus by an increased Nrf2-ARE binding
activity results in the reduced inflammatory cytokines.

Our conclusion is further supported by the fact that specific RNAi-mediated suppression of HO-1
significantly reversed the inhibitory effect of MA on iNOS expression and NO production. Thus,
our present study revealed that MA effectively promotes the expression of HO-1 and reduces the
pro-inflammatory mediators in LPS-treated HUVECs, and iNOS and TNF-α levels in LPS-induced
mice lung tissue. These findings collectively suggest the significance of HO-1 in suppression of
the inflammatory processes and highlight TNF-α as a putative downstream molecule of HO-1.
Thus, we suggest MA as a potential candidate for use against inflammatory disorders, particularly
pulmonary injury.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/2/106/s1,
Figure S1: Uncropped pictures of the Western blot shown in Figure 1B; Figure S2: Uncropped pictures of the
Western blot shown in Figure 3A (Upper); Figure S3: Uncropped pictures of the Western blot shown in Figure 3A
(Lower).
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