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Abstract: The production of arbutin, an effective tyrosinase inhibitor as well as an outstanding
antioxidant, by 691 Bacillus strains isolated from soybean-based foods was tested to enhance the
tyrosinase inhibitory activity of soybeans via fermentation with the strains. Among the strains tested,
the 5 strains capable of significantly producing arbutin were identified as B. subtilis via 16S rRNA
sequencing. When soybeans were fermented with each of the selected strains, the arbutin content was
highest on day 1 of fermentation and decreased thereafter. However, the tyrosinase inhibitory activity
of the fermented soybeans continuously increased as fermentation progressed, whereas the activity
of non-inoculated soybeans was consistently low. The results indicate that arbutin enhances the
tyrosinase inhibitory activity of soybeans in the early period of fermentation, while other substances
besides arbutin contribute to the activity in the later period. Consequently, soybeans fermented
with arbutin-producing B. subtilis strains could be considered as a natural source of cosmeceuticals
and nutricosmetics used in skin lightening and may be of interest in the food industry because they
contain well-known and powerful antioxidants such as arbutin and other substances.

Keywords: fermented soybean; tyrosinase inhibitory activity; skin lightening; anti-neurodegenerative
activity; arbutin production; Bacillus subtilis; Cheonggukjang model

1. Introduction

Melanin plays an important role in preventing skin damage induced by ultraviolet (UV)
irradiation [1]. The synthesis of melanin is mainly regulated by tyrosinase [2]. L-tyrosine, a precursor
of melanin, is converted by tyrosinase into L-3,4-dihydroxyphenylalanine (L-DOPA), spontaneously
oxidized, and subsequently polymerized to form melanin [2]. However, long-term exposure to UV
irradiation can lead to abnormally increased melanin synthesis (hyperpigmentation) by tyrosinase [1],
and the hyperpigmentation is one of the major stimulants for skin diseases such as freckles, senile
lentigines, and even melanoma [3]. Consequently, melanin has been labelled as a “two-edged
sword”; both protecting the skin against UV irradiation and oxidative stress and holding the risk of
inducing skin diseases [4]. Meanwhile, tyrosinase is also involved in neuromelanin synthesis in the
brain [5]. Like melanin, L-DOPA converted from L-tyrosine by tyrosinase is successively oxidized and
polymerized to form neuromelanin [6]. The intraneuronal neuromelanin could play a protective role by
preventing the accumulation of catechol derivatives and by scavenging reactive materials [7]. On the
contrary, extraneuronal neuromelanin plays a toxic role in the aggravation of neurodegeneration by
stimulating the release of neurotoxic molecules such as tumor-necrosis factor α, interleukin 6, and nitric
oxide [7]. In recent studies [8,9], tyrosinase has been considered to be implicated in neurodegenerative
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disorders like Parkinson’s disease. In addition, the toxicity of dopamine (produced by tyrosinase) could
be intensified by overexpression of the enzyme, mainly found in patients with Parkinson’s disease [10].
To prevent and/or treat such diseases, some compounds and natural extracts with tyrosinase inhibitory
activity and antioxidative activity have been applied in the medicine and cosmetics industries [11,12],
as well as the food industry [8].

Arbutin, kojic acid, azelaic acid, glycolic acid, resveratrol, and epigallocatechin gallate are
major natural tyrosinase inhibitors which have been reported to produce a skin-lightening effect
and/or anti-neurodegenerative activity by inhibiting the conversion of L-tyrosine into L-DOPA,
and are known to be outstanding antioxidants [13–16]. Among them, arbutin, a phenolic glycoside,
has been commonly applied to skin-lightening cosmetic products and suggested as a candidate
for the treatment of Parkinson’s disease [13,17]. Numerous studies have suggested industrial
production of arbutin through chemical synthesis [18], extraction from plants [12], and microbial
enzymatic biotransformation [19]. Microorganism-mediated biotransformation has been considered
an ideal method for arbutin production in the industries mentioned above, due to the manufacturing
process under mild reaction conditions and the absence of toxic byproducts during the process [20].
Bacillus subtilis, Leuconostoc mesenteroides, Xanthomonas campestris, and other microorganisms have been
employed for arbutin production [21]. Recently, several studies have reported that arbutin production
can be enhanced by employing engineered microorganisms [22].

Fermented and non-fermented soybean foods have been abundantly consumed in Asian
countries due to their extensive historical use and outstanding nutritional value [23]. Besides,
the consumption of soybean foods is increasing worldwide due to the well-known beneficial functions
of soybeans [23]. In 1999, the US Food and Drug Administration (FDA) approved the claim
that soy protein may reduce the risk of coronary heart disease [24]. Soybean extract and other
soybean-derived compounds such as isoflavones and peptides also have various health-promoting
effects, including antioxidant [25], anti-inflammatory [26], anticancer [27], and tyrosinase inhibitory
activity [28]. Furthermore, the health-promoting activities of soybeans can be enhanced by fermentation
using microorganisms. For instance, the concentrations of daidzein, flavonoids, and other phenolic
compounds steadily increased during the fermentation of Cheonggukjang (Korean traditional fermented
whole soybean paste) inoculated with B. pumilus [29] or B. subtilis [30]. In another study, B. coagulans raised
the content of daidzein, genistein, and glycitein during the fermentation of Thua nao (Thai traditional
fermented soybean) [31]. Zhu, Fan, Cheng and Li [32] found that the antioxidant activity of Meitauza
(Chinese traditional fermented okara) fermented with B. subtilis increased as fermentation progressed.
Thus, fermented and non-fermented soybean foods have been regarded as potential sources of functional
compounds as well as beneficial microorganisms [33].

Particularly, several studies have reported that the extracts of fermented soybean foods such as
Cheonggukjang and Doenjang (Korean traditional fermented soybean paste) have strong tyrosinase
inhibitory activity, as well as antioxidative activity [34–36]. Although the contribution of the fermenting
microorganisms to antioxidative activity has been intensively studied [37,38], their effects on tyrosinase
inhibitory activity in fermented soybean foods have been insufficiently reported. Therefore, this study
was conducted to investigate the effect of arbutin-producing B. subtilis strains on the enhancement of
tyrosinase inhibitory activity of fermented soybeans. For this purpose, arbutin-producing B. subtilis
strains were isolated from representative soybean-based foods. Subsequently, the arbutin content
and tyrosinase inhibitory activity of soybeans fermented with the strains were examined during the
fermentation period. In addition, the contribution of arbutin to the total tyrosinase inhibitory activity
of fermented soybeans was discussed.
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2. Materials and Methods

2.1. Isolation and Identification of Bacillus Strains from Soybean-Based Products

Representative soybean-based products, including tofu, Cheonggukjang (Korean traditional
fermented whole soybean paste), Gochujang (Korean traditional fermented red pepper paste),
Doubanjiang (Chinese traditional fermented red pepper paste), Chunjang (Koreanized Chinese black
soybean paste), Natto (Japanese traditional fermented whole soybean paste), and Miso (Japanese
traditional fermented soybean paste), were purchased from several retail markets in Sejong, Korea.
The products were immediately transported to the laboratory and stored at 4 ◦C until experimentation.
Within 24 h of storage, Bacillus strains were isolated from the soybean products.

To isolate Bacillus strains, a 10 g sample of each product was homogenized with 90 mL of sterile
0.1% peptone saline using a stomacher (Laboratory Blender Stomacher 400, Seward, Ltd., Worthing, UK).
The homogenate was 10-fold serially diluted with sterile 0.1% peptone saline. A 100 µL aliquot of each
dilution was spread on plate count agar (PCA; Difco, Becton Dickinson, Sparks, MD, USA) in duplicate
and incubated at 37 ◦C for 24 h. After incubation, all colonies on plates with 10–300 colonies [39]
were streaked on PCA to isolate individual bacterial strains and incubated under the same conditions.
The single colonies were streaked again on PCA and incubated under the same conditions to obtain
pure cultures. Then, the single colonies were transferred into 5 mL of tryptic soy broth (TSB; Difco)
and incubated under the same conditions. The cultured broth was stored in a deep freezer (-70 ◦C)
using sterile glycerol (a final concentration of 20%, v/v).

Bacillus spp. were characterized and selected based on the morphological, cultural, and biochemical
characteristics described in Bergey’s manual [40]. The Bacillus strains were further identified to the
species level based on 16S rRNA gene sequence analyses. The universal bacterial primer pair
518F (5′-CCAGCAGCCGCGGTAATACG-3′) and 805R (5′-GACTACCAGGGTATCTAAT-3′) (all from
Solgent Co. Daejeon, Korea) were used for the amplification of 16S rRNA gene. The identities of
sequences were determined using the basic local alignment search tool (BLAST) of the National Center
for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/BLAST/).

B. subtilis KCTC 3135, B. licheniformis KCTC 1918, B. coagulans KCTC 3625, and B. pumilus KCTC
3855 were purchased from the Korean Collection for Type Cultures (KCTC; Daejeon, Korea) and served
as reference strains to which the isolated strains were compared.

2.2. Preparation of Assay Medium for Arbutin Production and Arbutin Culture for HPLC Analysis

Arbutin production by Bacillus strains was determined using the procedure described by
Liu et al. [41] with minor modifications. The assay medium for bacterial arbutin production was
prepared with 20.00 g/L of sucrose, 10.00 g/L of peptone, 0.50 g/L of MgSO4, 1.00 g/L of K2HPO4,
1.00 g/L of KH2PO4, 2.00 g/L of NaCl, and 1.00 g/L of NaHCO3 (all from Sigma-Aldrich Chemical Co.,
St. Louis, MO, USA). The pH value of the assay medium was adjusted to 7.00 using 2.00 M NaOH
(Sigma) solution, and the assay medium was autoclaved at 121 ◦C for 20 min.

A loopful (10 µL) of glycerol stock of each Bacillus strain (either each reference strain or each
isolated strain selected based on arbutin production capability, refer to Section 3.1) was inoculated
in 5 mL of TSB and incubated at 37 ◦C for 24 h. After incubation, 100 µL of the cultured broth was
transferred into 5 mL of TSB and incubated under the same conditions. A loopful of the broth was
streaked on tryptic soy agar (TSA; Difco). After incubation at 37 ◦C for 24 h, a single colony was
inoculated in 5 mL of the bacterial arbutin production assay medium. After incubation at 37 ◦C for 15 h,
hydroquinone (a precursor of arbutin) and sucrose (a donor for arbutin) dissolved in deionized water
were filtered using a 0.45 µm-pore size sterile syringe filter (Millipore Co., Bedford, MA, USA) and then
aseptically added into the cultured assay medium at final concentrations of 120 mM and 240 mM,
respectively. The cultured assay medium with the aforementioned supplements was incubated again at
37 ◦C for 72 h, which is hereafter referred to as “arbutin culture”. The arbutin culture was immediately
analyzed by HPLC for bacterial arbutin production.

http://www.ncbi.nlm.nih.gov/BLAST/


Antioxidants 2020, 9, 1301 4 of 14

2.3. Preparation of Bacterial Suspension for Soybean Fermentation

The bacterial suspension was prepared according to the procedure described in a previous
study [42]. Briefly, 100 µL of the glycerol stock of each arbutin-producing B. subtilis strain (either
reference strain or each isolated strain selected based on arbutin production capability, refer to
Section 3.1) was inoculated in 5 mL of TSB and incubated at 37 ◦C for 24 h. After incubation, 100 µL
of the cultured broth was transferred into 5 mL of TSB and incubated under the same conditions.
To obtain a sufficient amount of bacterial cell culture, 5 mL of the culture were transferred into 250 mL
of TSB. After incubation at 37 ◦C for 24 h, the cultured broth was centrifuged at 15,000× g for 5 min at
4 ◦C. The supernatant was discarded, and the pellet was washed three times and resuspended in a
sterile M/15 Sörensen’s phosphate buffer. The buffer was prepared as follows: 5.675 g of Na2HPO4 and
3.630 g of KH2PO4 (all from Sigma) were dissolved in 1 L of distilled water and autoclaved at 121 ◦C
for 15 min. The final concentration of bacterial cells in the suspension was adjusted to 8 log CFU/mL,
and the bacterial suspension was further used for soybean fermentation (see Section 2.4).

2.4. Soybean Fermentation with Arbutin-Producing B. subtilis Using a Cheonggukjang Model

The soybean fermentation experiments were conducted following the protocol described in
previous studies [43,44]. White soybeans (Glycine max Merrill) were purchased from a retail market in
Sejong, Korea. The soybeans were washed in tap water three times and soaked in distilled water at
4 ◦C for 12 h. After draining for 5 min, 200 g of soaked soybeans were collected in a stainless container
(190 × 160 × 50 mm3) and sealed with a stainless rubber-packing cover. The container was steamed
at 121 ◦C for 40 min using an autoclave. After cooling to 50 ◦C, bacterial suspension was added to
the soybeans at a final concentration of approximately 6 log CFU/g. The inoculated soybeans in the
covered stainless container were fermented at 37 ◦C for 4 days. Soybeans fermented with B. subtilis
KCTC 3135 and arbutin-producing B. subtilis strains were defined as positive control and experimental
samples, respectively. Non-inoculated soybeans incubated under the fermentation conditions served
as control. Soybean samples were taken every 24 h during the fermentation to measure pH, water
activity, total mesophilic viable bacterial counts, arbutin content, and tyrosinase inhibitory activity.

2.5. Treatment of Arbutin Cultures and Soybean Samples for Arbutin Analysis and Tyrosinase Inhibitory
Activity Assay

The arbutin content in arbutin cultures and soybean samples was determined according to the
procedure by Park et al. [45] with slight modifications. The solvent for arbutin extraction (and for the
HPLC mobile phase) was prepared with 10 mM monopotassium phosphate (Sigma) and acetonitrile
(HPLC grade, SK Chemicals, Ulsan, Korea) at the ratio of 95:5 (v/v). For the arbutin extraction, 2 mL of the
arbutin cultures (see Section 2.2) or 2 g of the soybean samples (see Section 2.4) were homogenized with
18 mL of the solvent prepared above using a vortex (Vortex-Genie, Scientific Industries, Bohemia, NY,
USA; for the arbutin cultures) or a homogenizer (T10 basic Ultra-turrax, IKA, Staufen, Germany; for the
soybean samples). The homogenates were sonicated with 400 W intensity at room temperature for
30 min using a JAC ultrasonic 4020 (Kodo Technical Research Co., Ltd., Daejeon, Korea), filtered through
Whatman paper No. 1 (only for the homogenates from soybean samples; Whatman International Ltd.,
Maidson, UK), and subsequently filtered using a 0.45 µm-pore size syringe filter (Millipore).

Stock standard solutions of arbutin (>98%, Sigma) were prepared at a concentration of 10,000 mg/L
in the solvent prepared above. Working standard solutions at concentrations of 0, 10, 25, 50, 100,
and 250 mg/L were prepared by diluting the stock solution in the same solvent and filtered using a
0.45 µm-pore size syringe filter (Millipore).

All the filtrates from arbutin cultures, soybean samples, and standard solutions were stored at
−70 ◦C until use. Within a week of storage, the filtrates were thawed in ice and directly used for arbutin
analysis by HPLC (see Section 2.6). The filtrates were also used for the tyrosinase inhibitory activity
assay (see Section 2.7).
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2.6. Chromatographic Separation

Chromatographic separation of arbutin in the filtrates prepared above was conducted according
to the method developed by Park et al. [45]. An HPLC unit (YL 9100, Young Lin Instrument, Co.,
Anyang, Korea) equipped with a UV–Vis detector (YL 9120, Young Lin) and Autochro-3000 software
(Young Lin) was employed. A Nova-Pak C18 5 µm column (250 mm × 4.6 mm, Waters, Milford, MA,
USA) held at 25 ◦C was used for chromatographic separation. The mobile phase was adjusted to a flow
rate of 1 mL/min. A 10 µL aliquot of each filtrate was injected and monitored at 260 nm for 15 min.

2.7. Tyrosinase Inhibitory Activity Assay

The tyrosinase inhibitory activity assay was carried out according to the method described by
Piao, Baek, Park and Park [46] with minor modifications. Briefly, 40 µL of the filtrates prepared from
each soybean sample or working standard solution (see Section 2.5) were added to a reaction mixture
containing 40 µL of 0.01% (w/v) of L-tyrosine (in 0.067 M potassium phosphate buffer; pH 6.8), 80 µL
of potassium phosphate buffer, and 40 µL of tyrosinase from mushroom (60 units/mL in potassium
phosphate buffer; Sigma). As a blank, 40 µL of the solvent (described in Section 2.5) were added to
the reaction mixture. The mixture was incubated at 37 ◦C for 30 min, and the optical density was
measured at 475 nm using a spectrophotometer (Lambda 35, PerkinElmer Ltd., Waltham, MA, USA).
Tyrosinase inhibitory activity was calculated as follows: Inhibition (%) = [1 − (Asample/Ablank) × 100],
where Ablank is the absorbance of the mixture with the solvent (blank) and Asample is the absorbance of
the mixture with the filtrate.

To estimate the tyrosinase inhibitory activity of arbutin in all soybean samples, a standard curve
was used. The standard curve was generated using the filtrates prepared from the working standard
solutions of arbutin at concentrations ranging from 0 to 250 mg/L. Arbutin content in the soybean
samples was converted to tyrosinase inhibitory activity by using the standard curve plotting the
concentration of arbutin versus tyrosinase inhibitory activity of the arbutin. The tyrosinase inhibitory
activity of other substances was derived by the subtraction of that of arbutin from the total activity of
soybean samples.

2.8. Physicochemical and Microbial Analyses

The physicochemical properties of soybean samples were measured as described below. Samples
weighing 2 g using an analytical balance (Ohaus Adventurer™, Ohaus Corporation, Parsippany,
NJ, USA) were homogenized with 18 mL of distilled water using a homogenizer. The pH of the
homogenates was measured using a pH meter (Orion 3-star pH Benchtop Thermo Scientific, Waltham,
MA, USA). The water activity of the samples was measured using an electric hygrometer (AquaLab
Pre; Meter Group, Inc., Pullman, WA, USA).

The enumeration of total mesophilic viable bacteria in soybean samples was conducted using
PCA as follows. Samples weighing 5 g were homogenized with 45 mL of sterile 0.1% peptone saline in
a sterile plastic bag using a stomacher. The homogenates were 10-fold serially diluted with sterile 0.1%
peptone saline up to 10−6, and 100 µL of each dilution was spread on PCA in duplicate. After incubation
at 37 ◦C for 24 h, the bacterial concentrations of the soybean samples were calculated by counting the
colonies on the plates with 10–300 colonies [39] and adjusting for the dilution.

2.9. Statistical Analyses

All measurements were performed in triplicates, while fermentation experiments were conducted
in duplicates. Data were presented as means and standard deviations of duplicates or triplicates.
Statistical analyses were performed with Minitab statistical software, version 17 (Minitab Inc., State
College, PA, USA). The significance of differences was determined by one-way analysis of variance
(ANOVA) with Fisher’s pairwise comparison, and differences with probability (p) value of <0.05 were
considered statistically significant.
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3. Results and Discussion

3.1. Arbutin Production by Bacillus Strains Isolated from Soybean-Based Products

In this study, Bacillus strains with arbutin production capability were used as a criterion for the
selection of fermenting bacteria to ferment soybeans as (i) Bacillus spp. are generally involved in
the fermentation of soybean-based products [29,30,47] and (ii) several species of the genus Bacillus
have been reported to produce arbutin, an effective tyrosinase inhibitor as well as an outstanding
antioxidant [19,20,41]. A total of 691 strains of Bacillus spp. were isolated from representative
soybean-based products, including tofu, Cheonggukjang, Gochujang, Chunjang, Doubanjang, Natto,
and Miso, and the arbutin production of each strain was measured by HPLC analysis. In conjunction,
reference strains, including B. subtilis KCTC 3135, B. licheniformis KCTC 1918, B. coagulans KCTC
3625, and B. pumilus KCTC 3855, were also used as such species are dominant in soybean-based
products [29,30,47].

As presented in Figure 1 and Figure S1, B. subtilis KCTC 3135 (a reference strain) showed the
highest production of arbutin (377.80 ± 7.08 µg/mL, mean ± standard deviation) among all tested
strains, including reference and isolated strains. Of the Bacillus isolates, CJ 151 (isolated from Chunjang),
TF 203, TF 207 (isolated from tofu), NT 424 (isolated from Natto), and GJ 614 (isolated from Gochujang)
strains produced significantly higher levels of arbutin (25.24–150.05 µg/mL, the range from minimum
to maximum). Moreover, the five Bacillus isolates also showed similar or higher arbutin production
compared to reference strains of other species (14.04–38.72 µg/mL, Figure S1) except for B. subtilis KCTC
3135. The five isolates were all identified as B. subtilis based on 16S rRNA gene sequence analyses and
selected for use in subsequent in situ fermentation experiments.

Figure 1. Arbutin production by various B. subtilis strains in assay media. KCTC 3135: Reference strain
of B. subtilis, CJ 151: B. subtilis strain isolated from Chunjang, TF 203: B. subtilis strain isolated from
tofu, TF 207: B. subtilis strain isolated from tofu, NT 424: B. subtilis strain isolated from Natto, GJ 614:
B. subtilis strain isolated from Gochujang. Values of bars with different letters (A–E) are significantly
different (p < 0.05). Error bars indicate standard deviations determined from triplicate experiments.

Some Bacillus spp. such as B. subtilis, B. licheniformis, B. coagulans, and B. pumilus which are
indigenous to soybean-based products have been used for improving the functional properties of
fermented soybean foods [29,30,47]. B. subtilis strains have also been considered prolific arbutin
producers [19,41]. Particularly, Liu et al. [41] reported that while high levels of arbutin (100–500 mg/kg)
were produced by B. subtilis reference strains, in vitro arbutin production was not observed with other
reference strains of B. licheniformis, B. pumilus, and B. amyloliquefaciens. Similarly, in the present study,
B. subtilis KCTC 3135 as well as CJ 151, TF 203, TF 207, NT 424, and GJ 614 strains identified as B. subtilis
produced significantly higher levels of arbutin in assay media than the reference strains belonging
to B. licheniformis, B. coagulans, and B. pumilus. Although the five B. subtilis strains were isolated
from similar sources (i.e., soybean-based products), they had different arbutin production capabilities,
showing a large variation with a standard deviation of 53.99 µg/mL. Based on previous and present
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studies, the arbutin production capability of B. subtilis strains is likely not only species-dependent
but also strain-dependent [41]. Consequently, the present results suggest that arbutin-producing
B. subtilis strains isolated from soybean-based products may have the potential to enhance the tyrosinase
inhibitory activity (and antioxidative activity as well) of fermented soybean foods when used as
fermenting bacteria. Furthermore, the fermented soybean foods prepared with these strains may be of
interest to many researchers developing natural sources of cosmeceuticals and nutricosmetics for skin
lightening and functional foods for improving health.

3.2. Changes in Physicochemical and Microbial Properties during Soybean Fermentation with
Arbutin-Producing B. subtilis Strains

To examine the effects of the four arbutin-producing B. subtilis strains (CJ 151, TF 207, NT
424, and GJ 614; TF 203 was also tested but not described hereafter because only one strain with
a stronger effect was selected from each soybean-based food source) on the physicochemical and
microbial properties (Section 3.2), arbutin content (see Section 3.3), and tyrosinase inhibitory activity
(see Section 3.4) of soybeans fermented with the respective strains, soybean fermentation experiments
were performed using a Cheonggukjang model.

As shown in Figure 2a, the initial pH of all inoculated soybean samples (positive control and all
experimental samples) and non-inoculated soybean samples (control) ranged from 6.17 to 6.22. The pH
of the control remained constant during the incubation period (corresponding to the fermentation
period), while those of all the inoculated soybean samples steadily decreased to ranges of 5.45 to
5.85 as fermentation progressed, which is in agreement with previous studies on Cheonggukjang
fermentation [43,44]. The reduction in pH may be associated with the growth of total mesophilic
viable bacteria during the fermentation of soybeans (Figure 2b). The bacterial counts of all soybean
samples inoculated with B. subtilis strains (reference and isolated strains) dramatically increased from
the initial 6 log CFU/g to over 9 log CFU/g on day 1 of fermentation and stayed constant thereafter,
which is in agreement with previous studies on Cheonggukjang [43,44]. Mesophilic viable bacteria were
not detected in the control throughout the incubation period. In addition, the water activity of all
soybean samples ranged from 0.988 to 0.992 throughout the experimental duration of fermentation or
incubation. Altogether, the results of physicochemical and microbial measurements indicate that all
the soybean samples inoculated with any of tested B. subtilis strains were properly fermented.

Figure 2. Changes in (a) pH and (b) total viable mesophilic bacterial counts of soybeans fermented with
arbutin-producing B. subtilis strains. •: control without an inoculum, #: positive control inoculated
with B. subtilis KCTC 3135, �: experimental sample inoculated with B. subtilis CJ 151, �: experimental
sample inoculated with B. subtilis TF 207, N: experimental sample inoculated with B. subtilis NT 424,
4: experimental sample inoculated with B. subtilis GJ 614. Error bars indicate the minimum and
maximum values of duplicate experiments.

3.3. Changes in Arbutin Content during Soybean Fermentation with Arbutin-Producing B. subtilis Strains

To examine the arbutin production by arbutin-producing B. subtilis strains in fermented soybeans,
arbutin content was analyzed during the fermentation of soybeans (Figure 3). The initial arbutin content
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in all inoculated soybean samples (positive control and all experimental samples) and non-inoculated
soybean samples (control) was detected at approximately 20 mg/kg. Arbutin content in the control
slightly decreased throughout the incubation period, while that in all the inoculated soybean samples
dramatically increased on day 1 of fermentation and gradually decreased thereafter. Interestingly,
arbutin content in the soybean samples inoculated with B. subtilis GJ 614 or B. subtilis CJ 151 was detected
highest (80.58 ± 0.36 mg/kg) and second-highest (64.80 ± 0.68 mg/kg) on day 1 of the fermentation,
respectively, compared to the other inoculated soybean samples. In contrast, the positive control
inoculated with B. subtilis KCTC 3135 contained the lowest level of arbutin (35.81 ± 2.64 mg/kg) among
all the inoculated soybean samples on the same day. It is noteworthy that both B. subtilis GJ 614
and B. subtilis CJ 151 produced relatively low levels of arbutin in assay media compared to the other
selected B. subtilis strains, while B. subtilis KCTC 3135 showed the highest arbutin production in the
same medium (see Figure 1). It is unclear why the difference in arbutin production by the B. subtilis
strains between in vitro and in situ experiments occurred, but it is likely due to the different sources
from which the strains were isolated. Indeed, B. subtilis CJ 151 and B. subtilis GJ 614 were isolated
from Chunjang and Gochujang, respectively, whereas B. subtilis TF 207 and B. subtilis NT 424 were
isolated from tofu and Natto, respectively. Although the four B. subtilis strains were isolated from
similar sources (i.e., soybean-based products, as aforementioned in the Section 3.1), the former strains,
but not the latter, were isolated from Korean fermented soybean foods similar to Cheonggukjang used
as a model in this study. Contrastingly, B. subtilis KCTC 3135 was isolated from blood [48]. Thus,
it seems that the two strains (B. subtilis CJ 151 and B. subtilis GJ 614) might be more adapted to the
Cheonggukjang model system used in this study and thereby produced a larger amount of arbutin,
compared to the other B. subtilis strains tested.

Figure 3. Changes in arbutin content in soybeans fermented with arbutin-producing B. subtilis strains.
•: control without an inoculum,#: positive control inoculated with B. subtilis KCTC 3135,�: experimental
sample inoculated with B. subtilis CJ 151, �: experimental sample inoculated with B. subtilis TF 207,
N: experimental sample inoculated with B. subtilis NT 424, 4: experimental sample inoculated with
B. subtilis GJ 614. Error bars indicate the minimum and maximum values of duplicate experiments.

Hydroquinone has been known to be the primary precursor of arbutin [12]. Although studies
related to hydroquinone content in soybeans have not been found in literature, arbutin production
in fermented soybeans was observed in the present study. Therefore, it seems likely that for arbutin
production, precursors other than hydroquinone are present in soybeans. A recent review described
the formation of hydroquinone from polyphenols via the phenol moiety oxidation pathways [49].
As polyphenols are abundantly present in soybeans [29,30], the phenolic compounds might be utilized
as precursors of arbutin during the fermentation of soybeans.

Arbutin content in all inoculated soybean samples gradually decreased from 35.81–80.58 mg/kg
to 10.55–20.65 mg/kg after the first day of fermentation. To pursue the reasons for the reduction of
arbutin, further fermentation experiments were carried out using the B. subtilis-inoculated soybean
samples (and non-inoculated samples) spiked with arbutin at a concentration of 100 mg/kg, and arbutin
content and total mesophilic viable bacteria counts were analyzed during the fermentation period.
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Although the content of spiked arbutin in the control slightly (but insignificantly) decreased during the
incubation period, those in all the inoculated soybean samples significantly decreased by 77.13–84.64%
during the fermentation period (Figure 4). Changes in total mesophilic viable bacterial counts of all the
spiked samples were similar to those of non-spiked samples described in Section 3.2 (data not shown).
The results indicate that the arbutin-producing B. subtilis strains not only produce arbutin in the early
period of fermentation, but also degrade it throughout the fermentation period. A previous report
described that the enzyme β-glucosidase of B. subtilis could degrade some phenolic glycosides such
as arbutin and salicin into, for example, glucose, which in turn might be used as one of the carbon
sources [50]. However, the dynamic nature of microbial mechanisms regulating both degradation and
production of arbutin, particularly in fermented soybean foods such as Cheonggukjang, is still unclear.
Based on the current findings, it would be interesting for further studies to optimize fermentation
conditions that maximize arbutin production and minimize its degradation, which can then be extended
to applications including the enhancement of the skin-lightening effect and anti-neurodegenerative
activity of fermented soybeans with arbutin-producing B. subtilis strains.

Figure 4. The degradation of arbutin spiked in soybeans fermented with arbutin-producing B. subtilis
strains. (a) The total arbutin content (the total amount of arbutin naturally present in soybeans in
addition to spiked arbutin); (b) the relative content of spiked arbutin. Arbutin was added in respective
soybean samples at a concentration of 100 mg/kg. The relative content of arbutin was represented as the
percentage of spiked arbutin content remaining in fermented or non-inoculated soybeans. �: control
without an inoculum, �: positive control inoculated with B. subtilis KCTC 3135,
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3.4. Changes in Tyrosinase Inhibitory Activity during Soybean Fermentation with Arbutin-Producing
B. subtilis Strains

The present study focused on tyrosinase inhibitory activity of the fermented soybeans because
numerous previous studies on increases in antioxidants in fermented soybeans and their antioxidative
activity have been reported [37,38]. As shown in Figure 5, tyrosinase inhibitory activity was observed
during the fermentation of soybeans. The tyrosinase inhibitory activity of the non-inoculated soybean
samples (control) stayed constant throughout the incubation period. In contrast, the activity of the
positive control increased from 3.22 ± 1.66% (standard deviation from duplicate runs) to 10.23 ± 0.67%,
and all 4 experimental samples showed larger increases in inhibitory activity, from 3.56± 0.09% (standard
deviation from different samples) up to 12.89 ± 0.36% during the fermentation period. Differently
from the present study using filtrates from fermented soybeans, several previous studies [25,34,35]
have observed the tyrosinase inhibitory activity of lyophilized extracts from fermented soybeans.
As lyophilization concentrates the substances in the samples, the treatment may be able to concentrate
the inhibitory substances in the soybean samples tested in this study. However, changes in the activity
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and stability of soybeans fermented with arbutin-producing B. subtilis strains when exposed to such
lyophilization conditions need to be further studied in the future. This is due to the possibility that
such treatment may become an essential process in the use of fermented soybeans as a natural source
of cosmeceuticals and nutricosmetics for skin lightening and functional foods for improving health.
Regardless of the difference in sample preparation methods, the tyrosinase inhibitory activity of all
fermented soybean samples in both previous and present studies increased as fermentation progressed.

Figure 5. Changes in tyrosinase inhibitory activity of soybeans fermented with arbutin-producing
B. subtilis strains. (a) The control without an inoculum; (b) the positive control inoculated with B. subtilis
KCTC 3135; (c) the experimental sample inoculated with B. subtilis CJ 151; (d) the experimental sample
inoculated with B. subtilis TF 207; (e) the experimental sample inoculated with B. subtilis NT 424;
(f) the experimental sample inoculated with B. subtilis GJ 614. Arbutin content in soybean samples
was converted to tyrosinase inhibitory activity by referring to a standard curve, and the activity of
other substances was derived by the subtraction of that of arbutin from the total activity of soybean
samples.
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In the meantime, to predict the tyrosinase inhibitory activity that was attributed to arbutin present
in the control and all inoculated soybean samples, arbutin content was converted to inhibitory activity
by referring to the standard curve (see Section 2.7; data not shown). The activity derived from arbutin
was marked by black bars, whereas that from other substances was represented by white bars in Figure 5.
The initial tyrosinase inhibitory activity attributed to arbutin content accounted for approximately
20% of total activity in all soybean samples. The remaining 80% activity appeared to be due to
other substances besides arbutin. In the control, insignificant changes in the inhibitory activity were
observed during the incubation period. However, in all the inoculated soybean samples, the tyrosinase
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inhibitory activity derived from arbutin increased to 23.93–58.74% of the total activity on day 1 of
fermentation. The contribution of arbutin to the total activity decreased thereafter, to a minimum of
3.45–5.24% on day 4 of fermentation. The results indicate that arbutin produced by B. subtilis strains
enhanced the tyrosinase inhibitory activity of fermented soybeans in the early period of fermentation,
while other substances present in soybeans and produced by the B. subtilis strains contributed to the
activity in the later period. Several compounds such as peptides in soybeans have been considered
as tyrosinase inhibitors [51] and antioxidants [52]. Choi et al. [34] also observed that both tyrosinase
inhibitory activity and antioxidative activity were moderately correlated to total phenolic content
in Cheonggukjang. A previous study by Pyo and Jin [35] reported that the content of coenzyme Q10
and some soy isoflavones, including daidzein and genistein, in Doenjang significantly increased as
fermentation progressed and contributed to both tyrosinase inhibitory activity and antioxidative
activity. The results of the present study, taken together with previous studies, suggest that the
fermentation of soybeans by arbutin-producing B. subtilis strains may enhance the tyrosinase inhibitory
activity (and antioxidative activity as well) via the production of arbutin and other substances in
fermented soybeans. After all, the optimization of fermentation conditions and selection of prolific
arbutin producers to properly ferment soybeans will enable fermented soybeans to be used as beneficial
materials in the medicine and cosmetics industry as well as the food industry.

4. Conclusions

In this study, prolific arbutin-producing B. subtilis isolates were selected and used for
the fermentation of soybeans to enhance tyrosinase inhibitory activity (eventually resulting in
skin-lightening effect and anti-neurodegenerative activity). Arbutin content and tyrosinase inhibitory
activity thereof in all soybean samples fermented with the arbutin-producing B. subtilis strains
significantly increased in the early period of fermentation and decreased thereafter, which, together
with the other results of the present study, indicated that the B. subtilis strains were usable to enhance
the tyrosinase inhibitory activity of the fermented soybeans, and also capable of degrading arbutin
throughout the fermentation period. In the meantime, the total tyrosinase inhibitory activity increased
as fermentation progressed, which implied that other substances (besides arbutin) present in soybeans
and produced by the B. subtilis strains contributed to tyrosinase inhibition. Therefore, the current
study suggests that optimization of fermentation conditions to maximize microbial arbutin production
and minimize its degradation is necessary to further enhance the tyrosinase inhibitory activity
(and antioxidative activity if required) of soybeans fermented with the selected B. subtilis strains.
In addition, as the arbutin-producing B. subtilis strains originated from soybean-based products,
soybeans fermented with the strains may be favorable in the production of beneficial materials to be
used in the medical and cosmetics industries, as well as the food industry.
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Figure S1: Arbutin production by reference strains of Bacillus spp. in assay media. The black bar represents the
mean value of arbutin production by five B. subtilis isolates (CJ 151, TF 203, TF 207, NT 424, and GJ 614) selected
based on arbutin production capability. Values of bars with different letters are significantly different (p < 0.05).
Error bars indicate standard deviations determined from triplicate experiments (each reference strain) or different
B. subtilis isolates (isolated strains).
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