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Abstract: In the last decade, immune therapies against human cancers have emerged as a very
effective therapeutic strategy in the treatment of various cancers, some of which are resistant to
current therapies. Although the clinical responses achieved with many therapeutic strategies were
significant in a subset of patients, another subset remained unresponsive initially, or became resistant
to further therapies. Hence, there is a need to develop novel approaches to treat those unresponsive
patients. Several investigations have been reported to explain the underlying mechanisms of immune
resistance, including the anti-proliferative and anti-apoptotic pathways and, in addition, the increased
expression of the transcription factor Yin-Yang 1 (YY1) and the programmed death ligand 1 (PD-L1).
We have reported that YY1 leads to immune resistance through increasing HIF-1α accumulation
and PD-L1 expression. These mechanisms inhibit the ability of the cytotoxic T-lymphocytes to
mediate their cytotoxic functions via the inhibitory signal delivered by the PD-L1 on tumor cells
to the PD-1 receptor on cytotoxic T-cells. Thus, means to override these resistance mechanisms are
needed to sensitize the tumor cells to both cell killing and inhibition of tumor progression. Treatment
with nitric oxide (NO) donors has been shown to sensitize many types of tumors to chemotherapy,
immunotherapy, and radiotherapy. Treatment of cancer cell lines with NO donors has resulted in the
inhibition of cancer cell activities via, in part, the inhibition of YY1 and PD-L1. The NO-mediated
inhibition of YY1 was the result of both the inhibition of the upstream NF-κB pathway as well as the
S-nitrosylation of YY1, leading to both the downregulation of YY1 expression as well as the inhibition
of YY1-DNA binding activity, respectively. Also, treatment with NO donors induced the inhibition of
YY1 and resulted in the inhibition of PD-L1 expression. Based on the above findings, we propose
that treatment of tumor cells with the combination of NO donors, at optimal noncytotoxic doses,
and anti-tumor cytotoxic effector cells or other conventional therapies will result in a synergistic
anticancer activity and tumor regression.
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1. Introduction

1.1. Cancer and Conventional Therapies

Cancer cells proliferate and survive by escaping the host’s regulatory systems through various
mutations. These mutations lead to uncontrolled cell growth, tumorigenesis, metastasis, and death of
the host. Different cancers have different types of mutations and cause disease through manipulating
different cellular pathways and their environment. Thus, cancer therapies have been developed
for different cancers that attempt to kill the cells through various mechanisms. One of the most
common therapies is chemotherapy, which kills cells by damaging DNA and inhibiting mitosis [1].
Chemotherapy has led to significant clinical responses in many cancers, including increased cytotoxicity
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and prolonged overall and progression-free survivals, such as colorectal cancer [2], non-small-cell lung
cancer [3], pancreatic cancer [4], and many others. Various combination chemotherapies have also
shown to be more effective compared to single agent therapies in treating several cancers, such as
advanced non-small-cell lung cancer [5] and metastatic breast cancer [6]. Another common method
of treatment is radiotherapy, which uses high energy rays to kill cancer cells in a localized area [7].
Radiotherapy is often combined with other treatments and has been shown to be effective in treating
cancers, such as rectal cancer, in combination with surgery [8] and chemotherapy [9]. Radiotherapy
has also been shown to be effective in combination with immunotherapy in preclinical and some
clinical studies because of its potential to change the tumor microenvironment and stimulate immune
responses [10–12].

Immunotherapy aims to enhance the host’s innate, antibody, and cell-mediated immune attacks
on cancer cells [13,14]. Remarkable progress has been made in recent years in cancer immunology
and immunotherapies. Several recent therapeutic strategies, such as novel stimulator of interferon
genes (STING) agonists, have been developed to enhance the host’s innate immune attack on cancer
cells [15]. Helper-like innate lymphoid cells have also emerged as a new target for immunotherapies
because of their ability to infiltrate the tumor microenvironment [16,17]. Targeted therapies, such as
monoclonal antibodies, T-cell mediated therapies, and small molecule inhibitors aim to inhibit cancer
cell growth, increase cell death, and restrict the spread of cancer. These targeted therapies target
specific cancer proteins or molecular pathways and are preferred because they minimize the death of
normal cells and specifically target cancer cells. Among the most notable targeted immunotherapies
are checkpoint inhibitor therapies. Thus, antibodies that block the cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), the programmed cell death receptor 1 (PD-1), or the programmed cell death ligand
1 (PD-L1) have been successful in enhancing the host’s attack on various tumor types, including
melanoma, lung, bladder, and many others [14]. Cell-based immunotherapy is another targeted
therapy approach. Because low numbers of tumor infiltrating lymphocytes (TILs) are correlated with
poor survival in some cancers, cell-based immunotherapy aims to increase this number by isolating
TILs from a patient’s specimen, expanding them in vitro, and re-infusing them back into the patient.
However, this approach requires tumors with many antitumor T cells, which is uncommon in most
tumors, and the process is difficult, labor intensive, and time consuming [18]. Thus, more advanced
approaches have been developed in recent years, including adoptive cell transfer (ACT). In this
approach, a patient’s T-cells are genetically modified with receptors for specific cancer antigens. T-cells
can be modified with either T-cell Receptors (TCRs) or Chimeric Antigen Receptors (CARs). Since
TCRs can only recognize antigens when presented on Major Histocompatibility Complexes (MHCs),
the TCR approach is limited because many cancers downregulate the expression of MHCs on the
surface of the cell. Additionally, TCRs can recognize small peptide epitopes and may cross-react with
self-antigens [18]. However, CAR T-cell therapy uses chimeric proteins, which link antibodies that
target tumor cell surface antigens to intracellular signaling receptors for TCRs. Both Phase I and Phase
II clinical trials of an anti-CD19 CAR T-cell therapy, axicabtagene ciloleucel (axi-cel), showed efficacy
in patients with B-cell lymphomas. In the phase II trial, the objective response rate was 82%, and the
complete response rate was 54% [19]. Axi-cel was FDA-approved in 2017 for use in patients with
large B-cell lymphoma and produced durable responses in most patients; however, some patients
experienced cytokine release syndrome and other undesired side effects [20].

Small molecule inhibitors are another type of targeted cancer therapy. Various small molecules
have been used to constrain cancer cell growth and survival. Their mechanisms of action can vary
from inhibiting growth pathways to targeting apoptotic regulators, inhibiting proteins to reactivate
p53 function, or targeting proteins, such as Hsp90, that promote malignant transformation. Small
molecule inhibitors, such as these, have shown significant antitumor effects, including the increased
apoptosis of tumor cells, and improved clinical outcomes in various types of cancer [21–23]. Small
molecule inhibitors can also sensitize tumor cells to other therapies. Selective small molecules, such as
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DNA inhibitors, were found to sensitize cancer cells to chemotherapy [24]. Combinations of small
molecule inhibitors can also sensitize radiation therapy-resistant cancer cell lines [25].

1.2. Resistance to Various Therapies and Mechanisms

Although many patients initially respond to current therapies, the response of many patients
is not long-lasting. Additionally, a subset of patients is intrinsically resistant, and many of the
initially responsive patients relapse and acquire resistance to further therapy. Many chemotherapies,
radiotherapies, and immunotherapies often lead to drug resistance because of the selective pressure
they assert on cells. Cancer cells acquire chemo-drug resistance by various mechanisms, such as
by mutations or amplification of the drug’s target enzyme, overexpression of drug transporters,
or mutations in cell-death pathways [26]. Radiation therapy can lead to resistance due to changes in
DNA repair pathway utilization, DNA damage checkpoint activation, and energy metabolism [25].
Antibody immunotherapies can also lead to drug resistance. One study found that up to 60% of
patients treated with the anti-PD-1 therapy developed resistance [27]. Another study has suggested
that resistance can develop to CAR-T-cell therapy in B-cell acute lymphoblastic leukemia (B-ALL)
due to epitope loss under therapy pressure [28]. Resistance can also be acquired to small molecule
inhibitors such as the inhibitor of the epidermal growth factor receptor (EGFR) in malignant gliomas
and lung cancer [29,30] or androgen receptor inhibitors in prostate cancer [31].

Several recent studies have proposed mechanisms for how resistance is acquired. The gut
microbiome has been shown to be involved in the response to immunotherapies. A recent study
showed that antibiotic consumption was associated with a poor response to the immunotherapeutic PD-1
blockade [32]. They also showed that nonresponding patients to the anti-PD-1 therapy were deficient in
the bacterium Akkermansia muciniphila, and that oral supplementation of the bacteria to mice reversed
resistance to immunotherapy [32]. Another study found that responding versus nonresponding
patients to anti-PD-1 immunotherapy have significant differences in the bacterial composition of
their gut microbiome [33]. Other factors have been shown to be involved in acquiring resistance to
immunotherapies, such as the drug efflux transporter and other membrane drug transporters that
shuttle drugs across cell membranes, protecting the cell from the accumulation of toxic drugs [34].
The transcription factor, YY1, has also been shown to regulate immune resistance by modulating
the expression of PD-L1 in cancer cells through several crosstalk pathways [35]. The inhibition of
YY1 sensitizes tumor cells to apoptosis [36] and may be a potential therapeutic target for overcoming
immune resistance. Others have reviewed several other mechanisms of resistance. A summary of
mechanisms of immune resistance is shown in Table 1.

Table 1. Examples of Immune Resistance Mechanisms.

Immune Resistance Mechanism Reference

Absence of good bacteria in the gut including Akkermansia muciniphila [32]

High levels of Yin-Yang 1 (YY1), which modulate programmed death
ligand 1 (PD-L1) expression [35,36]

Absence of tumor antigens [37]

Downregulation or mutation of MHCs and decreased antigen presentation [38]

T-cell exhaustion mediated by up-regulation of PD-L1 and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) expression [39,40]

Loss of Phosphatase and Tensin Homolog (PTEN) expression and activation of the
PI3K-AKT pathway [41]

High levels of Interferon gamma (IFN-γ), which drives expression of PD-L1 [42]

Lack of T-cells with tumor antigen-specific receptors [43]

Presence of inhibitory receptors on immune cells (V-domain Immunoglobulin Suppressor of
T-cell Activation (VISTA,) Lymphocyte Activating Gene 3 (LAG-3,) and T-cell

Immunoglobulin and Mucin Protein 3 (TIM-3))
[44]
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Table 1. Cont.

Immune Resistance Mechanism Reference

Immunosuppression caused by:
The increased production of immature myeloid cells in cancer patients

Signal Transducer and Activator of Transcription 3 (STAT3) activity
Snail during cancer metastasis

Dendritic cell dysfunction

[45–48],
respectively

1.3. Reversal of Resistance

Because of the rise of resistance to immunotherapies and other cancer therapies, combination
therapies have been explored to treat cancers that do not respond to single therapies alone. For
example, the combined use of checkpoint inhibitors for CTLA-4 and PD-1 can improve the clinical
response in metastatic melanoma patients up to 60%; however, there is an increased frequency of
toxicities [49]. Radiotherapies can also enhance immunotherapies. Radiation of tumor cells was
shown to up-regulate Fas and enhance the cytotoxic T-lymphocyte (CTL) lytic activity and adoptive
immunotherapy [50]. Small case studies have shown that patients with mucosal melanoma of the
lower genital tract respond favorably to the combined treatment of a CTLA-4 antibody and radiation
therapy [51]. Combination therapy of the CTLA-4 antibody, ipilimumab, and radiation therapy was also
well-tolerated and effective in patients with stage IV melanoma without any unexpected toxicities [52].
Combined cytokine therapy with vaccines may also improve the immune response against tumors.
In patients with stage IV or locally advanced stage III cutaneous melanoma, the combined use of
interleukin-2 (IL-2) therapy and the gp100 peptide vaccine resulted in an improved response rate and
progression-free survival rate compared to the use of IL-2 therapy alone [53]. Chemotherapy can also
sensitize tumors to checkpoint blockade therapies. In a phase II study, a CTLA-4 antibody used in
combination with paclitaxel and carboplatin chemotherapies improved the progression-free survival in
non-small-cell lung cancer [54]. In another study done on tumors that lack CD8+ T cells, chemotherapy
enhanced tumor T-cell infiltration, sensitized tumors to checkpoint inhibition therapies, and controlled
cancer growth [55].

There have been many other studies and reviews that have shown how resistant tumor cells can be
sensitized to immunotherapies and chemotherapies. Briefly, reactive oxygen species and their inducers
have been found to sensitize tumor cells to apoptosis (Table 2). Small molecules, such as nitric oxide
donors, can also sensitize resistant tumor cells to immunotherapy, chemotherapy [56], and radiation
therapy [57]. Thus, nitric oxide donors and other agents that can increase the localized production
of reactive oxygen species may be effective for use in combination therapies and overcoming drug
resistance. The exact mechanisms of sensitization will be discussed later in this chapter.

Table 2. Examples of Sensitizing Agents that Induce Apoptosis of Tumor Cells.

Sensitizing Factor Type of Sensitization Type of Tumor Cell Reference

Nitric Oxide Donors (Inhibit YY1
and NF-kB and upregulate DR5)

Tumor Necrosis Factor-related
apoptosis-inducing ligand

(TRAIL)-mediated apoptosis
Prostate carcinoma cells [56,58]

Reactive oxygen species JS-K-induced cell apoptosis Bladder cancer cells [59]

Melatonin Reactive oxygen
species-induced apoptosis HeLa cervical cancer cells [60]

Cetuximab (EGFR antibody) Reactive oxygen
species-induced apoptosis

Head and neck squamous
cell carcinoma [61]
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Table 2. Cont.

Sensitizing Factor Type of Sensitization Type of Tumor Cell Reference

Biguanides and Rotenone
(superoxide inducers) ABT-737-induced apoptosis Leukemia cells [62]

AZD1208 (Pan-Pim kinase
inhibitor) and Topoisomerase

2 inhibitor (chemotherapy drug)

Reactive oxygen
species-induced apoptosis Acute Myeloid leukemia [63]

Mitochondria targeting molecules
that shift cells from Glucose to

Fructose metabolism

Rotenone and reactive oxygen
species-induced apoptosis Jurkat leukemia cells [64]

Because of the abundance of studies showing that NO donors and other reactive oxygen species
can sensitize cells to apoptosis, the combination of NO donors with cancer immunotherapies and
chemotherapies may enhance the treatment of drug-resistant tumor cells. In the following sections, we
will discuss the current progress of research on the role of nitric oxide in cancer and the immune system,
the various therapies that have been developed, and the future of nitric oxide-based cancer therapies.

2. Nitric Oxide and Cancer

2.1. Introduction

Nitric oxide (NO) is a water soluble, free radical gas involved in many biological processes,
such as vasodilation, neurotransmission, macrophage-mediated immunity, and anti-inflammatory
responses [65,66]. Nitric oxide synthases (NOSs) catalyze the reaction between L-arginine and oxygen
to produce NO and L-citrulline [67]. These nitric oxide synthases consist of the inducible nitric oxide
synthase (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). NO has become a molecule of
interest in cancer research because of the many studies that have found it to be implicated in various
cancer processes, such as angiogenesis, apoptosis, cell cycle, invasion, and metastasis [68]. Some
studies have shown that NO, at high levels, can generate DNA damage and promote cytotoxic effects
and apoptosis and, at intermediate levels, can promote invasiveness, cytoprotection, and apoptosis [69].
Consequently, the role of NO in cancer is highly controversial because of the contrasting results of
many studies.

2.2. Dual Role of NO in Cancer Biology

NO has been shown to have either tumor-inhibiting or tumor-promoting effects, depending on
the type of cancer, the tumor microenvironment, the type of NO synthase, and several other factors.

Several studies have detected elevated expression and/or activity of NO synthases in cells from
various human cancers, suggesting a correlative relationship between NO and the progression of
cancer. Some of these cancers include breast cancer [70–72], gynecological cancer [73], head and neck
cancer [74], colon cancer [75], prostate carcinoma [76], bladder cancer [77], gastrointestinal cancer [78],
melanoma [79], and pancreatic cancer [80].

There are many mechanisms by which NO has been shown to contribute to the progression and
aggressiveness of certain cancers. The exposure of NO donors has been shown to increase DNA
synthesis, cell proliferation, and migration of endothelial cells in human and bovine endothelial
cells [81]. NO can also contribute to cancer growth by promoting Vascular Endothelial Growth Factor
(VEGF)-induced angiogenesis [82]. NO contributes to proangiogenic pathways by promoting cell
growth through the activation of endothelial-constitutive NO synthase (ec-NOS), cyclic GMP, mitogen
activated kinase (MAPK), and fibroblast growth factor 2 (FGF-2) [83]. NO derived from eNOS promotes
angiogenesis and tumor progression through the maintenance of blood flow, induction of vascular
hyperpermeability, and reduction of leukocyte–endothelial interactions [84].
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Additionally, NO can inhibit apoptosis by downregulating proteins involved in the apoptotic
signal transduction pathways [85]. NO acts as an epigenetic regulator of oncogenesis by causing
histone post-translational modifications through direct inhibition of the catalytic activity of the
JmjC-domain that contains histone demethylases [86]. These histone post-translational modifications
can cause changes in the expression of oncogenic genes, such as Bcl-2, and apoptotic regulators, such
as Bax, leading to oncogenesis [86,87]. NO can induce several pro-oncogenic pathways, such as the
PI3K/Akt/mTOR, TGFβ, and ERK signaling pathways [88]. The induction of the mTOR pathway
by iNOS has been shown to promote proliferation of human melanoma by the nitrosylation of the
tuberous sclerosis complex-2 (TSC2) [89]. NO also regulates proinflammatory mediators, resulting in
the oncogenic transformation of cells [90].

Contrastingly, NO has been shown to have several antitumorigenic effects. For instance, NO has
an antitumorigenic effect of contributing to macrophage-induced cytotoxicity [91]. It is believed to have
a cytotoxic effect because of its ability to sequester iron into iron-nitrosyl complexes, resulting in a loss
of intracellular iron and the inhibition of mitochondrial respiration and DNA synthesis in the tumor
cells [92]. NO can modulate tumor metabolism by inhibiting respiration, alterations in mitochondrial
mass, inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways [93].
NO inhibits DNA synthesis by inhibiting the ribonucleotide reductase, which is a rate-limiting enzyme
in DNA synthesis [94]. Long-lasting levels of NO promote apoptosis by activating the caspase family
proteases [85], promoting p53 expression [95], and promoting the expression of pro-apoptotic proteins
including the Bcl-2 family proteins [96]. NO and reactive oxygen species are also capable of killing or
sensitizing a range of different cancer cell types to other therapies, including melanoma [97], ovarian
cancer [98], bladder cancer [59], and others (Table 2). The genetic deletion of iNOS has been shown
to promote intestinal tumorigenesis [99] and lymphoma and sarcoma developments [100]. NOS2
and p53 knockout mice developed lymphomas and sarcomas faster and had a lower apoptotic index,
increased proliferation index, and a decreased expression of death receptor ligands [100]. Confirming
this finding, NO-releasing aspirin was shown to prevent intestinal tumor growth and development in
mice models (p < 0.001) [101]. The transfection of iNOS-expressing constructs into melanoma cells
has also been shown to inhibit tumor growth and metastasis [97,102,103]. Based on this information,
the evidence that has been reported and discussed in the review strongly suggests that NO is directly
involved in either the progression or inhibition of cancer, based on the levels and the cancer type.

2.3. Role in Apoptosis

The role of NO in apoptosis is complex and can either promote or inhibit apoptosis, depending on
the rate of production and the interaction with other molecules. Long-lasting production of NO results
in the activation of the caspase family proteases via the release of mitochondrial cytochrome c into
the cytosol, up-regulation of p53, and regulation of apoptotic proteins, such as the Bcl-2 family [104].
Conversely, low levels of NO have been shown to inhibit apoptosis by activating protective proteins or
inhibiting apoptotic effector proteins [104].

2.3.1. As a Pro-Apoptotic Regulator

NO can promote apoptosis in various cell types including macrophages [105], thymocytes [106],
neurons [107], and tumor cells [108] and can sensitize several cancers to apoptosis. For example,
IFN-γ and other proinflammatory cytokines stimulate the induction of iNOS and the production of
NO, which sensitize Fas-resistant human ovarian carcinoma cell lines to Fas-mediated apoptosis by
upregulating the expression of the Fas receptor in the cell [109]. NO inhibits the transcription-resistant
factor YY1, which results in the induction of the tumor expression of the proteins, Raf Kinase Inhibitor
Protein (RKIP) and PTEN, the inhibition of the pro-survival Nuclear Factor kappa-light-chain-enhancer
of activated B cells (NF-kB) and AKT pathways, and the upregulation of Fas and Death Receptor
5 (DR5) expression on tumor cells, thus reversing resistance [56]. NO has been found to sensitize
prostate carcinoma cell lines to TRAIL-mediated apoptosis by downregulating NF-kB activity and
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the expression of the anti-apoptotic Bcl-2 related gene (Bcl-xL) [110]. NO sensitizes neuroblastoma
cells to apoptosis by ionizing radiation by inhibiting Mdm2-mediated nuclear export of p53, thus
promoting the nuclear retention and activation of p53 [111]. NO, produced by the oxidation of the
NO-donor, JS-K, increased cell apoptosis of bladder cancer cells in a concentration-dependent manner
and time-dependent manner by increasing ROS levels [59]. Nitrites, which were generated from
the oxidation of JS-K-released NO, contributed to the induced apopotsis through the ROS-related
pathway [59].

2.3.2. As an Anti-Apoptotic Regulator

Long-lasting levels of NO can prevent apoptosis in hepatocytes by inhibiting seven caspase family
proteases via S-nitrosylation of the catalytic cysteine residue [85]. NO has also been shown to prevent
H2O2-induced apoptosis in human neuroblastoma cells by inhibiting the proteolytic activation of
caspase-3 and the mitochondrial cytochrome c release [112]. This activity of NO suppresses apoptosis
signaling that mediates the interaction between 14-3B and Bad phosphorylation via PKG/PI3k/Akt,
resulting in the inhibition of apoptosis [112].

2.4. Role as an Immune Mediator

NO is involved in various innate and adaptive immune processes. NO is produced by activated
macrophages and is involved in macrophage-induced cytotoxicity [91]. The expression of iNOS in
macrophages is transcriptionally controlled by cytokines and bacterial pathogens through the activation
of nuclear transcription factors, such as NF-κB [113]. NO acts as a regulatory molecule for the growth
and death of many immune cells, including macrophages, T-lymphocytes, antigen-presenting cells,
mast cells, neutrophils, and natural killer cells [114].

In innate immunity, NO exerts its antimicrobial effect and acts as a toxic defense molecule against
infectious organisms [115–117]. NO antimicrobial polymers have recently been developed and shown
to be effective for various antimicrobial applications, including the eradication of biofilms and therapy
for Staphylococcus aureus and other antibiotic-resistant skin infections [118–120].

Although the production of NO by macrophages is believed to have evolved for its antimicrobial
effects, NO has also been shown to have various immunosuppressive effects. For example, iNOS
knockout mice exert an enhanced Th1 immune response to Leishmania infection, demonstrating its
role as an immunosuppressor molecule [121]. Additionally, mice with the inactivation of iNOS are
more susceptible to autoimmune encephalomyelitis [122]. NO suppresses IL-4 and antibody responses
to Salmonella typhimurium infections in mice [123]. NO exerts an immunosuppressor effect in mice
harboring other infections as well, including Echinococcus multiocularis [124], Trypanosoma cruzi [125],
and Plasmodium vinckei [126].

NO also plays a role in tumor-induced immunosuppression. In a rat model of colon cancer, an
inhibitor of NO was shown to restore lymphocyte proliferation, revealing a role of NO in the suppression
of T-lymphocytes in cancer [127]. NO was later found to suppress T-lymphocyte proliferation via the
suppression of Stat5 phosphorylation [128]. Superoxide may enhance T-cell mediated immunity by
inhibiting the immunosuppressive activity of NO [129]. The NO scavenger carboxy-potassium salt
reversed the immunosuppression by NO in a murine model of melanoma and enhanced the proliferative
capacity and function of cytotoxic lymphocytes, resulting in the suppression of tumor growth [130].
The nitric oxide carrier, S-nitroglutathione, has been shown to reduce the immunosuppression in
epithelial ovarian cancer by reducing the immunosuppressive myeloid-derived suppressor cells and
enhancing the cytotoxic T-cell activity [131].

NO can also have either a proinflammatory or an anti-inflammatory effect, depending on the
type of inflammation and the concentration of NO [132–136]. NO in inflamed tissues is a key factor in
promoting carcinogenesis and tumorigenesis [90,137,138]. NO reacts with the superoxide anion O2

− to
produce peroxynitrite (ONOO−), which may be cytotoxic, or can decompose to form HO−, which is a
toxic radical [139]. NO can also be oxidized to NO2

−, which induces DNA damage [140]. NO itself
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can also induce mutations in human lymphoblastoid cells [141] and induce DNA damage by causing
strand breaks and deaminating nucleobases, including 5-methylcytosine [141,142].

Because of the many conflicting results of studies on NO in cancer, NO is now believed to play a
complex role in cancer that is dependent on many factors, including the source of the NO, the activity
of NOSs, the tumor microenvironment, the target cell type, and the concentration and duration of
exposure [67,85,143]. While some NO-based cancer therapies are in development, they are still in the
primitive stages and have room for improvement. Understanding the exact roles of NO in cancer
processes and what other factors influence its effects is important in the further development and
success of NO-based cancer therapies.

3. Nitric Oxide in Overcoming Immune and Chemo Resistance

Several studies have shown that NO plays a role in sensitizing tumor cells to chemotherapies and
apoptosis and may be a potential agent to aid in overcoming drug resistance. For example, NO was
found to sensitize human ovarian carcinoma cell lines to Fas-mediated apoptosis [110] and prostate
carcinoma cell lines to TRAIL-mediated apoptosis [111]. NO was found to promote the activation of
the p53 tumor suppressor and sensitize neuroblastoma cells to apoptosis by ionizing radiation [112].
iNOS induction has also been shown to enhance the toxicity of cisplatin in vivo for prostate and colon
cancer cell lines, revealing the role of NO as a sensitizer for cisplatin chemotherapy [144].

Several mechanisms have been proposed for the role of NO in the reversal of immune resistance.
NO is believed to dysregulate the NF-kB/SNAIL/YY1/RKIP/PTEN loop in tumor cells by repressing
SNAIL, YY1, the prosurvival NF-kB pathway, and the anti-apoptotic AKT pathway [56]. NO also
induces RKIP, PTEN, Fas, and DR5 expressions, leading to the sensitization of tumor cells to FasL, TRAIL,
and chemotherapeutic-induced apoptosis [56]. Because YY1 inhibition by NO leads to the sensitization
of cancer cells to both chemotherapy and immunotherapy [145], and YY1 mediates the expression
of PD-L1 in tumor cells [35], NO may play a role in sensitizing tumor cells to anti-PD1/anti-PD-L1
therapy. The treatment of tumor cells with a NO donor resulted in the inhibition of YY1 DNA-binding
activities by S-nitrosylating the cysteine residues involved in DNA binding [146]. The nitric oxide
donor, RRx-001, combined with the anti-PD-L1 checkpoint inhibitor increased the complete response
rate in a preclinical mouse model of myeloma [147]. Thus, NO may play a role in the reversal of
immune resistance through the inhibition of YY1 (Figure 1).
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Figure 1. NO, YY1, and PD-L1 in the reversal of immune resistance. (A) YY1 mediates the expression
of PD-L1 in tumor cells, leading to CTL-mediated immune resistance. (B) NO inhibits the activity of
YY1, leading to, on the one hand, the inhibition of PD-L1 expression and DR5 expression and, on the
other hand, the upregulation of Fas. Both of these effects of NO sensitize tumor cells to CTL-mediated
cytotoxicity and tumor regression.
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Another mechanism by which NO prevents immune resistance is through regulating the
hypoxia-induced immune escape. A study found that hypoxia contributes to the tumor immune escape
by increasing the tumor cell’s expression of the metalloproteinase ADAM10 in a hypoxia-inducible
factor-1 (HIF-1α)-dependent manner, leading to the increased expression of PD-L1 on tumor cells [148].
This study also found that NO/cGMP signaling inhibits these hypoxia-induced malignant phenotypes
by interfering with HIF-1α accumulation via a mechanism involving calpain. HIF-1α is a transcription
factor, and its high expression is associated with poor outcomes in most malignancies and tumor
resistance to therapy [149]. In vivo experiments have shown that, under hypoxic conditions, YY1
contributes to the accumulation of HIF-1α and the expression of its target genes by stabilizing
HIF-1α [150]. This study also inhibited YY1 with siRNA and found that this inhibition disrupted
HIF-1α stabilization, decreased the expression of its target genes, and significantly suppressed the
growth of metastatic cancer cells. Since it has been found that NO inhibits YY1 activity [58], NO
may prevent hypoxia-induced immune escape through inhibiting YY1 and, thus, the accumulation of
HIF-1α (Figure 2). A synthetic furoxan-based NO-releasing derivative of bifendate has been shown
to have anticancer effects in multi-drug-resistant cells through several mechanisms, including the
inhibition of HIF-1α expression [151]. NO-reversal of HIF-1α stabilization can also lead to increased
radiosensitivity for prostate cancer [152].
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Figure 2. NO, HIF-1α, and YY1 in the reversal of immune resistance in hypoxic conditions. (A) YY1
contributes to the stability and accumulation of HIF-1α, leading to the upregulation of PD-L1 and tumor
cell immune resistance. (B) NO inhibits YY1, thus reversing HIF-1α accumulation, the expression of
PD-L1, and immune resistance. NO/cGMP signaling also inhibits HIF-1α accumulation in a mechanism
involving calpain, thus reversing the expression of PD-L1 and immune resistance.

NO-induced sensitization to chemotherapy was also found to be caused by the inhibition of
NF-kB and Snail, the expression of the downstream anti-apoptotic genes of NF-kB, and the activation
of the tumor suppressor gene Raf-1 Kinase Inhibitor Protein (RKIP) and PTEN expressions [153].
The NF-kB inhibition was the result of S-nitrosylation of the p50 and p65 polypeptide chains of NF-kB.
The inhibition of NF-kB is also a mechanism through which YY1 expression is inhibited. The increased
expression of PTEN by NO is a result of the inhibition of YY1. The induction of PTEN inhibits the
PI3K/AKT pathway, thus contributing to the sensitization to chemotherapy [153]. However, these
findings were based on a study done on prostate cancer cells [145]. Another study done on ovarian
cancer cell lines found that NO donors do not affect the expression of PTEN; however, NO donors can
still enhance cisplatin-induced cytotoxicity, although to a minor extent [154]. This study also found
that the action of NO donors varies among different cancers and is strongest in low aggressive and
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cisplatin-sensitive cancer cells [154]. The sensitization was seen only at high NO concentrations and
long exposure times [155]. The sensitization was due to the inhibition of STAT3 and AKT [156] and
the increase in late apoptosis/necrosis of cancer cells, which is believed to be caused by a depletion
of cellular ATP [154]. The concentration of NO is very important on the effect it can have in ovarian
cancer cell lines because, at low concentrations, it can increase glycolysis and cell proliferation [156].
Thus, it is evident that NO can sensitize different types of cancer cells to apoptosis through various
mechanisms, although the extent may be different with varying cancer types, and the effect may differ
at varying concentrations. The following section will discuss the applications of these findings for the
development of various therapies.

4. NO Induction and NO Donors in Cancer Therapy

Several NO-based therapies have been tested in nonclinical and clinical studies. In various solid
tumor types, the nitric oxide donor, RRx-001, has been clinically shown to induce NO production under
hypoxic conditions [157], exhibit synergistic cancer cell cytotoxicity when used in combination with
radiation therapy [158], and protect against cisplatin-induced toxicities [159]. These effects were seen in
the following tumor types: colorectal, hepatocellular carcinoma, melanoma, head and neck, pancreatic,
ovarian, cholangiocarcinoma, lung, and oligodendroglioma [157]. Additionally, NO-donating drugs,
such as aspirin, have been shown to suppress tumorigenesis of several types of tumors, including lung
cancer in vitro and in vivo through modulating EGFR signaling [160].

Because of the systemic toxicities that NO donors may cause, such as cytokine release syndrome,
there remains a need for the development of new NO donors that have a localized effect, in order to
prevent systemic effects. Recent approaches have focused on controlling the release and delivery of nitric
oxide to inhibit cancer cell growth, such as with the use of nanoparticles [161–165]. These approaches
have shown promising success, with NO improving platinum cancer therapy [163,166], enhancing
cytotoxicity for synergistic treatments, achieving multidrug resistance reversal in mice models [164],
and improving chemotherapy and preventing side effects of traditional chemotherapy [167].

Targeting NO synthases for gene therapies is another approach to regulate NO production.
A study found that NO deficiency caused by a decrease in eNOS activity was an early event in breast
cancer pulmonary metastasis [168]. Thus, targeting eNOS for activation in early breast cancer may be
a preventative approach for preventing pulmonary metastasis. Other studies have developed gene
therapies by which the inducible NO synthase gene is transfected into cancer cells. For example,
the adenovirus-mediated transfection of iNOS into bladder carcinoma cells resulted in an increase in
NO concentration, P53 expression, and apoptosis [169]. Additionally, the cationic liposome-mediated
transfection of iNOS into lung cancer enhanced various cisplatin-induced antitumor effects [170].
However, it is important to note that NO can have a procancer role in several types of cancers. For
example, iNOS transfection into triple-negative breast cancer was shown to increase EGFR activation,
proinflammatory cytokines, and cell invasion [171]. The transfection of iNOS in pancreatic cancer also
allowed the tumor to escape the immune response [172]. NO has also been found to contribute to
metastatic melanoma development [173] and human oral cancer [174]. The inhibition of iNOS has
been identified as a therapeutic strategy to target these cancers. Thus, the effects of the transfection of
NO synthases in cancer are highly dependent on the cancer type. A summary of recent NO-based
cancer therapies is shown in Table 3.

Table 3. NO-based therapies for various cancers and their effects.

NO-Dependent Therapies Antitumor Effect Reference

NO production by tumor-infiltrating myeloid cells Important for adoptively transferred CD8+ cytotoxic T
cells to destroy tumors [175]

RRx-001 (NO donor)

Cancer cell cytotoxicity and protection of
cisplatin-induced toxicities

Induction of apoptosis and reversal of drug resistance in
multiple myeloma cells

[157,159,176]
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Table 3. Cont.

NO-Dependent Therapies Antitumor Effect Reference

NO-donating β-elemene hybrids Inhibited tumor growth in liver tumors [177]

Type I IFNs, IFN-a and IFN-b
Synergized with Toll-like Receptor (TLR) agonists for

transcription of iNOS mRNA and secretion of NO and
inhibited cancer cell growth of lewis lung carcinoma

[178]

NO-donating aspirin
Suppressed tumorigenesis in vitro and in vivo through
modulation of the Epidermal Growth Factor Receptor

(EGFR) signaling pathway in lung tumors
[160]

Coupling of photodynamic therapy with
photocontrolled release of NO Synergistic therapeutic effects via various mechanisms [179]

Increase in NOS expression and nitric oxide levels
triggered by silver nanoparticles Induced apoptosis of pancreatic ductal adenocarcinoma [180]

NO generators nitroglycerin, hydroxyurea,
and l-arginine

Improved the therapeutic effects of the
polymer-conjugated pirarubicin and increased delivery of

nanomedicine to solid tumor models in
end-stage breast cancer

[181]

NO-donor DETA/NO combined with clopidogrel
Improved vasoprotective and antiplatelet activity and
reduced lung metastatic foci formation in metastatic

mammary gland cancer
[182]

Intracellular enzyme-triggered NO-generator Tumor cytoplasm-specific disruption and localized
doxorubicin rapid drug release, increased apoptosis by NO [183]

Endogenous production of NO by
chloroquine and bortezomib

Enhanced doxorubicin’s cytotoxicity by inducing C/EBP-β
LIP induction and inhibiting P-glycoprotein activity in

triple-negative breast cancer
[184]

NO release into tumor cells by iNOS within
tumor-infiltrating macrophages

Intracellular accumulation of toxic secondary oxidants,
such as peroxynitrate, increased apoptosis through

activation of the mitochondrial pathway
[185]

JS-K (NO donor) Induced autophagy and inhibited tumor growth
of ovarian cancer [165]

N-heterocyclic carbene-based NO donors delivered by
high-intensity ultrasound High heat and tumor growth inhibition [186]

Near-infrared laser-controlled NO release of sodium
nitroprusside-doped Prussian blue nanoparticle

Photothermal effect in vivo and in vitro
of breast cancer cells [187]

Near-infrared laser-triggered NO nanogenerators
Reversal of multidrug resistance (MDR) via inhibition of
the expression of P-glycol in an in vivo humanized MDR

cancer model
[164]

NO-releasing selective estrogen receptor modulators Anti-proliferative effect in breast cancer
and melanoma cells [188]

Graphene oxide platinum
nanoparticle nanocomposites

Increased pro-apoptotic genes and decreased
anti-apoptotic genes in prostate cancer [189]

S-nitrosothiols and H2S donors Effective in killing cancer cells but not normal cells [190]

Nonthermal plasma delivery of NO Immunogenic cell death of melanoma cells [191]

Anti-CD24 Antibody-NO conjugate Induced apoptosis of tumor cells and suppressed tumor
growth in vitro and in vivo in hepatic carcinoma [192]

NO-donor and Parp inhibitor combination Sensitized cells to ionizing radiation treatment in
BRCA1/2-proficient tumors [193]

NO production from a combination of 5-aminosalicylic
acid and hyperthermia

Induced apoptotic cell death of oral
squamous cell carcinoma [194]

Switchable NO-releasing nanoparticle activated by
near-infrared radiation

Induced tumor vascular permeability, improved drug
accumulation, blocks metastasis, and directly

kills cancer cells
[195]

Nanoparticles loaded with doxorubicin and the
NO-donor, S-nitrosothiol

Activated endogenous matrix metalloproteinases, which
degrade collagen in the tumor extracellular matrix [196]

pH-sensitive liposomal polymer that delivers the NO-
donor DEANONOate and paclitaxel into cancer cells

Reversed a negative charge to a positive charge in the
tumor microenvironment leading to the improvement of

cell uptake of paclitaxel and the release of DETANONOate
in the lysosome of multi-drug-resistant cancer cells

[197]

H2S donors Increases iNOS and NO and restricts tumor
development of hepatocellular carcinoma [198]

Combination of a NO donor
and photodynamic therapy Increased cytotoxic effect in vitro and in vivo [199]
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5. Future Perspectives and Conclusions

It is becoming increasingly clear that NO is involved in cancer immunity and can enhance
the effectiveness of immunotherapies, chemotherapies, and radiotherapies. However, the effects
of NO in cancer are highly dependent on the cancer cell type, the source of the NO, the localized
concentration of NO, and changes in the tumor microenvironment. NO and NO donors have been
clinically shown to have antitumor effects in certain cancers (Table 3). However, NO has also been
shown to have various tumor-enhancing effects in triple-negative breast cancer [171], pancreatic
cancer [172], melanoma [173], and oral cancer [174]. Although there have been several studies that
have shown that iNOS can contribute to the growth of metastatic melanoma through modulating
the tumor microenvironment [173], a recent study has shown that nonthermal plasma can induce
immunogenic cell death of melanoma cancer cells [191]. This study was done in a vaccination assay
in vivo using a dielectric barrier discharge system, which generated short-lived reactive oxygen species,
including nitric oxide, and contributed to an anticancer response [191]. Therefore, the source and
delivery of the NO to a particular cancer can make an impact on what type of effect it can have. Another
study showed that equal concentrations of different NO donors can release substantially different
amounts of NO over time and have different stabilities in vitro [200]. The study used NO-sensitive
microsensors and found that donors such as NOC-5 and PAPA-NONOate decay a lot quicker than SNP
and GSNO [200]. This study is very important because it addresses the differences between NO donors,
which is essential in the application of these NO donors for cancer therapy. Growing evidence also
supports that NO has an antitumor effect only at high concentrations and can have the opposite effect
at low concentrations [201]. Therefore, the effects of NO-based cancer therapies likely depend on the
type of NO donor, the concentration of the NO donor, and the concentration of NO that is generated.

Many recent studies have shown how NO delivery systems using nanoparticles, near-infrared
lasers, high-intensity ultrasound, and photodynamic systems can have anticancer and/or
immunotherapy-boosting effects (Table 3). Some of the mechanisms by which high doses of NO
can have immunotherapy-boosting effects are through inhibiting YY1, HIF-1α, NF-kB and Snail,
and activating the expressions of RKIP and PTEN [153]. A synthetic nitric oxide-releasing derivative
of bifendate was also shown to have anticancer effects against multi-drug-resistant tumor cells via
the inhibition of HIF-1α and protein kinase B (AKT), extracellular signal-regulated kinases (ERK),
and NF-kB and the activation of tyrosine nitration and apoptosis [151]. This study highlights the ability
of NO-releasing agents to exhibit antitumor activities and sensitize multi-drug-resistant cancer cells to
apoptosis. Since drug resistance to nitric oxide donors is difficult to achieve [151], this study provides
evidence for the promising potential of NO donors to reverse drug resistance.

NO is a good candidate for cancer therapies because it has pleiotropic effects against tumor
cells [143]. It can sensitize tumor cells to other therapies by inducing apoptosis, along with inhibiting
cell proliferation, the EMT phenotype, metastasis, and the immune resistance of cancer cells. NO
donors have been shown to have synergistic effects in combination with cancer therapies, such as
photodynamic therapy, chemotherapy, radiotherapy, and immunotherapy. Thus, the development
and use of NO donors in clinical studies should be continued to be assessed based on their promising
potential. Beyond the NO donors that have been developed already, nitroglycerin may be a promising
anticancer NO donor. Nitroglycerin, a generator of NO, has been clinically used for more than 100
years for various medical conditions, mostly because of its vasodilatory effects. It has been used
as a treatment for conditions, such as hypertension, angina pectoris, and congestive heart failure,
and prophylaxis [202]. It has been recently identified as a potential anticancer drug because of its low
systemic toxicity and its ability to reduce the levels of HIF-1α in hypoxic tumors [202]. There is some
evidence that it can have a pro-apoptotic effect in prostate cancer; however, there are mixed results
for non-small-cell lung cancer [202]. Nitroglycerin, along with other NO donors, should continually
be assessed for their potential as anticancer drugs, alone and in combination with other therapies.
While experimental studies show synergy between NO donors and therapeutic agents, it may be useful
to develop conjugates of NO donors with other targeting drugs, such as antibodies, to ensure that
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both agents simultaneously reach the tumor cells and prevent systemic toxicities. In the combination
treatments, it is suggested that subtoxic doses of the NO donor and the targeted drug are used to
achieve a synergistic antitumor effect with minimal toxicity.

In order to develop more effective NO donors for cancer therapy, some basic questions must be
answered. Does the donor specifically target cancer cells and prevent systemic toxicities? What specific
concentration of the NO donor exhibits maximum effectiveness in a particular cancer? Does the donor
consistently exhibit antitumor effects in vivo? Can the donor work synergistically with other types of
cancer therapies, such as chemotherapy, radiotherapy, and immunotherapy?

Overall, while the antitumorigenic and pleiotropic roles of NO and NO donors in cancer have
been documented in several studies, caution must be taken for the clinical use to minimize toxic
effects. However, the findings of this study suggest promising potential for the development
of combination therapies in which NO donors are used in combination with chemotherapies,
radiotherapies, and immunotherapies.
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