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Abstract: Spermatozoa are physiologically exposed to reactive oxygen species (ROS) that play
a pivotal role on several sperm functions through activation of different intracellular mechanisms
involved in physiological functions such as sperm capacitation associated-events. However, ROS
overproduction depletes sperm antioxidant system, which leads to a condition of oxidative stress (OS).
Subfertile and infertile men are known to present higher amount of ROS in the reproductive tract
which causes sperm DNA damage and results in lower fertility and pregnancy rates. Thus, there is a
growing number of couples seeking fertility treatment and assisted reproductive technologies (ART)
due to OS-related problems in the male partner. Interestingly, although ART can be successfully used,
it is also related with an increase in ROS production. This has led to a debate if antioxidants should
be proposed as part of a fertility treatment in an attempt to decrease non-physiological elevated
levels of ROS. However, the rationale behind oral antioxidants intake and positive effects on male
reproduction outcome is only supported by few studies. In addition, it is unclear whether negative
effects may arise from oral antioxidants intake. Although there are some contrasting reports, oral
consumption of compounds with antioxidant activity appears to improve sperm parameters, such
as motility and concentration, and decrease DNA damage, but there is not sufficient evidence that
fertility rates and live birth really improve after antioxidants intake. Moreover, it depends on the
type of antioxidants, treatment duration, and even the diagnostics of the man’s fertility, among other
factors. Literature also suggests that the main advantage of antioxidant therapy is to extend sperm
preservation to be used during ART. Herein, we discuss ROS production and its relevance in male
fertility and antioxidant therapy with focus on molecular mechanisms and clinical evidence.

Keywords: assisted reproductive technologies; sperm ROS; pregnancy; infertility; antioxidants
therapy; reproductive outcome

1. Introduction

The mammalian spermatozoon is a cell with a high demand for energy to perform its function.
Spermatozoa obtain their energy by two main metabolic pathways: glycolysis that occurs in the
principal piece of the flagellum and oxidative phosphorylation (OXPHOS) that takes place on
mitochondria located at the midpiece of the flagellum [1]. Spermatozoa contain between 50 and 75
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mitochondria [2] and as with any other kind of cell that performs aerobic metabolism, is associated
with the production of free radicals named reactive oxygen species (ROS) that include the hydroxyl
radicals (•OH), superoxide anion (•O2

−), hydrogen peroxide (H2O2), and nitric oxide (NO). These
ROS are highly reactive molecules due to the presence of an unpaired electron in their outer shell.
In addition, they have a very short half-life in the range of nanoseconds to milliseconds. ROS are
produced as a consequence of natural cell machinery and participate in the normal function of a cell.
However, when ROS production overcomes cellular antioxidant defenses surpassing a physiological
range, they cause deleterious effects due to oxidative stress (OS) that results in oxidation of lipids,
proteins, carbohydrates, and nucleotides [3].

Male subfertility and infertility have been associated with OS. Moreover, since infertile men have
lower seminal plasma antioxidant capacity in comparison with fertile men, when higher levels of
ROS occur, they led to an increase of lipid peroxidation (LPO) [4]. It is well described that when ROS
overproduction occurs, it induces sperm DNA damage, although they have the potential to fertilize
embryo development and fertility might be disturbed [5,6]. It is unclear how this is related with the
fact that nowadays infertility is becoming a worldwide health problem, where one out of six couples
are under fertility treatment and thus the use of assisted reproductive technologies (ART) to overcome
this problem is growing exponentially. Nevertheless, ART is not harmless and is also associated with
an increase of ROS production [7]. Although there is literature focused on the effects of consumption
of oral substances with antioxidant properties on sperm parameters, the purpose of this review is to
discuss the efficiency of antioxidant intake as a dietary supplement as well as an additive through
ART procedures to counteract excessive ROS production that leads to infertility. We will also focus
on the molecular mechanisms of action of those compounds with antioxidant activity in the male
reproductive system, mainly reviewing literature that relates antioxidant treatment with ART, clinical
pregnancy, and live birth as final outcomes.

2. Sources of ROS in Spermatozoa

Several situations result in nonphysiological levels of ROS overwhelming the natural scavenger
systems (Figure 1). For example, lifestyle habits, such as alcohol consumption, smoking, exposure
to toxicants, or pathologies such as obesity, varicocele, stress, and ageing have been associated with
increased production of ROS in seminal plasma [8]. Presence of leucocytes in semen, as well as
high percentage of spermatozoa with morphological anomalies [9] or immature spermatozoa with
cytoplasmatic droplets containing high amount of enzymes are some examples associated to high ROS
levels [9–12].

Currently, human infertility is a global health problem that has led to an exponential grown
in the use of ART in the last years to overcome fertility problems. However, ART protocols imply
sample centrifugation, light exposure, change of oxygen concentration, pH, or temperature, and the
use of culture media with metals content that can produce hydroxyl radicals by Haber–Weiss and
Fenton reactions (see explanation below). Hence, optimization of ART protocols has been proposed to
minimize artificial ROS production, for instance, by decreasing g-force during sperm selection [13],
decreasing spermatozoa incubation time during in vitro fertilization (IVF), which in turn decreases
the time where aberrant spermatozoa that produce more ROS are in contact with the oocyte, and by
decreasing sperm concentration or atmospheric oxygen concentration during embryo culture under
in vitro conditions [7]. In order to reduce human leucocyte contamination on raw semen, paramagnetic
bead technology (Dynabead®) can be used. Thus, magnetic beads coated with leukocyte antigen CD45
decrease leukocyte contamination [14,15], doubling the percentage of spermatozoa–oocyte penetration,
as shown in a heterologous assay using hamster oocytes [16].
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Figure 1. Potential stimuli that cause reactive oxygen species (ROS) production in spermatozoa. 
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Mammalian spermatozoa are extraordinary cells able to survive in a different body from where they 
were created. They are very specialized cells having the sole purpose to deliver the paternal genome into 
the oocyte. However, after ejaculation, spermatozoa must undergo a complex process within the female 
reproductive tract named capacitation, which allows spermatozoa to fertilize the oocyte [17,18]. 
Capacitation is a cascade of different cellular events that imply high production and consumption of 
energy. Although there is controversy on the preponderant metabolic pathways, glycolysis or OXPHOS, 
used by spermatozoa to generate energy in the form of ATP, it seems that there are sperm species 
preferences [1]. OXPHOS is the most efficient pathway, obtaining about 30 molecules of ATP by oxidizing 
one molecule of glucose, while during glycolysis, only two molecules of ATP are obtained per molecule of 
glucose. It has been described that OXPHOS is the major source of ROS in spermatozoa [19]. Furthermore, 
ROS might play a bivalent role in sperm function: mild ROS levels boost different intracellular events that 
culminate on oocyte fertilization, while higher ROS levels induce sperm DNA damage and embryo 
miscarriage [20,21]. In a comprehensive review, Ford summarized ROS physiological functions on sperm 
capacitation [22]. It is known that soluble adenylyl cyclase (sAC) is activated by bicarbonate and Ca2+, 
converting ATP into cAMP, subsequently activating the PKA pathway that mediates the phosphorylation 
of protein in tyrosine residues, which is used as a hallmark of sperm capacitation [23,24]. It has been 
proposed that ROS participate in the activation of the cAMP/PKA pathway by increasing cAMP levels, 
although the mechanism of cAMP production is still not clear in spermatozoa [22]. In adipocytes, it has 
been proposed that the mechanism of action is through inhibition of phosphodiesterase activity [25]. In 
human spermatozoa, it was proven that ROS action is mediated by PKA [26]. Thus, the induction of 
tyrosine phosphorylation was suppressed by a PKA inhibitor (H89) and the responsiveness to progesterone 
(sperm-oocyte fusion) when spermatozoa were coincubated with NADPH proved it to be a ROS generator 
[26]. In a different study, capacitated human spermatozoa showed increased levels of cAMP that was 
mimicked in vitro by exposure of spermatozoa to superoxide anions (O2−). Superoxide dismutase (SOD) 
addition inhibited cAMP levels and the sperm acrosome reaction in a concentration-dependent manner 
[27]. These results were confirmed by others where superoxide anions increased cAMP concentration and 
capacitated spermatozoa produced H2O2, leading to an increase in protein tyrosine phosphorylation [28]. 
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3. Bivalent Role of ROS on Sperm Function

Mammalian spermatozoa are extraordinary cells able to survive in a different body from where
they were created. They are very specialized cells having the sole purpose to deliver the paternal
genome into the oocyte. However, after ejaculation, spermatozoa must undergo a complex process
within the female reproductive tract named capacitation, which allows spermatozoa to fertilize the
oocyte [17,18]. Capacitation is a cascade of different cellular events that imply high production and
consumption of energy. Although there is controversy on the preponderant metabolic pathways,
glycolysis or OXPHOS, used by spermatozoa to generate energy in the form of ATP, it seems that
there are sperm species preferences [1]. OXPHOS is the most efficient pathway, obtaining about 30
molecules of ATP by oxidizing one molecule of glucose, while during glycolysis, only two molecules
of ATP are obtained per molecule of glucose. It has been described that OXPHOS is the major
source of ROS in spermatozoa [19]. Furthermore, ROS might play a bivalent role in sperm function:
mild ROS levels boost different intracellular events that culminate on oocyte fertilization, while
higher ROS levels induce sperm DNA damage and embryo miscarriage [20,21]. In a comprehensive
review, Ford summarized ROS physiological functions on sperm capacitation [22]. It is known that
soluble adenylyl cyclase (sAC) is activated by bicarbonate and Ca2+, converting ATP into cAMP,
subsequently activating the PKA pathway that mediates the phosphorylation of protein in tyrosine
residues, which is used as a hallmark of sperm capacitation [23,24]. It has been proposed that ROS
participate in the activation of the cAMP/PKA pathway by increasing cAMP levels, although the
mechanism of cAMP production is still not clear in spermatozoa [22]. In adipocytes, it has been
proposed that the mechanism of action is through inhibition of phosphodiesterase activity [25].
In human spermatozoa, it was proven that ROS action is mediated by PKA [26]. Thus, the induction
of tyrosine phosphorylation was suppressed by a PKA inhibitor (H89) and the responsiveness to
progesterone (sperm-oocyte fusion) when spermatozoa were coincubated with NADPH proved it to
be a ROS generator [26]. In a different study, capacitated human spermatozoa showed increased
levels of cAMP that was mimicked in vitro by exposure of spermatozoa to superoxide anions (O2

−).
Superoxide dismutase (SOD) addition inhibited cAMP levels and the sperm acrosome reaction in a
concentration-dependent manner [27]. These results were confirmed by others where superoxide
anions increased cAMP concentration and capacitated spermatozoa produced H2O2, leading to an
increase in protein tyrosine phosphorylation [28]. Nevertheless, when ROS production overcomes
antioxidant defenses, detrimental effects on spermatozoa can be summarized as increased LPO
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and DNA damage and reduction of sperm motility, which are associated with lower sperm fertility
(Reviewed by [29]). Thus, ROS homeostasis is pivotal for male reproductive potential as they mediate
important functions of sperm, such as capacitation, but when ROS levels surpass these biological
levels, they readily oxidize lipids and proteins at membranes and compromise sperm quality and
fertilization capacity (Figure 2).
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Figure 2. Proposed model of the bivalent role of reactive oxygen species (ROS) in sperm. (i) High
levels of ROS concentration induced by different factors such as assisted reproductive technologies
(ART), diseases, medical treatment, life style, etc., overwhelming the sperm antioxidant system induce
plasma membrane lipid peroxidation and DNA damage. (ii) Physiological ROS level produced mainly
by mitochondria induce production of high levels of cAMP by an undetermined mechanism, activating
the PKA pathway, and leading to tyrosine phosphorylation, a hallmark of sperm capacitation.

4. Mechanism of ROS Defense in Spermatozoa

Spermatozoa differentiation is achieved during spermiogenesis as they gradually lose their
cytoplasm. By the end of the process, the cytoplasm content is very small compared to other cells,
where most of the space is occupied by DNA (sperm head). This special feature results in spermatozoa
possessing low intracellular antioxidant activity consisting of superoxide dismutase (SOD), nuclear
glutathione peroxidase (GPx), peroxiredoxin (PRDX), thioredoxin (TRX), and thioredoxin reductase
(TRD) [30]. Therefore, sperm ROS scavenger activity basically depends on the antioxidant content of
the seminal plasma, which is formed mainly by a trio of enzymes where SOD converts superoxide anion
(O2

−.) to hydrogen peroxide (H2O2), preventing the formation of hydroxyl radical that is an inductor
of LPO. However, the H2O2 generated is a strong membrane oxidant that is rapidly eliminated either
by catalase (CAT) or GPx activities, giving H2O as a product. Finally, seminal plasma also contains
nonenzymatic antioxidant components such as α-tocopherol (vitamin E), ascorbic acid (vitamin C),
pyruvate, urate, taurine, and hypotaurine [31].



Antioxidants 2019, 8, 89 5 of 21

It should be noted that most ART involves washing steps, meaning that all the natural antioxidant
defenses contained in seminal plasma are removed. Likewise, this also happens after natural
insemination. During ejaculation, spermatozoa are surrounded by antioxidant molecules coming
from seminal plasma but once the ejaculate reaches the vagina, seminal plasma is diluted, leading in
both cases to spermatozoa facing ROS. Although spermatozoa possess antioxidant scavenger systems,
it seems that they are not strong enough when ROS levels exceed physiological levels, subsequently
making spermatozoa highly susceptible to OS.

5. Lipid Peroxidation

The sperm plasma membrane contains a high proportion of polyunsaturated fatty acid (PUFAs)
to generate the fluidity needed in order to accomplish the membrane fusion events associated with
fertilization. This high PUFAs content makes spermatozoa especially susceptible to suffer LPO [32,33].
The highly reactive hydroxyl radical (OH−) is an inductor of LPO produced through two consecutive
reactions (Figure 3): the first is the Haber–Weiss reaction in which a ferric ion (Fe3+) in the presence of
a superoxide radical (O2

−) is reduced to ferrous ion (Fe2+), followed by Fenton reaction, where Fe2+

reacts with hydrogen peroxide (H2O2), forming Fe3+ and a hydroxyl radical (OH−).
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Secondary products are formed during LPO: malondialdehyde (MDA), propanol, hexanol,
and 4-hydroxynonenal (4-HNE) [34], which are highly reactive and may attack other nearby PUFAs,
thus initiating a chain reaction with harmful effects that eventually disrupts membrane fluidity. These
secondary products are used as lipid oxidative stress biomarkers.

Nowadays, cryopreservation is becoming an important issue for the success of ART in humans
and livestock. Although cryopreservation is routinely used, it is a tough procedure associated with
deleterious effects on sperm function due to an increase of ROS production linked to LPO and thus an
increase of membrane permeability [35–37]. In this context, the use of antioxidants as additives during
cryopreservation/thawing procedure is a common strategy to counteract negative effects of ROS on
sperm function.

6. Effects of Oral Antioxidant Intake on Male Reproductive Outcome

Currently, there is a growing trend of oral antioxidant intake to counteract high levels of ROS
found in spermatozoa and seminal plasma of subfertile or infertile men. This hypothesis is supported
by several works that describe an improvement of sperm parameters after oral antioxidant intake.
Among those improvements, sperm concentration, motility, or decrease of DNA damaged are reported
(Reviewed by [38]). However, only a few works have shown the effect of antioxidant therapy on
fertility outcomes. Here, we discuss the major findings of oral antioxidant intake in reproduction
outcome and its endpoints, such as fertility and live birth (summarized in Table 1).
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Table 1. Effects of oral antioxidant intake on infertile men’s reproductive outcome.

Antioxidant Type and Daily Dose Period Intervention
(months) ART Relevant Findings Participants Problem Reference

Astaxantin (16 mg) 3 NI and IUI ↑ Pregnancy rate 54.5% (5/11) vs. 10.5% (2/19)
placebo group 30 Infertile [39]

LC (1 g twice)
LAC (0.5 g twice) 3

↓ ROS levels
↑ Pregnancy (11.7%) in patients with

abacterial-PVE with normal values of leucocytes
It didn´t improve pregnancy (0%) in

abacterial-PVE patients with high levels of
leucocytes

54 PVE [40]

Nonsteroidal anti-inflammatory + carnitine
(Carnitene, 2 g + Nicetile 1 g)

Carnitine (Carnitene, 2 g + Nicetile 1 g)
Nonsteroidal anti-inflammatory

Nonsteroidal anti-inflammatory + carnitine
(Carnitene, 2 g + Nicetile 1 g)

2 + 2
4
4
4

23.1% pregnancy
0% pregnancy

6.2% pregnancy
3.8% pregnancy

98 PVE with
↑ levels of leucocytes [41]

LC (3 g),
LAC (3 g),

LC (2 g) + LAC (1 g)
6 NI

↑ Total oxyradicals scavenging capacity of
seminal fluid

↑ Sperm motility and concentration.
Pregnancy rate was not modified

60 Asthenozoospermic [42]

LC (1 mg),
fumarate (725 mg),

LAC (500 mg),
Fructose (1000 mg),

CoQ10 (20 mg),
Vitamin C (90 mg),

Zinc (10 mg),
Folic acid (200 µg),

Vitamin B12 (1.5 µg)

6 NI ↑ Achieved pregnancy in treated men 22.2%
(10/45) vs. 4.1% (2/49) non treated group 104

Oligo-and/or
astheno-and/or

teratozoospermia
[43]

LC fumarate (2 g),
LAC (1 g)

Clomiphene citrate (50 mg) and
a complex of vitamins and microelements

3–4 NI ↑ Sperm concentration
No modification in pregnancy rates 173

Oligo- and/or
asteno- and/or

teratozoospermia
[44]
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Table 1. Cont.

Antioxidant Type and Daily Dose Period Intervention
(months) ART Relevant Findings Participants Problem Reference

LC fumarate (1 g),
Acetyl-L- carnitine HCl (0.5 g)

Fructose (1 g),
Citric acid (50 mg),
Vitamin C (90 mg),

Zinc (10 mg),
Folic acid (200 µg),
Selenium (50 µg),

Coenzyme Q-10 (20 mg)
Vitamin B12 (1.5 µg)

6 NI

↑ Sperm concentration,% of sperm motile or
progressive motility as well as sperm with normal

morphology
Treated men achieved 29% pregnancy versus 17.9% in

the placebo group

90 After performed a
varicocelectomy [45]

Vitamin E (600 mg) 3 IVF
Improvement of zona pellucida binding test

No effect on ROS levels
No alteration on seminal plasma vitamin E levels

30 Infertile [46]

Vitamin E (300 mg) 3 NI
21% of men had improved sperm motility and

achieved pregnancy where 81.8% of pregnancies
finished with a live birth

52 Asthenospermic [47]

Vitamin E (200 mg) 1 IVF
↓ Sperm LPO

↑ Fertility rate: 19.3 ± 23.3 pre-treatment versus
29.1 ± 22.2 post-treatment

15 Normospermic
infertile [48]

Vitamin E (1 g)
Vitmin D (1 g) 2 ICSI

76.3% respond to the treatment with ↓DNA damage
↑ Pregnancy rate (6.9 vs. 49.3%)
↑ Implantation rate (2.2 vs. 19.2%)

Equal embryo quality

38 Infertile men non
responding to ICSI [49]

Vitamin E (400 IU)
Selenium (200 µg) 3.5 NI 10.8% pregnancy 690 Infertile [50]

Vitamin E (400 IU),
Vitamin C (100 mg),

Lycopene (6 mg),
Zinc (25 mg),

Selenium (26 µg),
Folate (0.5 mg),

Garlic (1000 mg)

3 IVF-ICSI
Doubled pregnancy rate (63.9 vs. 37.5%),
Doubled implantation rate (46.2 vs. 24%)

Doubled viable pregnancy rate (38.5 vs. 16%)
60

Infertile men with
↑ levels of DNA

fragmentation and
poor motility and

membrane integrity

[51]

Zinc sulphate (220 mg) 4 NI 21.4% (3/14) of patients achieved pregnancy
Zinc levels were increased in seminal plasma 14 Human [52]

Zinc sulphate (500 mg) 3 NI Improved pregnancy (22.5%) vs. placebo (4.3%)
Zinc levels were not modified on seminal plasma 100 Asthenozoospermic [53]

NI: natural insemination, IVF: in vitro fertilization, ICSI: intracytoplasmic sperm injection, IU: international unit, PVE: prostate-vesiculo-epididymitis, LC: L-carnitine, LAC: L-acetyl-carnitine,
LPO: lipid peroxidation, ↑ increase, ↓ decrease.
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6.1. Carnitines

Carnitines are synthetized by the organism and found in seminal plasma at higher concentration
than in spermatozoa. The l-carnitine (LC) isomer is the bioactive form [54] with a pivotal role
in mitochondrial β-oxidation, acting as a shuttle of the activated long-chain fatty acids into the
mitochondria [55] where l-acetyl-carnitine (LAC) is an acyl derivative of LC. Long-chain fatty acids
provide energy to mature spermatozoa (with positive effects on sperm motility) and during maturation
and the spermatogenic process [56]. Oral intake of LC (1 g twice/day) and LAC (0.5 g twice/day)
for three months reduced ROS levels in spermatozoa and improved pregnancy (11.7%) in patients
with abacterial prostate-vesiculo-epididymitis (PVE) with normal values of leucocytes, but it did not
improve pregnancy at all (0%) in those PVE patients with high levels of leucocytes [40]. A year later, the
same group tested patients diagnosed with abacterial PVE concomitant with high levels of leucocytes
and showed that pretreatment for two months with a nonsteroidal anti-inflammatory followed by two
months of carnitine oral intake achieved 23.1% pregnancy in comparison with the four-month carnitine
intake group (0%), nonsteroidal anti-inflammatory group (6.2%), and the group receiving four-month
nonsteroidal anti-inflammatory compounds and carnitines (3.8%) [41]. In another study, the effect of
daily intake of LC (3 g), LAC (3 g), or a combination of LC (2 g) and LAC (1 g) was discriminated over
six months and results were followed up 9 months after intervention in idiopathic asthenozoospermic
men (n = 60) [42]. Treated men improved their total oxyradicals scavenging capacity of seminal
fluid [42]. Overall, LAC or the combination of LAC + LC treatment had better improvement of sperm
motility and concentration. Nevertheless, those patients with lower basal values of sperm motility
had higher probability to respond to the treatment but pregnancy rate was not improved by any
treatment in comparison with placebo control group [42]. Recently, coadministration of LC fumarate
(2 g), LAC (1 g), and clomiphene citrate (50 mg) concurrently with vitamins and minerals in patients
with idiopathic oligo- and/or asteno- and/or teratozoospermia (n = 173) enhanced sperm concentration
specially in those patients with multiple impairment semen parameters (oligoasthenoteratozoospermic
patients), but did not improve the morphology, progressive sperm motility neither pregnancy rates in
comparison with control group [44]. A meta-analysis concerning carnitine used as an oral antioxidant
therapy concluded that this molecule might be effective for improving pregnancy rates regarding the
limits of patient inclusion criteria and the lower number of men evaluated in each study [57].

6.2. Vitamins

The interest of vitamin E and its use as antioxidant is due to its protective activity against ROS
which subsequently decreases LPO, and therefore exerts positive effects on sperm functions, such
as sperm concentration and motility [58]. However, its effects in fertility are less clear. For example,
in a small clinical trial (n = 30), oral administration of vitamin E (300 mg twice daily) for three
months raised the levels of vitamin E in blood serum, although human seminal plasma levels were
not modified, questioning its possible effects on reproductive parameters [50]. Nevertheless, in this
clinical trial, vitamin E treatment achieved an improvement of the zona pellucida binding test without
any other improvement described, including ROS level [50]. Similarly, 15 normospermic infertile
men after one month of daily consumption of 200 mg of vitamin E improved their fertilization rate
(19.3 ± 23.3 pretreatment versus 29.1 ± 22.2 post-treatment) after IVF. Those results were associated
with lower sperm LPO levels in comparison with preintervention values [52]. In another work, oral
administration of vitamin E (100 mg thrice daily) to patients with asthenospermia (n = 52) established
three different groups of men according to the results: (i) men without improvement of their sperm
motility (40%); (ii) men with improved sperm motility but did not achieve pregnancy (39%); (iii) men
with improved motility and achieved pregnancy (21%), of which 81.8% of pregnancies finished in
live birth. The placebo control group did not achieve any pregnancies [47]. Later, daily intake of
a combination of vitamin E and C (1 mg of each component) for two months in patients where
intracytoplasmic sperm injection (ICSI) had previously failed was studied (n = 38). The results showed
two different populations: (i) those where the antioxidant treatment decreased the percentage of sperm
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DNA damage (n = 29) and (ii) those where the treatment did not affect this parameter (n = 9) [49].
The most interesting result was observed in the responsive group that after ICSI, the pregnancy rate
(6.9 vs. 49.3%) and implantation rate (2.2 vs. 19.2%) were improved compared with the pretreatment
group, although no differences were found in embryo quality [49]. In a nonplacebo-controlled and
nondouble-blind design trial, daily intake of a combination of selenium (200 µg) and vitamin E (400 UI)
followed for 3.5 months by infertile men (n = 690) achieved 10.8% spontaneous pregnancy [50].

Several studies have been performed looking for beneficial effects from a combination compounds
with antioxidant activity. For example, a formulation using a mix of several compounds with
antioxidant activity (vitamin C, vitamin E, carnitine, folic acid, lycopene, selenium, and zinc) was
evaluated using a mouse Gpx5 knock-out (KO) subjected to a second stress: scrotal heat (KO + SH)
(42 ◦C for 30 min) [58]. Although the exact ingestion quantity of this antioxidant combination could
not be determined, their effects include the reversion of sperm DNA oxidation induced in KO + SH
animals and protection of seminiferous tubules. The results showed that animals supplemented with
KO + SH versus the nonsupplemented animals had double the fertilization rate (73.7 vs. 35.2%) and
fetus reabsorption was halved (8.9 vs. 17.8%) [58]. In another trial, infertile human patients with oligo-
and/ or astheno- and/or teratozoospermia with or without varicocele (n = 104) using a combination of
antioxidants (vitamin C 90 mg, vitamin B12 1.5 µg, LC 1mg, fumarate 725 mg, LAC 500 mg, fructose
1000 mg, CoQ10 20 mg, zinc 10 mg, and folic acid 200 µg) were studied for six months. The results
showed that the individuals from the treated group, regardless of whether they suffered from varicocele
or not, presented improved sperm concentration total sperm motility [43]. Moreover, after treatment,
22.2% (10/45) of supplemented patients achieved pregnancy, while in the control group, only 4.1%
(2/49) of the couples were pregnant [43]. A close analysis of the men from the supplemented group
revealed that only 4.8% (1/21) of patients suffering varicocele improved after treatment, while the
nonvaricocele group achieved 37.5% (9/24) pregnancy [43]. A different group studied the effect of
a commercial multiantioxidant supplement (vitamin E 400 IU, vitamin C 100 mg, lycopene 6 mg, zinc
25 mg, selenium 26 µg, folate 0.5 mg, garlic 1000 mg) for three months on 60 men with high levels of
DNA fragmentation and poor sperm motility and membrane integrity [51]. The treatment achieved
doubled pregnancy rate (63.9 vs. 37.5%), implantation rate (46.2 vs. 24%), and viable pregnancy
rate (38.5 vs. 16%) versus the placebo group without any modification of any sperm parameters,
fertilization, or embryo quality rates [51]. However, this work was later criticized because of the
experimental design, particularly the low number of individuals in the trial, unequal distribution
of individuals between the placebo (n = 16) and treatment groups (n = 36) and the suitability of the
statistical analysis used [59].

Contradictory results were found when men were supplemented with different oral antioxidants
after varicocelectomy. Oral intake of vitamin E (300 mg twice/day) for 12 months (n = 40) improved
the sperm parameters of sperm concentration and the percentage of motile spermatozoa, although
these data were not significant compared with control [60]. Recently, a multiple antioxidant combo
was tested (l-carnitine fumarate 1 g, acetyl-l-carnitine HCl 0.5 g, fructose 1 g, citric acid 50 mg, vitamin
C 90 mg, zinc 10 mg, folic acid 200 µg, selenium 50 µg, coenzyme Q-10 20 mg, and vitamin B12 1.5 µg)
after varicocelectomy (n = 90) for six months [45]. Surgery improved the following sperm parameters:
sperm concentration, percentage of motile spermatozoa or progressive motility, and spermatozoa with
normal morphology. Moreover, treated men achieved 29% pregnancy versus 17.9% in the placebo
group [45].

6.3. Zinc

Zinc is a metalloprotein cofactor for DNA transcription and protein synthesis. Moreover, zinc is
necessary for the maintenance of spermatogenesis and optimal function of the testis, prostate, and
epididymis [61], in addition to their antioxidant properties preventing LPO [62]. A trial using zinc
sulphate as an antioxidant therapy administrated orally (250 mg twice daily) for three months reported
an improvement in the reproductive outcome of asthenozoospermic men (n = 100), particularly in the
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sperm parameters of concentration, motility, and sperm membrane integrity (hypoosmotic swelling
test). It was also noticed a decrease of antisperm antibodies on seminal plasma without modification of
zinc levels on seminal plasma [53]. Pregnancies were also improved in couples where men underwent
treatment when compared with placebo, 22.5% (11/49) versus 4.3% (2/48), respectively [53]. In another
trial with only 14 patients and no control group, sperm parameters were improved after zinc treatment
(220 mg daily for four months) and 21.4% (3/14) of patients achieved pregnancy and increase zinc levels
on seminal plasma [52]. Although beneficial evidence has been found on reproductive outcome after
zinc intake, the lower number of studies and subjects under treatment without a proper control does
not allow further discussion of the possible positive effects of zinc intake on reproduction outcome.

6.4. Natural Compounds—Traditional Medicine

Natural compounds have been used traditionally to treat diseases. For instance, beneficial effects
on reproductive outcome have been reported using products derived from tea (Camelia sinensis (L.)),
which is the second most consumed beverage after water [63]. For example, an in vitro experiment
using green tea extract or epigallocatechin-3-gallate (EGCG) added to human spermatozoa media
improved sperm capacitation hallmarks, such as tyrosine phosphorylation and cholesterol efflux,
through the estrogen receptor pathway [64]. EGCG has been shown to have beneficial effects when
extreme stresses are applied to male mice [65,66]. Interestingly, adverse effects induced by artificial
testicular hyperthermia were ameliorated by oral administration of green tea extract [65]. Positive
effects were visible after 28 days of heat stress induction, improving sperm concentration, percentage
of motile and progressive spermatozoa, and sperm membrane integrity [65]. Another example of the
beneficial effects of EGCG were described when intraperitoneal administration (50 mg/kg) protected
against testicular injury induced by ionizing radiation in rats [66]. Thus, treated animals restored
testicular function with an improvement in the number of pups by littler reducing LPO (TBARs)
and protein carbonyl levels [66]. EGCG’s mechanism of action is via the mitogen-activated protein
kinase/BCL2 family/caspase 3 pathway [66]. In another work, the combination of two different
tea extracts, white and green, where evaluated as additives to improve ART sperm of rats stored
at room temperature. The authors found doubled levels of epigallocatechin (EGC) and EGCG in
white tea in comparison with green tea [67], highlighting the variability associated with the type of
tea extract used. Moreover, although both extracts had positive effects, the white tea extract had
better ferric reducing antioxidant power than the green tea extract and the control. The beneficial
effects were proportional to the concentration used, with 1 mg/mL of white tea extract being the best
concentration tested for improving sperm survival and decreasing LPO over 72 hours of storage at
room temperature [67]. Encouraged by the antioxidant effects on sperm parameters of white tea,
the same group explored the oral administration potential of the extract to improve prediabetic type
II (PreDM) male reproduction features known to be decreased due to oxidative stress [68]. PreDM
is characterized by mild hyperglycemia, glucose intolerance, and insulin resistance and has been
related with infertility or subfertility problems in males [69]. Consequently, using rat as an animal
model, drinking white tea counteracted the negative effects of PreDM on the male reproductive tract.
For example, white tea consumption improved testicular antioxidant power and decreased lipid
peroxidation and protein oxidation [68]. Ingestion of white tea also restored sperm motility and
restored sperm showing morpho-anomalies to normal levels [68].

7. Antioxidants as a Tool to Improve Male ART Outcomes

Human infertility already affects one of six couples worldwide [70] and male factors contribute to
20–50% of infertility [71]. Infertile men tend to have higher ROS levels than fertile men. To counteract
fertility problems, different ART have been developed, mainly IVF and ICSI. In both cases, gametes are
extracted from the body and incubated in in vitro conditions and, after a while, an embryo is transferred
into the uterus. It should be noted that due to legislation and ethical issues, it is easier to perform
experiments in animal models than in humans to test antioxidant effects on different ART. The interest
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in the use of antioxidants to improve sperm parameters is not new. As early as 1943, in a study focused
on sperm metabolism and oxygen consumption, MacLeod showed that sperm produce hydrogen
peroxide, which has a deleterious effect on sperm motility, and it can be counterbalanced by addition
of catalase to the media [72]. Later, some authors followed the same rationale and tried to adapt
MacLeod’s hypothesis to different ART, such as cryopreservation, IVF, and ICSI.

Sperm conservation for long periods of time in liquid nitrogen (cryopreservation) is designed to
keep sperm viable. From a practical point of view, cryopreservation is a tool to enable male fertility
before, for example, chemotherapy, radiotherapy, vasectomy, or exposure to toxicants, or just to have
time to screen donors for infectious agents, such as the human immunodeficiency or hepatitis B
viruses [73]. On the other hand, from the animal industry point of view, the use of cryopreservation
aims to maximize the number of services (inseminations) that can be performed from a simple
ejaculation, ensuring the quality of genetical material preserved, or allowing the transportation of this
genetical material to distant places. Cryopreservation is also of special interest to preserve endangered
species. However, cryopreservation is not a harmless technique, inducing DNA and LPO damage
and other adverse effects [74]. Moreover, cryopreservation, like ART, involves centrifugation, which
is associated with production of ROS [13] and removal of seminal plasma which contains the main
sperm antioxidant scavenger systems.

Antioxidant supplementation to cryopreservation media has been proposed as a way to
overcome ROS production and OS status in spermatozoa (summarized in Table 2). For example,
supplementation with a synthetic phenolic antioxidant, butylated hydroxytoluene (BHT), during
boar sperm cryopreservation improved post-thawing sperm survival, decreased MDA levels at the
concentration of 0.4 mM BHT, and embryo development was improved (28.8% vs. 15.8%) without
modification of embryo cleave percentage in comparison to the control [75]. Later, it was described that
1 mM BHT improved antioxidant sperm activity, pregnancy rate (86.7 vs. 63.6%), the number of gilts
farrowing (86.7 vs. 45.4%), and the number of piglets born (10.8 ± 1.6 vs. 8.2 ± 2.2) after performing
intrauterine artificial insemination (IUI) using cryopreserved sperm versus control [76]. Subsequently,
in a multitest in which four different compounds with antioxidant activity (BHT 2 mM, ascorbic acid
8.5 mg/mL, hypotaurine 10 mM, and cysteine 5 mM) were added during goat sperm cryopreservation,
LPO was decreased but only ascorbic acid and BHT significantly improved fertility in comparison
with control after performing artificial insemination (AI) [77].
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Table 2. Antioxidants used as additives in different ART and their reproduction outcomes.

Antioxidant Type and
Dose Administration Procedure Principal Results Found Stress Specie Reference

BHT 0.4 mM In vitro IVF
↑ Sperm survival

↓ Sperm MDA levels at the concentration
↑ Embryo develop 28.8% treated vs. 15.8% control

Cryopreservation Boar [75]

BHT 1 mM BHT In vitro IUI
↑ Pregnancy rate (86.7 vs. 63.6%),
↑ nº of gilts farrowing (86.7 vs. 45.4%)

↑ nº of piglets born (10.8 ± 1.6 vs. 8.2 ± 2.2)
Cryopreservation Boar [76]

BHT (2 mM),
Ascorbic acid (8.5 mg/mL),

Cysteine (5 mM),
Hypotaurine (10 mM)

In vitro AI
↓ Sperm LPO

↑Fertility: ascorbic acid (42.85%), BHT (35.71%),
control (26.38%)

Cryopreservation Goat [77]

Caffeine (1.15 mM),
β-mercaptoethanol (50 µM) In vitro AI

No effect on pregnancy rate
↑ Litter size in treated samples (10.0 ±1.0) vs.

control (5.7 ± 1.5)
Cryopreservation Boar [78]

CAT (200 IU/mL) In vitro

No differences on sperm parameters
↓ 2 pronucleus zygote (25.5% control vs. 13.2%

treated)↓
Cleaved embryos: 7.6% treated vs. 16.7% control

Cryopreservation Ram [79]

Carnitine,
Folic acid, Lycopene,

Selenium,
Vitamin C,
Vitamin E,

Zinc

Oral NI Duplicate fertilization rate (73.7 vs. 35.2%)
Halved fetus reabsorption (9 vs. 18%)

Gpx5 knockout (KO)
+ Scrotal heat stress

(KO + HS)
Mouse [58]

Cysteine (2 mM) In vitro IUI

↑ SOD and CAT levels and = MDA levels
↑ Sperm total motility ↓

acrosome abnormalities Slight tendency to improve
(p >0.05) non-return rate

74.54 (41/55) in comparison to control 57.14 (28/49)

Cryopreservation Bull [80]

Cysteine (10 mM),
Rosemary extract

(Rosmarinus officinalis).
or a combination of both

In vitro IVF

↑% sperm motility and progressive motility
↓ Acrosome membrane damaged

Rosemary yielded better cleave% without affects
blastocysts

Cryopreservation Boar [81]
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Table 2. Cont.

Antioxidant Type and
Dose Administration Procedure Principal Results Found Stress Specie Reference

Cysteine (5 mM)
Trehalose (25 mM) In vitro IUI

No improvement of antioxidants features
No differences on non-return rate was found after

IUI
Cryopreservation Bull [82]

Cysteamine (5 µM),
Lycopene (500 µg/mL) In vitro IUI No differences on non-returned rate Cryopreservation Bull [83]

EGCG (50 mg/kg) Intraperitoneal
Restore testicular function

↓ LPO and protein carbonyl levels
↑ Number of pups by littler

Ionizing radiation Rat [66]

GSH (0.5 and 1.0 mM)
GSH 0.5 mM + SOD 100

U/mL
In vitro IUI Equal nonreturn rates Cryopreservation Bull [84]

Melatonin (1 mM) In vitro IVF

↑ Sperm viability rates
↑% of total motile and progressive motile

spermatozoa
↑ DNA integrity

Faster first embryonic division

Cryopreservation Ram [85]

Metformin (50 to 5000 µM) In vitro IVF Duplicate fertilization rate and embryo
development Cryopreservation Mouse [86]

NAC (1–10 mM) In vitro ICSI Decrease ROS
ICSI outcome wasn’t modified Thawing + H2O2 Bull [87]

NAC (10 µM),
LAC (10 µM),

α-Lipoic Acid (5 µM)
In vitro IVF

↓ Embryo intracellular levels of H2O2
Accelerated embryo development and blastocysts

↑ TE and ICM cell numbers

Incubation under 20%
O2

Mouse [88]

Taurine (2 mM) In vitro IUI ↓ GSH and SOD levels but ↑ five-fold CAT levels
↑MDA levels = nonreturn rates Cryopreservation Bull [80]

Zinc chloride (10 µg/mL),
d-aspartic acid (500 µg/mL)
Coenzyme Q10 (40 µg/mL)

In vitro IVF

↑% of total spermatozoa motile and progressive
motility

↓ Sperm and blastomeres DNA fragmentation
↑ 8-cells blastocyst: 51.4% treatment vs. 37.1%

control

Cryopreservation Bull [89]

IVF: in vitro fertilization; AI: Artificial Insemination; IU: international unit; NI: natural insemination; IUI: intrauterine insemination; TE: trophectoderm; ICM: inner cell mass; BHT:
butylated hydroxytoluene; CAT: catalase; GSH: reduced glutathione; NAC: N-acetyl-l-cysteine; LAC: l-acetyl-carnitine; EGCG: epigallocatechin-3-gallate, ↑ increase, ↓ decrease.
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The importance and the use of the amino acid cysteine in the fight against ROS impacts on the cell
is due to the fact it is a limiting substrate for glutathione synthesis [90]. Cysteine (2 mM) and taurine
(2 mM) (a cysteine derived) antioxidant properties were controversial when they were used during the
cryopreservation procedure of bull spermatozoa [80]. Taurine decreased GSH and SOD levels, while
CAT levels were five times higher than control, but MDA levels were also higher. However, cysteine
increased SOD and CAT levels without an effect on MDA levels [80]. The nonreturn rate was not
modified when IUI were performed by neither of the compounds; however, a nonsignificant (p > 0.05)
tendency of improvement was observed in cysteine-treated straws 74.54% (41/55) in comparison to
control 57.14% (28/49) [80]. Similar results were obtained when a higher concentration of cysteine
(5 mM) and trehalose (25 mM) were added again to bull cryopreservation media. Thus, the antioxidant
features of these compounds were not proved; neither MDA nor GPx levels were enhanced [82].
Furthermore, no improvement on the nonreturn rate was found after IUI [82]. Similarly, using
cysteamine (5 µM), a decarboxylated derivative of cysteine and lycopene (500 µg/mL) during bull
sperm cryopreservation, no differences were found in the nonreturn rate [83]. In other study, the
authors used N-acetyl-l-cysteine (NAC), an acetylated cysteine residue which has been shown to
effectively reduce ROS formation when H2O2 stress were used in thawed bull spermatozoa [87].
However, neither sperm DNA, nor the number of blastocysts were not improved after performing
ICSI using spermatozoa cryopreserved in the presence of NAC [87]. Nevertheless, in an IVF study on
mice using fresh spermatozoa, where gametes and embryos were stressed by incubation under 20%
oxygen atmosphere (over physiological levels on oviduct and uterine from 2–8% [91]), a combination
of substances with antioxidant activity were tested (LAC 10 µM, NAC 10 µM, α-Lipoic Acid 5 µM) in
either IVF media, embryo culture media, or both. Treated samples had lower intracellular levels of
H2O2, accelerated embryo development, and significantly increased trophectoderm (TE) cell numbers,
inner cell mass (ICM), and total cell numbers [88]. All these effects were exacerbated when the
antioxidant combo were added during the whole process [88].

Positive effects were also described when thawed bull spermatozoa were supplemented with
an antioxidant combination (zinc chloride 10 µg/mL, D-aspartic acid 500 µg/mL, and coenzyme-Q10
40µg/mL), obtaining a better percentage of total sperm motile and progressive motility and a decrease of
DNA fragmentation through sperm incubation [89]. Moreover, antioxidant supplementation improved
embryo development. Although no differences were found in the cleave percentage, the number
of blastocysts that reached the eight-cell stage was 37.1% in the control versus 51.7% in the treated
group [89].

Following the rationale of MacLeod [72], adding antioxidant enzymes to counteract the adverse
effects of ROS on spermatozoa was used to improve sperm cryopreservation. Enzymes with antioxidant
properties were added to bull cryopreservation media—0.5 and 1.0 mM of reduced glutathione (GSH)
or a combination of 0.5 mM of GSH and 100 U/mL of SOD— but did not modify the nonreturn
rates [84]. In another study, the use of CAT (200 IU/mL) was used to cryopreserve ram (Capra pyrenaica)
epidydimal spermatozoa obtained postmortem [79]. At this concentration, no differences were found
in sperm parameters but negative effects were described on fertility: fewer pronucleus zygotes (25.5%
control vs. 13.2% treated) and cleaved embryos were obtained from treated samples after IVF (16.7%
control vs. 7.6% treated) [79].

Natural compounds with antioxidant activity have also been tested in ART. Metformin, a biguanide
isolated from Galea officialis used worldwide as a treatment for diabetes type II [92], was recently
added to the cryopreservation sperm media of chicken due to its antioxidant properties, among other
properties [93]. Cryopreserved mouse spermatozoa treated with metformin displayed better motility,
sperm viability, doubled fertilization rate and embryo development, and halved DNA fragmentation
rate [86]. These promising results of supplementation of cryopreservation media with metformin
appeared to be related to the activation of 5’AMP-activated protein kinase (AMPK). However, recently,
negative results have been described when metformin (1 and 10 mM) was used to improve boar sperm
preservation at 17 ◦C, decreasing sperm motility and mitochondria potential [94]. In an in vitro study
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performed in human spermatozoa kept at physiological temperature, metformin (10 mM) induced
a reduction of sperm motility, where the mechanism of action was associated with PKA pathway
inhibition [95]. Boar spermatozoa were coincubated during cryopreservation with rosemary extract
(Rosmarinus officinalis) or cysteine (10 mM) or a combination of both [81]. Although both compounds
enhance some sperm properties, the most noticeable effects were found by rosemary compound,
enhancing total sperm motility, progressive motility, and preventing acrosome membrane damage
three hours post-thawing in comparison to control [81]. Rosemary-treated spermatozoa yielded better
cleave percentages without affecting blastocyst formation rate after performing IVF [81].

Melatonin (MLT) is a hormone endogenously synthesized mainly by the pineal gland. It has been
detected in human seminal fluid [96] and melatonin receptors have been described in sperm of several
species [97]. MLT’s antioxidant property was tested in cryopreserved human spermatozoa [98]. MLT
increased the expression of the antioxidant-related gene Nrf2 as well as its downstream genes SOD2,
CAT, HO-1, and GSTM1, leading to lower ROS levels and LPO [98]. On the other hand, MLT (1 µM)
used during boar semen preservation at 17 ◦C only showed a modest membrane protective effect [99].
By contrast, cryopreserved ram sperm supplemented with MLT achieved higher viability rates, higher
percentages of total motile and progressive motile spermatozoa, and higher DNA integrity [85].
However, after IVF, only faster first embryonic division without any other embryo output difference
was observed in those samples supplemented with MLT [85].

Yamaguchi, et al. [100] showed that thawed boar spermatozoa supplemented with caffeine
improved fertility [100]. Later, the same authors tested a combination of caffeine (1.15 mM) with the
antioxidant compound β-mercaptoethanol (50 µM) but pregnancy rate was not modified (20 vs. 21%
control and treatment respectively) after AI. However, litter size (10.0 ±1.0) almost doubled the data
from control samples (5.7 ± 1.5) (p < 0.07) [78].

8. Antioxidants as a Therapy to Improve Reproduction Outcome

Sperm produce ROS as consequence of high aerobic metabolism. ROS production at nonphysiological
levels overwhelm cellular scavenger systems and result in deleterious effects, such as lipid and protein
peroxidation and DNA damage. Infertile men are known to possess pathological ROS levels, leading to
sperm DNA fragmentation and lower ART outcome [29]. Thus, to deal with ROS overproduction and
their deleterious effects at cellular levels in the male reproductive system, different strategies have been
tested: (i) antioxidant oral consumption and (ii) antioxidants used as additives to media during ART.

Literature concerning the use of compounds with antioxidant activity and the improvement of
sperm function is extensive. Nevertheless, others have found negative results [101,102], questioning
the beneficial impact of antioxidant prescription and arguing that there is not clear evidence supporting
prescription of antioxidants [103] or even that the over exposure to antioxidants can lead to other
pathologies [104]. Others have found that administration of high doses of antioxidants have harmful
effects on health [105,106]. Most trials have the handicap of using a lower number of men or are not
double-blind or placebo-controlled. Moreover, the heterogeneity of the treatments and concentrations
used as well as the experimental design make it hard to establish solid conclusions. Studies with greater
numbers of patients should be performed, including large control groups to address the effects of oral
antioxidant consumption on reproductive outcome. Moreover, arbitrary formulations of antioxidants
should be avoided and classical pharmacological concentration-dependent experiments should be
performed in order to find effective concentrations of antioxidants. Rather than by oral consumption,
better reproductive outcome results are described when antioxidants were implemented in ART,
especially during cryopreservation-thawing procedures. Antioxidant supplementation decreased LPO
and improved reproductive outcome. Antioxidant concentration should be adapted to each form of
ART. The future of antioxidant therapy to improve ART involves the development of nonintrusive
technologies that can discern between sperm with or without lipid peroxidation or DNA damage,
allowing physicians to inject healthy sperm into the oocyte by ICSI.
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