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Abstract: This review highlighted resistance training as an important training type for the brain. Most
studies that use physical exercise for the prevention or treatment of neurodegenerative diseases have
focused on aerobic physical exercise, revealing different behavioral, biochemical, and molecular effects.
However, recent studies have shown that resistance training can also significantly contribute to the
prevention of neurodegenerative diseases as well as to the maintenance, development, and recovery
of brain activities through specific neurochemical adaptations induced by the training. In this scenario
we observed the results of several studies published in different journals in the last 20 years, focusing
on the effects of resistance training on three main neurological aspects: Neuroprotective mechanisms,
oxidative stress, and cognition. Systematic database searches of PubMed, Web of Science, Scopus,
and Medline were performed to identify peer-reviewed studies from the 2000s. Combinations of
keywords related to brain disease, aerobic/resistance, or strength physical exercise were used. Other
variables were not addressed in this review but should be considered for a complete understanding
of the effects of training in the brain.
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1. Introduction

Most studies suggest the use of physical exercise to decrease the risk of cardiovascular [1],
pulmonary [2], immunological [3], metabolic [4], and neurodegenerative diseases [5]. Although the
cellular mechanisms that are regulated by physical exercise and that reduce the risk of chronic diseases
are not fully understood, it is widely accepted that, overall, regular physical exercise promotes
synergistic effects in different organs and tissues, especially between muscle and brain, muscle and
lungs, and muscle and heart. Furthermore, this synergy modulates gene expression and causes
molecular, biochemical, and physiological changes. These changes promote interactions between
bodily systems, improving physical fitness and cognitive performance and, consequently, decreases
the risk of chronic diseases (Figure 1).

Despite aerobic exercise being more associated with neuroprotective mechanisms [6], recent
studies have shown that resistance training also can significantly contribute to the prevention of
neurodegenerative diseases [7–10] as well as to the maintenance, development, and recovery of brain
activities through specific neurochemical adaptations induced by the training [11]. These biological
changes induced by resistance training depend on the duration, intensity, frequency, and type of
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exercise which constitutes the basic parameters of an exercise training program for health [12].
Different from aerobic exercise in the form and intensity of execution and in the recruitment of
energetic substrates, resistance training is performed against an external resistance to increase
muscular strength and/or mass. This type of training depends primarily on anaerobic metabolism
and promotes different stimuli depending on the intensity of muscular contraction, which affects
muscle homeostasis. Resistance training induces muscle mechanical tension and increases intracellular
calcium concentration. These changes activate different signaling pathways such as extracellular signal
regulated kinase ERK/c-Jun N-terminal kinase (JNK), Ca2+/calmodulin-dependent protein kinase
II (CaMKII), and fodfatidilinositol 3-quinase (PI3K)/protein kinase B (AKT)/ mammalian target of
rapamycin (mTOR) which act upon specific targets and modulate gene expression through transcription
and translation processes [13]. The effects of resistance exercise on skeletal muscle are well understood
but effects on the brain have only been partially elaborated and are not always consistent.
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Figure 1. Interactions between bodily systems from regular physical exercise. A synergistic effect
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The brain is susceptible to physical exercise by a change in the neuronal redox state. The acute
response to physical exercise increases blood flow and enhances cell metabolism [14], adaptive
changes include the positive regulation of antioxidants and the repair of enzymes, mitochondrial
biogenesis, and redox regulation by different signaling pathways [6]. Such effects of physical training
on the brain are derived from studies on aerobic training. However, in recent years, the number of
experimental studies related to the effects of resistance (or strength) training on the brain have increased
significantly, but the mechanisms are not yet fully understood. The aim of this review was to search
recently published literature for studies investigating the effects of resistance training on three main
neurological aspects: Neuroprotective mechanisms mediated by brain-derived neurotrophic factor
(BDNF), oxidative stress, and cognition.

2. Mechanism of Resistance Exercise-Induced Neuroprotection: The Role of BDNF

According to Varendi and colleagues [15], the BDNF gene encoding human BDNF is located
on chromosome 11 and eight different promoters result in varied mRNA transcripts. BDNF mRNA
contains two alternative polyadenylated transcription stop sites providing binding sites for microRNAs
in post-transcriptional regulation. More than 20 microRNAs are thought to control BDNF by its 3′UTR
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in vitro, but only one, miR-206, has been shown in vivo [15]. The BDNF protein is produced by many
brain structures and other tissues such as the retina, motor neurons, kidneys, salivary, and prostate [16].
BDNF is also produced in skeletal muscle and could play an important role in the development of
these muscles, as well as in degenerative muscular diseases [17]. After sciatic nerve damage, increases
in mRNA and protein levels of BDNF were highly significant in skeletal muscle, suggesting a role of
BDNF in repair mechanisms and possibly satellite cell activation [18]. Indeed, the ablation of BDNF
in skeletal muscle was associated with a marked decrease in the satellite cell number, suggesting
that BDNF could be an important regulator at the early stage of muscle repair via the activation of
satellite cells [19].

The effects of exercise on BDNF production could be systemic however, exercise mediated
changes in BDNF levels in the central nervous system have been the most studied to date. BNDF acts
on certain neurons in the central and peripheral nervous system, regulating existing neurons and
stimulating the growth and differentiation of new ones [20]. As one of the main regulators of brain
metabolism, BNDF plays the main role in the development of synaptic plasticity and thus has attracted
the attention of researchers interested in neurodegenerative diseases. Pre-clinical trials have shown
correlations between depressive behaviors and decreased BNDF levels in the hippocampus [21].
Similar results exist regarding Parkinson’s [22] and Alzheimer’s disease [23]. In experimental models,
the brain levels of BDNF and other neurotrophins decreased after exposure to toxins such as
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTPT) and 6-hydroxydopamine (6-OHDA) [8,9,24–27].

It has been reported that BDNF is involved in neural survival and differentiation [28] which
could be closely linked to cellular energy levels. Indeed, it has been shown that BDNF can enhance
glucose uptake in response to increased energy needs by stimulating the expression of GLUT3 [29].
Thus, BDNF mediated enhanced metabolism can cover the energy cost of increased amino acid uptake
and associated protein synthesis necessary for neuronal differentiation, as well as the branching of
axons and dendrites [29,30]. Indeed, energy costs of protein synthesis are significantly higher than the
turnover cost of oligonucleotides or lipids [31]. However, the greatest extent of energy expenditure
in the brain is consumed by action potential related events [32] and BDNF is also an active regulator
of synaptic transmission [33]. Based on this, it is not surprising that the expression of BDNF is
under neuronal activity-dependent calcium signaling [34]. Indeed, it is well documented that physical
exercise-induced beneficial structural and functional effects are associated with the upregulation of
BDNF levels.

The results of the effect of resistance training on BDNF levels are diverse. Studies in humans
showed that no alterations [35–37] or increases [38–43] were reported in the level of circulating BDNF.
One study observed a difference between the sexes and an increase in BDNF levels in males, but not
in females, was noted [44]. It has been suggested that the brain is the main source of the increased
BDNF level in circulation after endurance exercise [45,46]. However, the source of increased BDNF in
the circulation after resistance training is still unknown. Due to the difficulties of resistance training
methods in animal models, BDNF studies with resistance training are limited. When Wistar rats were
subjected to four weeks of progressive strength exercise in a vertical ladder apparatus, increased
neurogenesis was suggested based on Ki-67-positive cells, but no change in BDNF level was reported
in the hippocampus [47]. We have investigated the effects of aerobic and strength training on BDNF
levels and neuroplasticity, and found that both endurance and resistance training results in similar
stimulating effects on BDNF levels in rats [48].

3. Oxidative Stress in the Brain and Resistance Exercise

The brain is highly sensitive to oxidative stress due to its high levels of phospholipids and
polyunsaturated fatty acids [6]. These molecules are prone to oxidation, which leads to the production
of abundant reactive oxygen species (ROS) [49]. Moreover, the brain has low levels of antioxidant
enzymes and certain regions, like the striatum, have high iron levels that facilitate the formation of
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ROS [49–52]. Consequently, the brain’s susceptibility to oxidative stress reduces BDNF levels, since
these are influenced by changes in the brain redox state [6,53].

Aerobic physical training has been used in different studies in humans [54–57] and animals [9,58–66]
to reduce oxidative stress and maintain the brain redox balance as well as increase the BDNF levels [6].
The influence of aerobic exercise on the brain redox system has been widely reported by different
researchers but regarding the cerebral role of resistance exercise, the results are not fully understood.
Although several studies have been conducted to verify the effects of exercise on different brain
functions and mechanisms, it is only in recent years that the role of resistance exercise has effectively
drawn the attention of researchers. For example, in the last 10 years several studies have reported
the neuroprotective capacity of resistance exercise, however, few of these considered oxidative stress
(see Table 1).

Table 1. Recent pre-clinical (part A) and clinical (part B) studies related to the effects of resistance
(or strength) training on the brain.

Part A-Pre-Clinical Studies

Aim Species Results Year of Publication
and Reference

1

Investigate the influence of aerobic and
resistance training on the Central
Nervous System in an experimental
animal model of multiple sclerosis.

Mouse

Although aerobic exercise showed more
prominent effects, strength exercise also
contributed to neuroprotective mechanisms
by modulating inflammatory parameters
and oxidative stress.

2017, [7]

2

Investigate the effects of strength and
aerobic training on mitochondrial and
inflammatory parameters in an
experimental animal model of
Parkinson’s disease.

Mouse

Both training protocols induced
neuroprotection by modulating
mitochondrial function and cerebral
inflammation parameters.

2015, [8]

3

Investigate the effects of two types of
physical training on depressive-like
behavior, and levels of proBDNF,
brain-derived neurotrophic factor
(BDNF), TrkB, in a mouse model of
Parkinson’s disease.

Rat

Both types of physical exercise prevented
depressive-like behavior and restored
levels of proBDNF, BDNF, and TrkB in the
striatum and hippocampus.

2014, [9]

4

Investigate the effects of the nandrolone
decanoate during a strength exercise
program on cell proliferation, apoptotic
status, and BDNF expression in the
rat hippocampus.

Rat

The increase in the immunoreactivity of
anti-apoptotic protein Bcl-2 (DG and CA3)
induced by strength exercise was
diminished by nandrolone decanoate.

2014, [47]

5
Investigate the effect of aerobic and
resistance training on spatial memory and
hippocampal plasticity in aging rats.

Rat
Both aerobic and strength training
improved spatial memory by distinct
molecular neuroplastic mechanisms.

2017, [48]

6

Verify the effects of resistance exercise on
memory and motor co-ordination in male
and female rats treated with
monosodium glutamate.

Rat
Resistance exercise reduced memory and
motor co-ordination impairment caused by
monosodium glutamate.

2017, [67]

7
Investigate the effects of aerobic,
resistance, and combined exercise on
Alzheimer’s disease animal model.

Rat

All training models reduced disease
oxidative stress scores, increased
antioxidant activity, and improved
brain plasticity.

2017, [68]

8

Investigate the effects of resistance
exercise on the number of seizures,
long-term memory, and expression of
signaling proteins in rats with epilepsy.

Rat

Resistance exercise reduced memory
deficits in rats with epilepsy and increased
Insulin-like growth factor 1 and BDNF
levels, as well as signaling
protein activation.

2017, [69]

9

Investigate the expression of
inflammatory cytokines and chemokines
and signaling proteins in aged rats
undertaking aerobic and
resistance exercise.

Rat

No significant difference in cytokines or
signaling proteins in the cortex and
hippocampus of old rats in response to
resistance training was seen.

2018, [70]
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Table 1. Cont.

Part A-Pre-Clinical Studies

Aim Species Results Year of Publication
and Reference

10

Verify the effects of resistance exercise
training on hypothalamic glucagon-like
peptide 1 receptor (GLP-1R) levels and its
related signaling mechanisms in type II
diabetes (T2DM).

Rat

Resistance training increased GLP-1R
mRNA, protein kinase A, glucose
transporter 2, and AKT and significantly
decreased PKC-iota). Antioxidant enzymes
and apoptotic factors were significantly
improved in the hypothalamus.

2019, [71]

11

Investigate the effects of aerobic and
resistance exercise on the recognition
memory and acetylcholinesterase (AChE)
activity in a beta-amyloid (Aβ) model of
AD in rats.

Rat

Both aerobic and strength training
improved the exploration index. AChE
activity increased in the Aβ-injected
sedentary group but declined in the aerobic
and resistance exercise groups.

2019, [72]

Part B-Clinical Studies

1
Investigate the effects of acute resistance
exercise to-fatigue on serum BDNF levels
in adult men (serum).

Human
Resistance exercise provided the necessary
stimulus to increase peripheral serum
BDNF.

2017, [43]

2 Identify the effects of strength training on
hippocampus volume in older women. Human Hippocampus volume was significantly

increased after strength exercise. 2017, [73]

3
Compare full-body versus split-body
resistance training on BDNF levels in
adult men.

Human Resistance exercise increased BDNF levels
in the serum of adult men. 2018, [74]

4

Compare the response of neurotrophic
factors NT3, NT4, and BDNF following
one session of high-intensity exercise,
resistance training, or both, in physically
inactive overweight adult men.

Human
Acute resistance training and combined
exercise increased neurotrophic factors in
physically inactive overweight adults.

2018, [75]

5

Investigate the effects of aerobic,
resistance, and combined training on
resting serum BDNF levels in adolescents
with overweight and obesity.

Human All training models increased BDNF levels. 2018, [76]

6
Verify the effects of exercise combined
with low- and high-intensity strength
exercise in the brain.

Human
Strength exercise weakened aerobic
exercise-induced cognitive improvements
and hippocampal neurogenesis.

2018, [77]

Systematic database searches of PubMed, Web of Science, Scopus, and Medline were performed to identify
peer-reviewed studies from the 2000s. Combinations of keywords related to brain, disease, aerobic/resistance,
or strength physical exercise were used.

Although the cellular mechanisms involved in the regulation of brain oxidative stress by resistance
exercise are not fully understood, it is possible to speculate that the adaptive changes induced by
resistance training from muscle involve the up-regulation of antioxidant and brain redox regulation from
different proteins and pathways, such as the mammalian target of rapamycin (mTOR), a serine/threonine
kinase important for cell growth, proliferation, and survival of brain [78] as well as the cAMP-response
element-binding protein (CREB), an intracellular protein that regulates the expression of genes that
are important in dopaminergic neurons [79]. Both mTOR and CREB are responsible for enhanced
translation initiation from AKT (protein kinase B) phosphorylation, which leads to both muscle and
brain BDNF expression and activation [80–82].

BDNF release from muscle contraction reaches the brain and binds to Tropomyosin receptor kinase
B (TrkB) to induce phosphorylation of different cascades of signaling pathways: PI3K/AKT/mTOR,
Pi3K/AKT/CREB, Pi3k/ERK/CREB, and phospholipase Cγ (PLCγ)/CamKII/CREB. The activation of
these different signaling pathways results in the additional secretion of the BDNF. In additional, it is
possible that the brain mTOR and CREB signaling are also important targets of resistance exercise.
These observations are supported partially by previous studies that showed PI3K/mTOR signaling [83]
and elevated BDNF levels binds the TRKb receptors and PKC/CREB [48,84] after resistance exercise.

The BDNF leads to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) [85],
which regulates the expression of detoxification enzymes and antioxidants to protect brain cells
from oxidants, electrophiles, and inflammatory agents [86], as well as to maintain the mitochondrial
function, cellular redox, and protein homeostasis [87]. Nrf2 is a cellular regulator of antioxidant defense
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systems [88]. Under physiological conditions, the Nrf2 is linked in the cytoplasm to the Kelch-like
ECH-associated protein 1 (keap1). Nrf2 translocates to the nucleus in response to oxidative stress
or when electrophilic molecules that covalently modify cysteine residues present in the thiol-rich
KEAP1 protein by oxidation or alkylation [89,90] where it binds to specific DNA sites termed
anti-oxidant response elements (ARE) to initiate the transcription of cytoprotective genes such as heme
oxygenase-1 (HO-1), superoxide dismutase (SOD), glutathione S-transferase (GST), NAD(P)H: quinone
oxidoreductase 1 (NQO1), and γ-glutamatecysteine ligase (GCL) [91]. This mechanism is summarized
in Figure 2.
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Figure 2. Interplay between muscle and brain in BDNF-mediated redox regulation. Resistance
exercise induces BDNF generation from CREB and mTor phosphorylation by the Pi3K/AKT signaling
pathway. The BDNF release from muscle contraction reaches the brain and binds the TrkB receptor
to induce the phosphorylation of different cascades of signaling pathways, which results in the
additional secretion of BDNF. Brain BDNF leads to the activation of Nrf2, which regulates the
expression of antioxidants molecules. BDNF = brain-derived neurotrophic factor; IGF1 = insulin-like
growth factor 1; IGF1R = insulin-like growth factor 1 receptor; Pi3K = phosphatidylinositol 3-kinase;
IRS1 = Insulin receptor substrate 1; pAKT = protein kinase B phosphorylated; MEK = mitogen-activated
protein kinase; ERK = extracellular signal–regulated kinase; CREB = cAMP-response element-binding
protein phosphorylated; mTORC1 = mammalian target of rapamycin complex 1; p70s6k = ribosomal
protein S6 kinase beta-1; TrkB = Tropomyosin receptor kinase B; PLCγ = phospholipase C gamma;
CamKII = calcium/calmodulin-dependent protein kinase II; ARE = antioxidant response element;
pKeap1 = Kelch-like ECH-associated protein 1 phosphorylated; Nrf2 = nuclear factor erythroid
2-related factor 2.

Previous studies have showed that strength training promotes the upregulation of Nrf2 in the
central nervous system after experimental autoimmune encephalomyelitis (EAE) induction [7]. Similar
results were previously reported by Aguiar et al. [66], who demonstrated that moderate-intensity
physical exercise protected the 6-OHDA-induced loss of tyrosine hydroxylase immunolabeling and
activated the Nrf2-ARE pathway in the nigrostriatal pathway. Regulation of antioxidant enzyme
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activity by resistance exercise has not been the focus of many studies. In one of the few studies,
Park et al. [71] showed that resistance exercise training increased SOD1 activity in the hypothalamus
of rats with type II diabetes (T2DM) and that it could contribute to hypothalamus redox regulation
under T2DM conditions. Souza et al., [7] showed that animals with EAE, undertaking resistance
training, showed no changes in SOD activity, but a modulation in the content of glutathione and
glutathione peroxidase activity was observed. The authors suggest that these exercise-modulating
effects on the glutathione system may be associated with the regulation of mechanisms controlled
by Nrf2 phosphorylation. These results suggest the possibility of a regulatory mechanism induced
by resistance exercise which modulates the actions of BDNF and provides evidence of resistance
training-induced brain redox modulation.

4. Resistance Exercise and Cognition

There is not much evidence regarding the effects of resistance training on higher brain functions
such as cognition, executive function, and attention. The primary outcome of major clinical trials
was muscle strength [92–94], fall prevention [95], and the neuronal effects were secondary outcomes.
These clinical studies focused on healthy or unhealthy aged people using various neurological tests
such as the Working Memory Index for working memory [92], the Rey Auditory Verbal Learning Test
for declarative memory [96,97], Trail Making Test Part B, Verbal Digits Backward Test, and Stroop
Color-Word Test for executive functions [95–97], as well as the Alzheimer’s Disease Assessment
Scale (ADAS-Cog) and Mini-mental State Examination for cognitive impairments [93,94,97]. The most
consistent result of resistance training was the improvement of the executive function in the elderly
with no differences between the sexes. Three studies using male rats and a vertical ladder where the
cognitive enhancer effects of resistance training were associated with neurogenesis [47], an improved
IGF-1 pathway in young rats [98], and BDNF/TrκB signaling in aged rats [48].

Cognition is the ability to process information through perception, knowledge acquired through
experience and context, and personal characteristics that integrate all information to interact with
the environment. Aging and many neurological diseases impair cognitive functions, from mild
cognitive impairment to severe dementia with Alzheimer’s disease being the most prevalent
dementia [99]. Some muscle strengthening programs have shown cognitive enhancer effects in these
populations [92–94,96]. The characteristics of the resistance training program design are described
in Table 2. All studies were successful in strengthening muscle [92,94,96]. The Study of Mental and
Resistance Training (SMART) program improved cognitive impairments associated with Alzheimer’s
disease, as assessed by the ADAS-Cog instrument in community-dwelling adults [93,94]. The resistance
training improved declarative memory of elderly women, even after two years of follow-up [96].
Declarative (or explicit) memory dependent on the hippocampus and related cortex are crucial for
the memory of facts, events, faces, and environments [100]. However, muscle strengthening did not
modify hippocampal atrophy of aged women, but reduced cortical white matter atrophy [96].

Preclinical experimental studies focused on the effects of resistance training in the hippocampus
of adult male rats. Cassilhas and colleagues [98] demonstrated that resistance training improves spatial
memory and serum IGF-1 levels in adult male rats. They also demonstrated an exercise-induced increase
in IGF-1R and AKT phosphorylation, as well as in density of IGF-1, synapsin, and synaptophysin in the
hippocampus of rats. Neurotrophin TRκB receptor levels were not modified. Gomes and colleagues [47]
showed that resistance training increased neurogenesis and decreased apoptosis signaling in the
dentate gyrus of adult male rats, however BDNF levels were not modified in the dentate gyrus and
CA3 area of the hippocampus after exercise. Vilela et al., [48] demonstrated that resistance training
improved spatial memory and strengthened neurotrophin signaling in the hippocampus, unlike young
animals [47,98]. All of these well-designed animal and human studies reinforce the feasibility and
cognitive benefits of resistance training on elderly cognition.
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Table 2. Resistance training for cognitive enhancer effects in the elderly.

Program RCT Outcome
Resistance Training (RT) Year of

Publication and
ReferenceDuration Volume Overload Supervision

Otago exercise
program Yes Prevent

fall
6 mo

3 times/wk
2 × 10

repetitions Ankle cuffs No 2008, [95]

Strong for Life Yes Muscle
strength

6 mo
3 times/wk

25 min
Uninformed Elastic bands No 2006, [92]

Muscle
strengthening Yes Muscle

strength

52 wk
1–2 times/wk

40 min

2 × 6–8
repetitions

7RM method

Pneumatic
Free weights
(dumbbells)

Yes 2015, [96]

Study of Mental
and Resistance
Training (SMART)

Yes Cognition 6 mo
2 times/wk

3 × 8 repetitions
80% 1RM

15–18 Borg scale

Pneumatic
Free weights
(dumbbells)

Yes 2011, 2017,
[93,94]

Muscle
strengthening No Cognition

16 wk
3 times/week

40 min

2–3 × 12–15
repetitions

Elastic bands
High speed Yes 2018, [97]

References are the search results PubMed and Scopus databases in 2019, February/March. Keywords: Clinical
studies, muscle strength, resistance training, cognition, memory, and executive function.

Clinical studies have also demonstrated the benefits of strength exercise in the executive
function [93–95], a set of cognitive processes necessary for behavior control that facilitate the attainment
of chosen goals. Cuttler and colleagues [101] demonstrated that a single strength exercise session
in healthy youths improved prospective memory (the ability to remember intended actions in the
future). The home-based Otago Exercise Program demonstrated that resistance training improved
response inhibition by 12.8% in the elderly in fall-dedicated clinics, while control sedentary presented
a deterioration of response inhibition [95,102], which is important for self-control and resistance to
temptations and impulsiveness [103].

Cognitive inhibition is strongly associated with working memory. The core executive function of
working memory involves storing information and mentally working with it [96,103]. Aging declines
speed of processing, working memory, inhibitory function, and long-term memory, as well as decreases
brain structure size and white matter integrity [104]. The home-based Strong for Life program improved
verbal working memory of older adults with at least one disability [92]. However, these cognitive
benefits were observed in the elderly who reached moderate-high resistance training intensities and
not in the elderly who performed low-intensity exercise. Working memory supports inhibitory control
and temporarily stored information is crucial for goal behavior with inhibition of errors. The opposite
is also true. Inhibitory control supports working memory, goal objective needs focus and resists
noise. Impaired working memory during aging is also associated with decreased processing speed,
which is the efficiency with which an individual is able to perceive and act upon a stimulus [105].
Yoon et al. [97] demonstrated that resistance training in the elderly without major health problems
improved processing speed. The only mechanism reported for the executive cognitive enhancer effects
of resistance training in the elderly is the reduction of cortical white matter atrophy, as previously
described [96]. Figure 3 depicts that resistance training improves serum IGF-1 levels and hippocampal
IGF-1 signaling. Muscle strengthening also boosts cognitive and executive functions.
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5. Conclusions

The effects of resistance exercise on the brain are not yet fully understood due to the few studies
available so far. Although promising, these studies do not allow for a definitive conclusion regarding the
effects resistance exercise on the brain’s redox and cognitive mechanisms. In some cases, associations
were speculative and further investigations are required. In this regard, future studies in animals and
humans may fill these gaps and contribute to further understanding the effects of resistance exercise
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