## **Supporting Information**

# Experimental and Computational Study of the Antioxidative Potential of Novel Nitro and Amino Substituted Benzimidazole/Benzothiazole-2-Carboxamides with Antiproliferative Activity

Maja Cindrić<sup>1</sup>, Irena Sović<sup>1</sup>, Marija Mioč<sup>2</sup>, Lucija Hok<sup>3</sup>, Ida Boček<sup>1</sup>, Petra Roškarić<sup>1</sup>, Kristina Butković<sup>1</sup>, Irena Martin-Kleiner<sup>2</sup>, Kristina Starčević<sup>4</sup>, Robert Vianello<sup>3\*</sup>, Marijeta Kralj<sup>2\*</sup> and Marijana Hranjec<sup>1\*</sup>

<sup>1</sup> Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia

<sup>2</sup> Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

<sup>3</sup> Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta
54, HR-10000 Zagreb, Croatia

<sup>4</sup> Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia

\* Correspondence: robert.vianello@irb.hr (R.V.); marijeta.kralj@irb.hr (M.K.); mhranjec@fkit.hr (M.H.)

### **Contents of Supporting Information:**

- 1. Figures S1-S52 are NMR spectra of novel compounds (pages S2–S27)
- 2. Figure S53: Impact of compounds on cellular ROS production (page S28)
- 3. Figure S54: Impact of compounds on mitochondrial ROS production (page S28)
- 4. Materials and methods: Cell culturing, Cellular ROS measurement assay, Mitochondrial ROS measurement assay (page S29)







**Figure S3.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of **2,4-dimethoxy-N-[5(6)***nitrobenzimidazol-2-yl]benzamide* 7.



Figure S4. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of 2,4-dimethoxy-N-[5(6)nitrobenzimidazol-2-yl]benzamide 7.



Figure S5. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of 3,4,5-trimethoxy-N-[5(6)nitrobenzimidazol-2-yl]benzamide 8.



Figure S6. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of 3,4,5-trimethoxy-N-[5(6)nitrobenzimidazol-2-yl]benzamide 8.



Figure S7. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *2-methoxy-N-(6-nitrobenzothiazol-2-yl)benzamide* 9.



Figure S8. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of 2-methoxy-N-(6-nitrobenzothiazol-2-yl)benzamide 9.



Figure S9. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of 2,4-dimethoxy-N-(6nitrobenzothiazol-2-yl)benzamide 10.



Figure S10. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of 2,4-dimethoxy-N-(6nitrobenzothiazol-2-yl)benzamide 10.



**Figure S11.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of **3,4,5-trimethoxy-N-(6***nitrobenzothiazol-2-yl)benzamide 11*.



Figure S12. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of 3,4,5-trimethoxy-N-(6nitrobenzothiazol-2-yl)benzamide 11.



**Figure S13.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-methoxybenzamide 12.



2-methoxybenzamide 12.



**Figure S15.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-*[5(6)-aminobenzimidazol-2-yl]*- 2,4-dimethoxybenzamide 13.



Figure S16. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2,4-dimethoxybenzamide 13.



**Figure S17.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-3,4,5-trimethoxybenzamide 14.



Figure S18. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-3,4,5-trimethoxybenzamide 14.



Figure S19. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2methoxybenzamide 15.



Figure S20. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 125 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2methoxybenzamide 15.



**Figure S21.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2,4dimethoxybenzamide 16.



Figure S22. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 150 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2,4dimethoxybenzamide 16.



Figure S23. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-(6-aminobenzothiazol-2-yl)-3,4,5-trimethoxybenzamide 17.



Figure S24. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of *N*-(6-aminobenzothiazol-2-yl)-3,4,5-trimethoxybenzamide 17.



Figure S25. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-methoxybenzamide hydrochloride 18.

![](_page_13_Figure_2.jpeg)

Figure S26. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-methoxybenzamide hydrochloride 18.

![](_page_14_Figure_0.jpeg)

Figure S27. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-(6-aminobenzimidazol-2-yl)-3,4,5-trimethoxybenzamide hydrochloride 20.

![](_page_14_Figure_2.jpeg)

Figure S28. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of *N*-(6-aminobenzimidazol-2-yl)-3,4,5-trimethoxybenzamide hydrochloride 20.

![](_page_15_Figure_0.jpeg)

Figure S29. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2methoxybenzamide hydrochloride 21.

![](_page_15_Figure_2.jpeg)

Figure S30. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2methoxybenzamide hydrochloride 21.

![](_page_16_Figure_0.jpeg)

**Figure S31.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2,4dimethoxybenzamide hydrochloride 22.

![](_page_16_Figure_2.jpeg)

**Figure S32.** <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 150 MHz) of *N*-(6-aminobenzothiazol-2-yl)-2,4dimethoxybenzamide hydrochloride 22.

![](_page_17_Figure_0.jpeg)

**Figure S33.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-(6-aminobenzothiazol-2-yl)-3,4,5-trimethoxybenzamide hydrochloride 23.

![](_page_17_Figure_2.jpeg)

Figure S34. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of *N*-(6-aminobenzothiazol-2-yl)-3,4,5-trimethoxybenzamide hydrochloride 23.

![](_page_18_Figure_0.jpeg)

![](_page_18_Figure_1.jpeg)

nitrobenzimidazol-2-yl]benzamide 24.

![](_page_19_Figure_0.jpeg)

Figure S37. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of 2-hydroxy-4-methoxy-N-[5(6)nitrobenzimidazol-2-yl]benzamide 25.

![](_page_19_Figure_2.jpeg)

Figure S38. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of 2-hydroxy-4-methoxy-N-[5(6)-nitrobenzimidazol-2-yl]benzamide 25.

![](_page_20_Figure_0.jpeg)

**Figure S39.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *3,5-dihydroxy-4-methoxy-N-[5(6)-nitrobenzimidazol-2-yl]benzamide 26*.

![](_page_20_Figure_2.jpeg)

Figure S40. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of *3*,*5*-*dihydroxy*-*4*-*methoxy*-*N*-[5(6)-*nitrobenzimidazol*-2-*yl*]*benzamide* 26.

![](_page_21_Figure_0.jpeg)

**Figure S41.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *2-hydroxy-N-(6-nitrobenzothiazol-2-yl)benzamide 27*.

![](_page_21_Figure_2.jpeg)

Figure S42. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of *2-hydroxy-N-(6-nitrobenzothiazol-2-yl)benzamide* 27.

![](_page_22_Figure_0.jpeg)

Figure S43. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of 2-hydroxy-4-methoxy-N-(6-nitrobenzothiazol-2-yl)benzamide 28.

![](_page_22_Figure_2.jpeg)

Figure S44. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of 2-hydroxy-4-methoxy-N-(6-nitrobenzothiazol-2-yl)benzamide 28.

![](_page_23_Figure_0.jpeg)

Figure S45. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *3,4,5-trihydroxy-N-(6-nitrobenzothiazol-2-yl)benzamide 29*.

![](_page_23_Figure_2.jpeg)

Figure S46. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 125 MHz) of *3,4,5-trihydroxy-N-(6-nitrobenzothiazol-2-yl)benzamide 29*.

![](_page_24_Figure_0.jpeg)

Figure S47. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-hydroxybenzamide 30.

![](_page_24_Figure_2.jpeg)

Figure S48. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-hydroxybenzamide 30.

![](_page_25_Figure_0.jpeg)

**Figure S49.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-hydroxy-4-methoxybenzamide 31.

![](_page_25_Figure_2.jpeg)

Figure S50. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-hydroxy-4-methoxybenzamide 31.

![](_page_26_Figure_0.jpeg)

**Figure S51.** <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 300 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-hydroxy-4-methoxybenzamide 32.

![](_page_26_Figure_2.jpeg)

Figure S52. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 75 MHz) of *N*-[5(6)-aminobenzimidazol-2-yl]-2-hydroxy-4-methoxybenzamide 32.

![](_page_27_Figure_0.jpeg)

**Figure S53.** Impact of compounds on cellular ROS production was measured with fluorescent dye DCF-DA in HCT116 cell line, after the treatment with 10  $\mu$ M compounds for 1h. H<sub>2</sub>O<sub>2</sub> was used as a positive control. Data presented here are the results of 3 independent measurements, done in duplicates. One-way ANOVA with Tukey's post-hoc test was used for statistical analysis, \*\*\*- p < 0.001.

![](_page_27_Figure_2.jpeg)

**Figure S54.** Impact of compounds on mitochondrial ROS production was measured with fluorescent dye MitoSOX in HCT116 cell line, after the treatment with 10  $\mu$ M compounds for 1h. Rotenone, which interferes with electron transport chain in mitochondria and induces ROS formation was used as a positive control. Data presented here are the results of 3 independent measurements, done in duplicates. One-way ANOVA with Tukey's post-hoc test was used for statistical analysis, \*\*\*- p < 0.001.

#### Materials and methods

#### Cell culturing

Human colon carcinoma cell line HCT116 was grown in DMEM medium with the addition of 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100  $\mu$ g/ml streptomycin, and cultured as monolayers at 37°C in a humidified atmosphere with 5% CO2.

#### Cellular ROS measurement assay

For the cellular ROS measurement assay,  $2.5 \times 10^4$  cells were seeded into 96-well microtiter plates 24h prior to experiment. Next day, cells were trypsinized and incubated in FBS-free DMEM medium with 20  $\mu$ M DCFH-DA fluorescence dye for 45 minutes. After the incubation, compounds were added without washing and cells were treated with 2 mM H<sub>2</sub>O<sub>2</sub> as a positive control and 10  $\mu$ M compounds **8**, **14** and **26** for 1 hour. Cells were washed in PBS and DCFH-DA signal was measured by flow cytometry, in FL1 channel.

#### Mitochondrial ROS measurement assay

For the mitochonrial ROS measurement assay,  $2.5 \times 10^4$  cells were seeded into 96-well microtiter plates 24h prior to experiment. Next day, cells were trypsinized and treated with 3  $\mu$ M Rotenone as a positive control and 10  $\mu$ M compounds **8**, **14** and **26** for 1 hour. After the treatment, cells were stained, without washing, with 5  $\mu$ M MitoSOX fluorescent dye for 30 minutes. Cells were washed in PBS and MitoSOX signal was measured by flow citometry, in FL2 channel.