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Abstract: Reactive oxygen species (ROS) are produced as a natural byproduct of the normal
metabolism of oxygen and play significant roles in cell signaling and homeostasis. Although ROS
have been involved in pathological processes as diverse as cancer, cardiovascular disease, and aging,
they may to exert an effect even in a physiological context. In the central nervous system, stem cells
and hematopoietic stem cells are early progenitors that contain lower levels of ROS than their more
mature progeny. These different concentrations have been reported to be crucial for maintaining stem
cell function. Mammary gland remodeling has been proposed to be organized through the activation
and regulation of cells with stemness, either considered real stem cells or primitive precursors. Given
the state of oxidative stress in the mammary gland tissue induced by high milk production, in
particular in highly productive dairy cows; several studies have focused on the relationship between
adult mammary stem cells and the oxidative state of the gland. The oxidative state of the mammary
gland appears to be involved in the initial development and metastasis of breast cancer through
interference with mammary cancerous stem cells. This review summarizes some links between the
mammary stem and oxidative state of the gland.
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1. Role of Adult Stem Cells in Bovine Mammary Gland Biology

The complex and extensive transformations cyclically shown by the mammary gland are linked to
the presence of cells with stemness, or as a better definition, only to stem cells that have a proliferative
capacity to drive a significant increase in the cell proliferation rate, which determines cyclic processes
of mammary gland remodeling during pregnancy [1]. This particular type of cell probably plays a role
in the substitution of epithelial cells that exfoliate in the lumen of the ducts during lactation. Different
types of progenitor cells have been characterized, partially addressed toward a mammary phenotype.
They are organized according to a well-defined hierarchy: the most primitive cells are those defined as
adult stem cells. These cells give rise to the different types of cells present in the functional mammary
unit, the alveolus. The mammary precursors are cells already partially differentiated, and therefore
have a lower multipotent capacity but with a large proliferative capacity. Because of activity, their total
number in mammary tissue is higher.

In the bovine species, during postnatal life, the mammary gland begins to develop after a first
quiescent phase, a process with an initial formation of compact and branched ducts immersed in
an environment composed of loose connective tissue. The subsequent elongated growth of these
formations occurs under a coordinated regulation that also determines the branching and propagation
process of the terminal ductal units and the proliferation of the connective tissue that slowly spreads
among the adipocytes forming the mammary fat pad. When the animal reaches sexual maturity,
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mammary development stops and minor changes take place during the cyclical repetition of the
estrous and luteal phases, due to the simultaneous hormonal changes, in particular related to the
progesterone and estradiol concentrations.

However, during pregnancy, the mammary gland, under the influence of the hormonal
milieu essentially composed of progesterone, undergoes a powerful development immediately after
fertilization and ends with delivery. At the tissue level, the mammary epithelium proliferates
enormously through the constitution of secondary branches, and then tertiary ducts, with an expansion
of the nonfunctional alveolar structures, end with a definitive maturation of the cellular phenotype [2,3].
This crucial remodeling aims to increase the total amount of functional cells throughout the terminal
differentiation. The mature differentiation occurs with the expression of a specific protein, in particular
β-casein and α- and β-lactoglobulin, which are the specific protein components in milk. The possible
association between the pool of primitive cells and the total mass of functional parenchyma of the
mammary gland is of great interest, as the yield of milk is correlated with the development of the gland.

2. Recent Insights for Bovine Mammary Stem Cells Characterization

Although most of the data for the hierarchy and the behavior of resident progenitor cells in
the mammary gland have been mainly collected in human and murine species, efforts were made
to identify and study these cells even in bovines [4,5]. The existence of a population of adult stem
cells has been reported and a method based on flow cytometry to isolate different subpopulations of
progenitors has been proposed [6]. Another research group described the phenotype of the different
populations of mammary progenitors according to the expression of surface antigens [7].

3. Stem Cells Regulation Interferes in Milk Production

Given the close correlation between the quantity of milk produced and the number of active
secreting cells, the more we know about the mechanism that maintains the cellular functionality of the
secreting cells, the more we will understand about increasing milk in time, defined in dairy science as
the persistence of lactation. It has been demonstrated in the lactation curve of dairy cows that after an
initial increase in milk production induced by enrichment of the secretory capacity of the luminal cells,
a constant phase of milk production is observed followed by a slow decline in productivity correlated
with a slow and steady reduction in the number of epithelial cells. This is the result of an unbalance
ratio between the increasing apoptotic rate and a slightly lower proliferative activity of the mammary
epithelium, which is not able to support a constant turnover of cells secreted throughout lactation [8].
In this context, modifications focused on stem cells activation and progenitors proliferation may
have a real effect on the cow’s productivity: dairy cattle management aims to fertilize the cow about
three months after parturition, this minimizes the time during which the cow is unproductive, since
subsequent lactation can be initiated shortly after finishing the previous one. The time between two
lactations is termed the dry period. Of course, the shorter this period, the less unproductive the animal
is. When the lactation period stops, the mammary gland undergoes an involution process that leads
the organ to a quiescent phase before the next pregnancy. However, in the dairy cow production chain,
this does not occur since a new pregnancy is concomitant with the lactation condition. The pregnancy
determines a hormonal milieu that contrasts greatly with the end of lactation and strongly enhances
cell proliferation and mammary morphogenesis [8]. Thus, a condition of regenerative involution
occurs that is associated with the dry period, in which the mammary gland does not undergo organ
remodeling, but rather massive cell turnover. This event is essential to ensure the significant production
of milk in the terminal part of lactation. It is uncertain how this high cell proliferation rate is supported
by a niche of undifferentiated mammary cells that, however, are activated by a specific hormonal
milieu that assures correct cellular metabolism.

In this scenario, the dry period is a crucial phase for dairy cow management and the regulation of
homeostasis in the stem/progenitor cell compartment is fundamental. The important metabolic stress
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experienced by cows during this great energy expenditure is lactation and the progressive aging of the
animals causes a reduction in progenitor activity and, consequently, a lower productivity.

4. Stem Cells in Milk

Milk is a source of immune and epithelial cells. Quantitative analyses include the somatic count,
which does not interpret the cell type but only the level of cell bodies present. Normally, stem cells
or precursors are isolated and characterized from a phenotypic and functional point of view by the
dissociation of breast tissue. For the evaluation of the activation and expression patterns of these cell
types over time in an animal, this approach is difficult to apply, as biopsy is required. The progenitor
cells were reported to be directly isolated from milk in humans [9,10]. The authors showed that
in human milk, a cellular population of epithelial origin (with the expression of different types of
cytokeratins) is able to express cellular markers characteristic of primitive cells, including nestin and
p63. These specific cells are able to generate cell colonies with different terminal markers of breast
tissue that expand through accelerated proliferative activities.

In bovine milk, the frequency of putative primitive or mature differentiated epithelial cells has
been reported [11] and these cell subpopulations are differentially expressed according to the lactation
phase. Since the mammary epithelium is structured as a bilayer, two different cell lineages are
characterized by the expression of specific markers. Luminal cells are cytokeratin-enriched in CK18
with low expression in CK14, whereas myoepithelial cells demonstrate the opposite. This alveolar
organization is well conserved among different mammalian species, including humans [12], mice [13],
goats [14], and bovines [2]. Another important cell surface marker is CD49f, a component of the
laminin-1 receptor, which is expressed in the outer layer of the alveolus. A high CD49f expression
has been associated with myoepithelial progenitors and/or mammary adult stem cells [12,15].
The characterization of epithelial somatic cells in bovine milk has shown that a specific CK14+/CK18−

subtype of epithelial cells increases toward the end of lactation. The cause for this increase may be the
gradual exhaustion of the inner secreting cell layer at the end of lactation. Thus, this epithelial cell
subpopulation may be considered the signal of a reduction in mammary efficiency. This reduction
could have a physiological aspect, but different factors should be considered, such as mammary gland
pathologies and management related to milking.

The role of factors that counteract the action of reactive oxygen species (ROS) at the mammary
level was underlined by the discovery of various substances with antioxidant activity present in
colostrum and in cow’s milk [16,17], which directly play a role in the epithelial alveolus, especially
at the beginning of lactation. Distress can affect the somatic cell epithelial subpopulations, maybe
indicating that animal welfare affects mammary gland functionality with a lower expression in CD49f+

and K18+ cell populations [18].
A report proposed that ROS regulate cell differentiation in mammary glands. An increase in

this epithelial cell subpopulation was directly correlated with the loss of milk-producing capacity
of the mammary gland during the last part of lactation [11], leading to the hypothesis that this cell
population could be a biomarker of the production efficiency of the mammary gland.

The presence of CD49f+-enriched cells, even in low amounts, may be associated with a decrease
in the myoepithelial compartment, indicating a changing myoepithelial genetic program [18,19].
CD49f is an integrin that is a component in a feedback circuit that interferes with the myoepithelial
phenotype in mammary epithelial cells in different species such as human and mouse [20,21]. This
led to the hypothesis that the basal regulatory machinery may be unpaired in myoepithelial cells,
and inappropriately engaged in luminal epithelial cells during a loss in tissue functionality. Different
distributions of mammary epithelial cell subpopulations, recovered from milk, provide more detailed
information on the physiology of mammary glands during lactation and, potentially, may be considered
for the evaluation of mammary gland biology.

A stem cell-like population has been isolated from bovine milk [22], further validating previous
studies in human counterparts [10,23–25]. This outcome opens new possibilities for the veterinary use
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of milk as an innovative and noninvasive source of multipotent stem cells, which may have a role in
the field of regenerative veterinary medicine [26].

5. ROS in Mammary Gland Involution

The mechanism of action that specifically affects mammary gland involution and increases
the luminal cells apoptosis rate in the alveoli, with less impact on other compartments such as
myoepithelial and ductal cells, is still unknown. The involution process in mammary organoids in
culture is stimulated by fresh media withdrawal and is characterized by cellular oxidative stress and
expression of activated macrophage marker CD68 [27]. This process can be mimicked by exogenous
addition of ROS in cultures without media withdrawal. ROS are chemically reactive molecules
containing oxygen produced as a physiological product of oxygen metabolism. At normal levels, ROS
participate in the regulation of various physiological events, such as cell proliferation, cell migration,
wound healing, and angiogenesis [28]. In mammary gland, cells dissociated from post-involution
alveoli were enriched in CD49f, thus mammary precursors or mammary stem cell phenotypes were able
to reproduce a complete alveolar structure in subcultures without any significant loss in viability [29].
However, ROS produced by accumulated milk breakdown postweaning were shown to be the cause
underlying the selective involution of secretory alveolar luminal cells. The process of involution in a
mouse model involves a complex set of fine regulation of molecular and physical events that can be
classified into two phases. In the first stage, the accumulation of milk in the alveolar lumen is necessary
to initiate the first (reversible) phase during which the secretory cells begin to enter apoptosis. The
second phase of involution begins when matrix remodeling enzymes are upregulated. This stage
is irreversible. The role of matrix in remodeling development appears to be linked to the function
of stromal fibroblasts surrounding the lobuloalveolar network in mice, but not in all species, since
humans and bovines do not show the same cellular organization. However, this role is likely to be
regulated by epithelial–mesenchymal cross-talk [29,30]. In the animal model, when the involution
is still evident, a minor population of lactation-associated cells, which remains at the basal surface,
are considered a sort of track for subsequent lactation [27,31]. A negative feedback loop mediated
by the mechanical pressure of the filled alveolus regulates milk synthesis and triggers secretory cell
apoptosis [32].

There are also biochemical mechanisms that coordinate involution in association with the
mechanical stimulus. These mechanisms are driven by a component of the milk [33]. Especially
for mammary glands, the oxidative stress resulting from excess ROS has been shown to be an initiator
of apoptosis [34,35]. A previously report proposed that ROS produced by the breakdown of the
accumulated milk are associated with the activation of apoptosis in the first phase of mammary
involution [9]. At the onset of irreversible luminal cell death, a particular cell type with a macrophage
surface marker, such as CD68, arises in the inner layer cell population. Thus, ROS are a signal to trigger
cell death in the ROS-sensitive epithelial secreting cells, whereas the ROS-insensitive population is
maintained, and the process ends with the preservation of a signal originating in the CD68 epithelial
secreting cell type [9]. According to what has been previously reported, in this phase we find a small
population resistant to the apoptotic process that face the luminal cells CK18+, that of CD49f+/ALDH1−

which is considered very close to the characteristics of mammary stemness. Figure 1 shows the different
mammary cells affected by ROS during the regenerative involution in bovine mammary gland.
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possess a specific regulation of protection against the harmful effects of ROS, such as their 

Figure 1. Precursors cell population during regenerative involution in bovine mammary gland.

Other pathways are involved, in addition to the ROS effect, in mammary gland involution since it
becomes irreversible after a specific timepoint post-initiation, even when ROS are not present. This
temporal switch has been previously implicated both in vivo and in vitro in other models [36,37].
The limit that separates ROS-induced reversible activation and the irreversible completion of breast
invasion seems to be marked by a positive CD68 population. The outer cell basal population that
resists after involution is significantly less sensitive to ROS-associated cell death than the inner luminal
cell population. Basal cell populations that still survive after a complete involution have been proposed
to be responsible for giving rise to sequential healthy lactations.

In dairy cattle, there are several reports evaluating the role of oxidative stress or its amelioration
by supplementation of polyunsaturated fatty acids (PUFA) substrates or precursors. In these trials, it is
difficult to properly measure the oxidative stress status to deeply observe the role of ROS in mammary
gland functionality. These issues have been previously discussed [38] and further investigations should
provide more precise assessments or macromolecular damage products, in particular for lipids and
proteins. For example, PUFAs are highly susceptible to peroxidation during oxidative stress; thus,
their specific peroxidation metabolites have been proposed for accurate oxidative stress diagnosis in
dairy cattle. In this sense, the isoprostanes are a category of interesting molecules for a finer analysis of
the oxidative, which are already considered in oxidative stress in human medicine, in particular for
cardiovascular problems and sepsis [39].

6. Role of ROS in Breast Cancer Stem Cell Pathology

Although not particularly widespread in bovines [40] but important in dogs, cats, and humans,
the presence of tumor pathologies affecting the mammary glands is correlated with the analysis of
breast cancer stem cells and ROS appear to exert a role. Since intracellular ROS and the redox balance
have been implicated in mammary epithelial cell growth and differentiation [9,41], studies indicate
that ROS activity plays a significant role in the process of epithelial–mesenchymal transition, which is
crucial for metastatic mammary neoplasia [42–44]. ROS are produced in large quantities in response
to environmental stressors (experimentally determined by radiation, exposure to heat or ultraviolet
(UV) radiation) and these interfere with some macromolecules, such as lipids, proteins, and DNA, also
determining cell death [45]. These cancer stem cells have been identified in many neoplastic diseases
and have been linked to the development of relapses or metastatic involution of the disease [46]. These
cells belong to a niche of stem cells with specific properties such as self-renewal and the development
of different tumor cell lines [47]. These characteristics enable this cellular subtype population to
determine the serious involution of the neoplasm toward a metastatic or recurrent form [48]. These
cancer stem cells are capable of activating the epithelial–mesenchymal transition, a specific metastatic
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involution [49]. These cells have been discovered to possess a specific regulation of protection against
the harmful effects of ROS, such as their elimination and the ability to reduce their production.
Finally, in this cellular population, the genes encoding superoxide dismutase, catalase, and glutathione
peroxidase, all enzymes particularly involved in the scavenging of ROS are overexpressed [50]. It has
been reported that in normal breast stem cells and in a subset of cancer stem cells, at least in mice
and humans, lower levels of ROS were measured compared to their cell descendants. These data led
us to hypothesize that in different tissues, there are multipotent adult stem cells that conserve that
cellular population from any damage induced by the oxidative state either due to endogenous or
external causes.

An increase in free radical scavengers would lead some cancer-like stem cells to keep ROS levels
low, even if extreme variability is observed in this phenomenon for both adult physiological stem cells
and in different cancer stem cell subtypes with possible interference from environmental factors. This
subtype of stem cells with low ROS levels could be the result of a quiescent cell population.

7. Conclusions

The accumulated evidence of the roles of ROS-driven normal and pathological involution in
mammary glands provides insights into opportunities for modulating oxidative status. There is a
possibility that through their control, mammary functionality can be modulated. The period of late
lactation and the dry phase are of special interest in the field of animal production, and is of primary
importance in the dairy cow production chain. Furthermore, another possibility is targeting cancer
cells’ ability to detoxify ROS, which have been frequently observed to be upregulated in breast cancer
stem cells [51].

In conclusion, the role of ROS appears to have been ascertained as potential biomarkers of
patophysiological suffering of the mammary gland, as well as targeting the mammary stem cells
present in the normal tissue or derived from tumor initiation.
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