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Abstract: Dictamni dasycarpus is a type of Chinese medicine made from the root bark of
D. dasycarpus. It has been reported to show a wide spectrum of biological and pharmacological effects,
for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice,
chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its
antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin
damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative
challenge was elucidated by measuring the levels of reactive oxygen species (ROS) production,
interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3
(NALP3)) inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell
viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling
compared to untreated animal in the hairless albino mice (ICR mice) model. At the molecular level,
Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation
of apoptosis-associated speck-like protein containing CARD (ASC), procaspase-1, NF-κB and
mitogen-activated protein kinase (MAPKs) such as c-Jun N-terminal protein kinase (JNK) and p38.
This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and
inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6,
NLR family pyrin domain containing 3 (NLRP3) inflammasome generation, antioxidant enzyme
activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB
in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin.
Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest
the potential application of D. dasycarpus extract in preventing inflammatory processes in dermatitis.

Keywords: D. dasycarpus; ROS; interleukin-1β; interleukin-6; tumor necrosis factor-α; NF-κB;
inflammasome

1. Introduction

Traditional Chinese medicine (TCM) therapy used in Taiwan has been enrolled in the
National Health Insurance Research Database since 2002 [1,2]. Herbal formulas and single herbs,
such as Fang-Feng (Saposhnikovia divaricate) and Bai-Xian-Pi (Dictamni dasycarpus; D. dasycarpus),
were prescribed for treating dermatitis [3]. D. dasycarpus has been found to possess many interesting
pharmacological and physiological activities in the treatment of skin diseases in clinic, although it
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lacks the mechanistic evidence [4,5]. Phytochemicals such as polyphenols or flavonoids are the most
abundant naturally occurring anti-inflammation compounds and have anti-oxidative properties [6,7].
In this study, we studied the protective mechanisms of D. dasycarpus against inflamed dermatitis.

The hapten oxazolone-induced dermatitis in mice has been developed as the model for
experimental atopic dermatitis or contact dermatitis. Repeated oxazolone applications provoke
a pruritic dermatosis with epidermal hyperplasia, erythematous and edematous dermatosis [8,9].
The T cells in the skin tissue sensitize and elicit a hypersensitive inflammation reaction [10],
whereas skin keratinocytes provide pro-inflammatory cytokines to initiate and maintain the
T cell-mediated immune responses in inflammatory lesions [11,12]. To go through various stages
is very important for epidermal keratinocytes to induce adaptive immunity, antigen presentation,
keratinocyte activation, and the expression of adhesion molecules. In addition, keratinocytes also
act as a potent source of cytokines and chemokines, which result in a particular dialogue
between keratinocytes and activated immune cells [13]. In addition, the keratinocytes act as innate
immune sensors that synergistically induce of additional inflammation [14,15]. Inflammasomes are
multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular
patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of
caspase-1 and subsequent cleavage of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 [16].
The dysregulated inflammasome activity is associated with numerous skin inflammatory syndromes
and skin cancer predisposition [17]. Therefore, attenuating inflammasome activation may provide a
valuable therapeutic strategy in treating various inflammation-related disorders [18].

The goal of this study was to investigate the effect of D. dasycarpus extract on inflammatory
mediators and cellular signaling pathways in oxazolone-challenged mice and HaCaT cells. The topical
application of D. dasycarpus extract inhibited oxazolone-induced expression of inflammatory mediators.
The activation of NF-κB signaling pathways was also investigated. Furthermore, we also elucidated
the effect of D. dasycarpus extract on oxazolone-mediated NLRP3 activation.

2. Materials and Methods

2.1. Herb Extraction and Chemicals

The herbs were purchased from Sun Ten Pharmaceutical Co., Ltd. (New Taipei City, Taiwan).
Periostracum cicadae (PC) and D. dasycarpus (DD) were extracted with 50% v/v ethanol as previously
reported [19]. All dried extract was weighed and re-constituted in 0.1% dimethyl sulfoxide (DMSO)
containing culture medium to 1 mg/mL. All other chemicals and solvents were obtained from
Sigma-Aldrich Inc. (St. Louis, MO, USA).

2.2. Animals and Treatments

Mice experiments were conducted in accordance with the International Standards on Animal
Welfare and in accordance with the ethical standards of the Laboratory Animal Service Center of China
Medical University (Affidavit of Approval of Animal Use Protocol No. 2017-090). Repeated topical
application of oxazolone over an extended period was used to induce allergic contact dermatitis in
hairless male ICR mice (BioLASCO Taiwan Co., Ltd., Taipei, Taiwan). The mice were subdivided into
groups based on their latest body weight (five mice in each group) using a stratified randomization
method. Animals were sensitized once with 5% (w/v) 4-ethoxymethylene-2-phenyl-2-oxazolin-5-one
(oxazolone) and dissolved 3:1 in acetone and olive oil (150 µL) on the shaved back. After 3 days,
the mice were challenged with 1% oxazolone every other day for 10 days. For the experimental group
animals, 5 mg/kg of P. cicadae or D. dasycarpus was applied onto the mice backs at the day interval.
On the other hand, the control group animals were treated with ethanol at the same day interval.
All mice were sacrificed and sampled on day 24 [20,21].
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2.3. Specimens and Immunohistochemistry

After the 24 days of treatment, pentobarbital was administered to all mice (200 mg/kg, IP),
and 1 cm2 skin tissues were then quickly removed. The skin samples were fixed in 4% buffered neutral
formalin solution for 24 h at room temperature, and paraffin was embedded. Serial sections were
floated in warm water containing 2% gelatin to prevent peeling off of the sample. The sections were
deparaffinized, rehydrated, and stained with hematoxylin and eosin (H&E) for immunohistochemistry.
Deparaffinization, re-hydration and, quenching of endogenous peroxidase of the 5 mm paraffin
cross-sections were evaluated by 30 min incubation in 0.3% H2O2 and incubation with 0.5 mg/mL of
anti-cyclooxygenase (COX)-2, anti-CD3, anti-CD45 antibodies or control IgG overnight, followed by
incubation with biotinylated secondary Abs and developed with the Vectastain Elite ABC kit (Vector)
with 3,3-diaminobenzidine (DAB) as a substrate. Examination was done by light microscopy at
200×magnifications.

HaCaT cells were fixed with 4% paraformaldehyde in 250 mM Hepes, pH 7.4, freshly diluted from
16% stocks stored at −20 ◦C. After standing at room temperature for 5 min, the cells were washed with
phosphate-buffered saline (PBS) and treated with blocking solution (PBST, 1% fetal bovine serum, FBS)
at 4 ◦C for 1 h. Cells were incubated with an NLRP3 Ab in blocking solution at 4 ◦C overnight in a wet
chamber. After washing in PBST, the cells were incubated with the appropriate secondary antibody
mixtures in blocking solution for at least 1 h at room temperature. The cells were washed three
times in PBS and mounted in gold antifade reagent with DAPI (Molecular Probes, Eugene, OR, USA).
Confocal analysis was performed using a Leica TCS SP2 confocal microscope: 10 horizontal scans
using a 63× (1.3 NA) oil immersion objective were recorded for each image with the imaging software
(exported as a TIFF file).

2.4. Cell Culture

HaCaT cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM, HyClone;
GE Healthcare Life Sciences, Marlborough, MA, USA) supplemented with 10% fetal bovine serum and
1% antibiotics at standard cell culture conditions (37 ◦C, 5% CO2 in a humidified incubator).

2.5. Cytokines Measurement

Supernatant obtained from the HaCaT cell culture in the various treatment groups were analysed
for interleukin IL-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α with enzyme-linked immunosorbent
assay (ELISA) kit (eBioscience, San Diego, CA, USA), according to the manufacturer’s instructions.

2.6. Reactive Oxygen Species (ROS) Measurement

HaCaT cells were seeded in 96-well plates at a concentration of 1 × 105 cells/mL. Cells were
treated with oxazolone (50 µM), subsequently washed twice with PBS and incubated with 20 µg/mL
of P. cicadae or D. Dasycarpus for 24 h. After being treated with 10 µM 2,7-dichlorofluorescein diacetate
(DCFH-DA; Sigma-Aldrich) in PBS for 30 min, the media was discarded, and the cells were washed
twice with PBS. The ROS fluorescence were monitored by fluorescence microscopy (Olympus IX71).
The mitochondrial ROS (mito ROS) were detected by the Mito SOXTM Red Mitochondrial Superoxide
Indicator (Invitrogen, Carlsbad, CA, USA) and monitored by fluorescence microscopy.

2.7. Western Blot Analysis

Cells were lysed in PBS containing 1% nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium
dodecyl sulfate (SDS), 5 µg/mL aprotinin, 100 µg/mL phenylmethylsulfonyl fluoride, 1 µg/mL
pepstatin A, and 1 mM ethylenediaminetetraacetic acid (EDTA) at 4 ◦C for 20 min. Total lysates were
quantified using a microBCA kit (Thermo Fisher Scientific, Waltham, MA, USA). Proteins (10 µg)
were resolved by SDS-polyacrylamide gel electrophoresis and electrophoretically transferred to a
PVDF (poly(vinylidene fluoride)) membrane. The membrane was blocked in 5% fat-free milk in
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PBST (PBS with 0.05% Tween-20), followed by incubation overnight with the following primary
antibodies diluted in PBST: JNK Ab, p-JNK Ab, p38 Ab, p-P38 Ab, ASC Ab, procaspase-1 Ab (diluted to
1:1000, all from Santa Cruz Biotech (Dallas, TX, USA)), p65 Ab (Genetex, Taiwan) and NLRP3
Ab (Adipogen, San Diego, CA, USA). The primary antibodies were removed, and the membrane
was washed extensively in PBST. Subsequent incubation with horseradish peroxidase-conjugated
goat anti-rabbit antibodies (1:20,000, Santa Cruz Biotech) was performed at room temperature
for 2 h. The membrane was washed extensively in PBST to remove any excess secondary
antibodies, and the blot was visualized with enhanced chemiluminescence reagent (GE Healthcare,
South Jakarta, Indonesia).

2.8. Statistical Analysis

Statistical analyses were carried out using Student’s t-test (sigma plot 10.0. Systat Software, Inc.,
San Jose, CA, USA) * p < 0.05 was considered significant, ** p < 0.01, *** p < 0.001.

3. Results

Mouse dorsal skin was sensitized with 5% oxazolone on day 1 and challenged with
1% oxazolone for an additional week at 2-day intervals to develop the acute allergic contact
dermatitis. Topical exposure to oxazolone induced a significant skin swelling response and
inflammation erythema. The recruitment of inflammatory cells (CD3+, CD45+ cells) was significantly
increased in oxazolone-exposed skin sites. The expression of COX-2, an important mediator of
acute phase reactions, was also significantly increased compared with control mice after oxazolone
treatment. Histologic evaluation showed keratosis in the stratum corneum and an erosive change in
epidermis, mild acanthosis and remarkable loss of hair follicles (epilation), loss of blood vessels
and remarkable loss hair of follicles and hypertrophic fat cells, as well as remarkable muscle
atrophy compared with the intact structure of the whole skin with no treatment (Figure 1A).
Prominent epidermal hyperplasia with abnormal keratinization and hyperkeratosis was quantitated in
Figure 1B. The results showed that the oxazolone-treated group had a significantly higher level of skin
thickness. The D. dasycarpus-treated group showed remarkably decreased oxazolone-induced swelling
and erythematic intensity. Similarly, the P. cicadae treated group completely prevented UVB-induced
damages in the epidermal. In addition, the dermal-epidermal junction returned to near-normal levels
compared to that of the control group as noted by the well-marked appearance of dermal papillae and
epidermal rete ridges. Moreover, the upper portion of the dermis showed an ordered arrangement of
hair follicles. These results indicated that topical administrated D. dasycarpus and P. cicadae alleviate
oxazolone-induced dermatitis at the relative low dose of 5 mg/kg.

The cultured HaCaT cells were treated with D. dasycarpus and P. cicadae followed by oxazolone
exposure to evaluate the possible mechanism of action of these two Chinese herbs in intracellular
stress (Figure 2). The cellular oxygen levels were dramatically increased in the oxazolone-treated cells,
whereas the ROS levels were significantly reduced in cells treated with D. dasycarpus and P. cicadae.
In addition, ROS levels in cytoplasm were higher compared to the ROS in mitochondria after treatment
with the two herb medicines. These results demonstrated that D. dasycarpus and P. cicadae can effectively
scavenge ROS induced by oxazolone in HaCaT cells.

To elucidate the protective mechanism of D. dasycarpus and P. cicadae on oxazolone-induced
allergic contact dermatitis, HaCaT cells were challenged with oxazolone followed by incubation with
D. dasycarpus and P. cicadae. It was found that D. dasycarpus and P. cicadae showed marked activity
against oxazolone-induced expression of p65, procaspase-1 and ASC at 24 h (Figure 3). The inhibitory
effect of D. dasycarpus was more potent than the effects of P. cicadae on p65 production, even though
P. cicadae has been reported to be an effective inflammatory inhibitor. We examined the effects of
P. cicadae and D. dasycarpus on the activation of the master regulators of antioxidant response, JNK and
p38. The results shown in Figure 3 reveal that the inflammation resulted in phosphorylation of the
stress-activated MAP kinases p38 and JNK. Cells treated with P. cicadae and D. dasycarpus exhibited
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decreased phosphorylation of JNK and p38 compared to cells treated only with oxazolone. The results
showed that both herbal medicines reduced the inflammation response of oxazolone-stimulated HaCaT
cells through p38 and JNK signaling, which could subsequently decrease IL-6 production.Antioxidants 2018, 7, x FOR PEER REVIEW  5 of 11 
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Figure 1. The effect of P. cicadae (PC) and D. dasycarpus (DD) on oxazolone-induced skin edema. (A) 
Representative scheme showing the treatment of the dermatitis mouse. Histopathological images of 
P. cicadae or D. dasycarpus of oxazolone-induced mouse dermatitis. Five-percent oxazolone was 
applied onto mice back every 2 days, for 10 days. The control group was treated with ethanol instead 
of oxazolone. Mouse skin was excised after the last application, and a representative section of H&E 
staining from five mice is shown. Topical treatment 5 mg/kg of P. cicadae or D. dasycarpus inhibited 
oxazolone-induced extensive structural damage in both the epidermis and dermis (magnification, 
40×). Infiltration of CD3+ or CD45+ lymphocytes into the dermis and the development of pro-
inflammatory component COX-2 were remarkably alleviated in the P. cicadae and D. dasycarpus 
treated group. (B) Epidermal thickness (μm) was measured histopathologically by H&E staining. 
Data represents of mean ± SD of three different animals, *** p < 0.001, significant when oxazolone-
treated group was compared with control, ### p < 0.001, significant when PC/CD+ oxazolone-treated 
group was compared to oxazolone only group. COX: cyclooxygenase; CD: cluster of differentiation. 

Figure 1. The effect of P. cicadae (PC) and D. dasycarpus (DD) on oxazolone-induced skin edema.
(A) Representative scheme showing the treatment of the dermatitis mouse. Histopathological images
of P. cicadae or D. dasycarpus of oxazolone-induced mouse dermatitis. Five-percent oxazolone was
applied onto mice back every 2 days, for 10 days. The control group was treated with ethanol instead
of oxazolone. Mouse skin was excised after the last application, and a representative section of H&E
staining from five mice is shown. Topical treatment 5 mg/kg of P. cicadae or D. dasycarpus inhibited
oxazolone-induced extensive structural damage in both the epidermis and dermis (magnification, 40×).
Infiltration of CD3+ or CD45+ lymphocytes into the dermis and the development of pro-inflammatory
component COX-2 were remarkably alleviated in the P. cicadae and D. dasycarpus treated group.
(B) Epidermal thickness (µm) was measured histopathologically by H&E staining. Data represents
of mean ± SD of three different animals; *** p < 0.001, significant when oxazolone-treated group
was compared with control; ### p < 0.001, significant when PC/CD+ oxazolone-treated group was
compared to oxazolone only group; COX: cyclooxygenase; CD: cluster of differentiation.
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The HaCaT cells stimulated by oxazolone were cultured with either P. cicadae or D. dasycarpus. The 
relative activation of JNK and p38 was determined by Western blotting, and the levels of JNK and 
p38 were used as an indication of equal loading. Caspase-1, procaspase-1, ASC and p65 expression in 
HaCaT cells lysates was measured by immunoblotting, whereas β-actin was used as a loading control. 

Mitochondria are potential organelles for NLRP3 inflammasome activation because of their vital 
role in the production of ROS. Western blotting analysis revealed that the 20 kDa form of caspase-1 
was present in cell lysates after an overnight treatment with oxazolone. Our results further confirmed 
that oxazolone could activate the NLRP3 inflammasome and stimulate the maturation of procaspase-1. 
The D. dasycarpus downregulated the capacity of oxazolone, including the inhibition of the expression 

Figure 2. The effect of P. cicadae and D. dasycarpus on the oxidative levels of HaCaT cells exposed to
oxazolone. HaCaT cells were sensitized with oxazolone and treated with P. cicadae or D. dasycarpus.
The generation of cellular ROS were measured by the 2′,7′-dichlorofluorescin diacetate (DCFH-DA),
whereas mitochondrial superoxide generation was analyzed by using MitoSOX™ Red as a probe.
N-acetylcysteine (NAC) was used as an antioxidant control. Representative micrographs (40×)
demonstrating. P. cicadae and D. dasycarpus effectively prevented oxazolone-produced cellular and
mitochondrial superoxide in HaCaT cells.
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Figure 3. Effects of P. cicadae and D. dasycarpus on oxazolone-irritated inflammation in HaCaT
cells. The HaCaT cells stimulated by oxazolone were cultured with either P. cicadae or D. dasycarpus.
The relative activation of JNK and p38 was determined by Western blotting, and the levels of JNK and
p38 were used as an indication of equal loading. Caspase-1, procaspase-1, ASC and p65 expression in
HaCaT cells lysates was measured by immunoblotting, whereas β-actin was used as a loading control.

Mitochondria are potential organelles for NLRP3 inflammasome activation because of their
vital role in the production of ROS. Western blotting analysis revealed that the 20 kDa form of
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caspase-1 was present in cell lysates after an overnight treatment with oxazolone. Our results further
confirmed that oxazolone could activate the NLRP3 inflammasome and stimulate the maturation of
procaspase-1. The D. dasycarpus downregulated the capacity of oxazolone, including the inhibition
of the expression of procaspase-1 and ASC. The confocal results showed NLRP3 dispersed over the
cytoplasm (Figure 4), and the activation state was also confirmed by abundant IL-1β secretion from
the same set of cells (Table 1). It was also found that D. dasycarpus effectively blocks NLRP3 generation
induced by oxazolone.
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Figure 4. Fluorescent confocal microscopic images showing the localization of inflammasome
components NLRP3 (green) in HaCaT cells.

Table 1. Cytokine levels in oxazolone-treated HaCaT cells and PC/DD + oxazolone-treated cells.

Oxazolone

Control PC DD

TNF-α pg/mL 20.64 ± 0.94 96.51 ± 9.74 87.97 ± 2.35 71.85 ± 4.95 a

IL-6 pg/mL 13.20 ± 2.87 27.40 ± 1.19 14.20 ± 2.43 b 12.30 ± 2.17 b

IL-8 pg/mL 20.64 ± 0.57 198.51 ± 14.24 87.97 ± 3.75 b 51.85 ± 5.21 b

Compared to oxazolone-only group, a p < 0.01; b p < 0.001; TNF: Tumor Necrosis Factor; IL-6: Interleukin 6.

IL-6 is a marker of activated keratinocytes. As shown in Table 1, oxazolone resulted in
dramatic increases in IL-6 protein levels in HaCaT cells. In contrast, treatment with oxazolone plus
P. cicadae or D. dasycarpus significantly reduced IL-6 expression. We further examined the effect of
P. cicadae and D. dasycarpus on IL-8 and TNF-α expression by ELISA. Treatment with P. cicadae and
D. dasycarpus markedly inhibited oxazolone-mediated cytokine expression. The increased levels of
IL-1β following oxazolone stress were decreased by pretreatment with the irreversible caspase-1
inhibitor Z-YVAD-FMK (Z-Tyr-Val-Ala-Asp fluoromethylketone). Treatment with D. dasycarpus
prevented IL-1β expression and D. dasycarpus exerted a stronger inhibitory effect than P. cicadae
(Table 2). Hence, our results demonstrate that the NLRP3 inflammasome is associated with the
production of IL-1β after oxazolone stimulation, and D. dasycarpus plays a role in a decrease in IL-1β
secretion in HaCaT cells treated with oxazolone.
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Table 2. ELISA analysis showing oxazolone-induced increase in IL-1βproduction in the absence and
presence of Z-YVAD-FMK in HaCaT cells. P. cicadae and D. dasycarpus abolished oxazolone–induced
increase in IL-1β.

Oxazolone

Control PC DD Z-YVAD-FMK Z-YVAD-FMK

IL-1β pg/mL 25.24 ± 0.57 180.11 ± 14.24 87.67 ± 4.95 a 72.65 ± 7.21 a 57.34 ± 4.54 b 28.84 ± 0.27 b

Fold of oxazolone, a p < 0.01; b p < 0.001.

4. Discussion

In this study, we investigated the anti-inflammatory activity of D. dasycarpus, including the
inhibition of the generation of cytokines and the inflammasome, as well as the downregulation of
the oxazolone-induced p38 and NF-κB. D. dasycarpus displayed in vivo activity at a concentration
of 5 mg/kg against oxazolone-induced dermatitis. These results suggest that the D. dasycarpus
could cease inflammation, which could be achieved via the depletion of ROS and its downstream
signaling pathways.

Several compounds have been identified in D. dasycarpus extract by pressurized liquid extraction
followed by high-performance liquid chromatography [22]. Among these compounds, limonoid and
obacunone are the top two abundant triterpenoids, which are well known to possess anti-inflammation
beneficial properties [23,24]. In addition, a wide variety of phenylalkylketone compounds derived from
herbal products activate potent antioxidant activities, which may also contribute to the dermaprotective
effects of D. dasycarpus extract on the skin [25].

Oxazolone has been used to induce colitis and contact dermatitis in mice [26]. Our results
showed that oxazolone provoked various chemical mediators such as TNF-α, IL-1β, and prostaglandin
E2 in the mice skin. In HaCaT cells, oxazolone-induced irritant effects triggered ROS generation
and mitochondrial oxidative stress. Recently, oxidative stress has been proposed to play an
important role in the activation of the inflammasome [27,28]. Accordingly, ROS are required for
NLRP3 inflammasome activation [29,30]. Activation of NLRP3 by extracellular inflammatory
insults results in the transcriptional regulation and post-translational modifications of license
receptor activation. The indirect immunofluorescence staining of the NLRP3 protein shows a
significant overlap of NLRP3 with the endoplasmic reticulum (ER) under non-stimulatory conditions.
D. dasycarpus could downregulate NLRP3 activation through scavenging ROS, suppressing the
expression of ASC, and localizing resting NLRP3 to endoplasmic reticulum structures (Figure 4).
Therefore, D. dasycarpus limited the assembly of NLRP3 inflammasome, thus preventing procaspase-1
progression, caspase-1 activation and the maturation IL-1β.

The inhibition of pro-inflammatory cytokine expression has been reported to improve dermatitis
in terms of protection from extended adaptive immunity. We confirmed that oxazolone exhibited
dermatitis symptoms, such as erythema and desquamation in the dorsal skin, and has successfully
prevented this cutaneous damage in mice by topical administration of P. cicadae, as well as D.
dasycarpus. P. cicadae and D. dasycarpus also diminished oxazolone-induced inflammation by decreasing
the levels of pro-inflammatory cytokines including IL-6, IL-8, and TNF-α and exhibited signaling
regulatory effects in HaCaT cells. D. dasycarpus treatment antagonized NF-κB-dependent inflammatory
mediators such as IL-1β, IL-6, IL-8, and COX-2 at a protein level since the NF-κB responsive
elements have been defined [31–33]. Furthermore, our results also showed that D. dasycarpus reduced
inflammation activity via down-regulation of the p38 and JNK pathways, which could subsequently
decrease IL-6 production [34]. D. dasycarpus displayed better anti-inflammatory bioactivity than
the same concentration of P. cicadae upon oxazolone-stimulated in in vivo and in vitro models [19].
Hence, we propose that D. dasycarpus could be an antioxidant for therapy against skin exposure to
oxazolone (Figure 5).
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