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Abstract: Although Aloe vera contains numerous bioactive components, the activity principles of
widely used A. vera extracts are uncertain. Therefore, we analyzed the effects of genuine A. vera
aqueous extract (AV) on human cells with respect to the effects of hydrogen peroxide (H,O,)
and 4-hydroxynonenal (HNE). Fully developed A. vera leaves were harvested and analyzed for
vitamin C, carotenoids, total soluble phenolic content, and antioxidant capacity. Furthermore,
human cervical cancer (HeLa), human microvascular endothelial cells (HMEC), human keratinocytes
(HaCat), and human osteosarcoma (HOS) cell cultures were treated with AV extract for one hour
after treatment with HyO, or HNE. The cell number and viability were determined using Trypan
Blue, and endogenous reactive oxygen species (ROS) production was determined by fluorescence,
while intracellular HNE—protein adducts were measured for the first time ever by genuine cell-based
HNE-His ELISA. The AV extract expressed strong antioxidant capacities (1.1 mmol of Trolox eq/g
fresh weight) and cell-type-specific influence on the cytotoxicity of HyO,, as well as on endogenous
production of ROS and HNE—protein adducts induced by HNE treatment, while AV itself did not
induce production of ROS or HNE-protein adducts at all. This study, for the first time, revealed the
importance of HNE for the activity principles of AV. Since HMEC cells were the most sensitive to
AV, the effects of AV on microvascular endothelia could be of particular importance for the activity
principles of Aloe vera extracts.

Keywords: Aloe vera; plant extract; antioxidants; cell growth; oxidative stress; reactive oxygen
species (ROS); hydrogen peroxide; lipid peroxidation; 4-hydroxynonenal (HNE); cell-based ELISA;
HNE-protein adducts; microvascular endothelium

1. Introduction

Aloe barbadensis Miller L. (trivially called A. vera) is one of more than 400 species of the Aloe genus
belonging to family Liliaceae that originated in South Africa, but are indigenous to dry subtropical and
tropical climates [1]. Aloe vera is widely used in different forms of medicinal remedies without a clear

Antioxidants 2018, 7, 125; d0i:10.3390/antiox7100125 www.mdpi.com/journal /antioxidants


http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0002-1884-8953
http://www.mdpi.com/2076-3921/7/10/125?type=check_update&version=1
http://dx.doi.org/10.3390/antiox7100125
http://www.mdpi.com/journal/antioxidants

Antioxidants 2018, 7, 125 2of 14

understanding of the activity principles that could make the basis for its therapeutic properties [2].
In addition to the medicinally most potent A. barbadensis Miller, at least three other species are known
to have medicinal properties: Aloe perryi Baker, Aloe ferox, and Aloe arborescens [2].

The antioxidant composition of A. vera includes mostly a-tocopherol (vitamin E), carotenoids,
ascorbic acid (vitamin C), flavonoids, and tannins. In vitro studies showed the scavenging potential of
A. vera gel for various free radicals. Moreover, phytosterols purified from A. vera, namely lophenol
and cycloartanol, can induce the downregulation of fatty-acid synthesis and show a tendency for
the upregulation of fatty-acid oxidation in the liver, which favors the reduction in intra-abdominal
fat and improvement of hyperlipidemia. It was claimed that the polysaccharides in A. vera gel
have therapeutic properties such as immunostimulation, anti-inflammatory effects, wound healing,
promotion of radiation damage repair, anti-bacterial, anti-viral, anti-diabetic, and anti-neoplastic
activities, as well as stimulation of hematopoiesis and anti-oxidant effects [3]. Lactobacillus brevis strains
isolated from naturally fermented A. vera gel inhibited the growth of many harmful enteropathogens
without restraining most normal commensals in the gut. Moreover, aloin is metabolized by the colonic
flora to reactive aloe emodin, which is responsible for purgative activity. Aloe emodin also inhibits
colon cancer cell migration by downregulating matrix metalloproteinases 2 and 9 (MMP-2/9) [1-3].

Many of the medicinal effects of A. vera extracts were assigned to the polysaccharides found in the
inner leaf parenchymatous tissue, while it is believed that these biological activities could mostly be due
to synergistic action of the compounds contained therein rather than a single chemical substance [4].
The most investigated biomedical properties of A. vera gel involve the promotion of wound healing,
including burns and frostbite, in addition to anti-inflammatory, antifungal, hypoglycemic, and
gastroprotective properties. However, the healing properties of A. vera gel extracts were mostly
tested using animal models. Hence, A. vera gel extract stimulated fibroblast growth in a synovial
model, while also enhancing wound tensile strength and collagen turnover in wound tissue [5].
In another trial, A. vera gel increased levels of hyaluronic acid and dermatan sulfate in granulation
tissue. A. vera treatment of wounded tissue also increased the blood supply, which is essential for the
formation of new tissue. On the other hand, some reports mentioned inhibitory effects of A. vera gel
on wound healing, which should not be a surprise, as the composition of A. vera gel varies even within
the same species and depends on the source and climate of the region of plant growth, as well as on
the processing method [5]. It was suggested that a standardized method could be necessary for the
production of aloe gel products to avoid degradation of the polysaccharides, thereby preventing the
removal of high-molecular-weight molecules in aloe gel extracts [3].

In vivo and in vitro studies demonstrated the potential of A. vera gel as an anti-hyperglycemic
and anti-hyprecholesterolemic agent for type 2 diabetic patients without any significant effects on
other normal blood lipid levels or liver/kidney function. A. vera also helps improve carbohydrate
metabolism, with a recent report suggesting that it helps improve metabolic status in obese
pre-diabetics and in early non-treated diabetic patients by reducing body weight, body fat mass,
fasting blood glucose, and fasting serum insulin in obese individuals [3,6].

It was also shown that A. vera extracts can inhibit inflammatory processes via the reduction
of leukocyte adhesion and the suppression of pro-inflammatory cytokines, thus attenuating lipid
peroxidation and cerebral ischemia/reperfusion injury in rats [1].

The abovementioned effects of A. vera extracts, together with its content of different antioxidants,
suggest that A. vera might influence biomedical effects of lipid peroxidation, and thus, of generated
reactive aldehydes denoted as second messengers of free radicals, due to their high cytotoxic and
mutagenic capacities combined with multiple regulatory activities [7-9]. Among these reactive
aldehydes, of particular interest is 4-hydroxynonenal (HNE), generated from polyunsaturated fatty
acids (PUFAs). In particular, HNE has high affinity for binding to proteins, consequently changing their
structure and function, while still retaining toxic and regulatory activities of the aldehyde, including
regulation of cell proliferation, differentiation, and apoptosis [10,11]. Therefore, HNE is currently
considered to be major biomarker of lipid peroxidation, especially if bound to proteins, which already
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helped us better understand the pathophysiology of lipid peroxidation, as well as inflammatory and
growth-regulating processes, and helped us revise modern concepts of major stress- and age-associated
diseases [12-15].

Therefore, the aim of this study was to evaluate, using in vitro experiments, if A. vera extract
could interfere with the cytotoxicity of reactive oxygen species (ROS), notably of hydrogen peroxide
(H207), which is the most common (patho)physiological ROS, and with HNE, acting as a major second
messenger of free radicals.

2. Materials and Methods

2.1. Plant Material and Extract Preparation

To avoid difficulties arising from the use of commercially available A. vera extracts, while also
considering the inconvenience of gel extracts for in vitro studies, we prepared in-house aqueous
extracts from the fresh plant, as can be done easily in any laboratory. Aloe vera (Aloe barbadensis Miller)
plants were subjected to vegetative propagation. Young shoots were removed from the mother plant,
and were planted in sand until the roots were developed. After that, plantlets were transferred in
0.5-kg plastic pots, two plants per pot, containing commercial soil. Plants were irrigated once every two
weeks with tap water and grown under ambient irradiance and temperature (400-1400 pmol m 2 s~ !
and 25 £ 1 °C, respectively). After one year of growth, the first fully developed leaves, fourth from
the top, were used for crude-extract preparation, as well as for all biochemical analysis. A. vera leaves
were grounded in liquid nitrogen using a pistil and mortar. The obtained leaf powder was used for
further preparations and analyses.

2.2. Total Soluble Phenolic Content and Antioxidant Activity

2.2.1. Phenolic Content

For total soluble phenolic content estimation, approximately 600 mg of leaf powder was used
and extraction was performed for 24 h at —20 °C in 2.5 mL of 96% ethanol [16]. The reaction mixture
contained 100 pL of ethanol extract, 700 uL of distilled H,O, 50 pL of Folin—Ciocalteu reagent, and
150 uL of sodium carbonate solution (200 g L~!). Samples were incubated for 60 min at 37 °C in a
water bath, and absorbance was measured spectrophotometrically at 765 nm using gallic acid (GA) as
a standard. Total soluble phenolic content was expressed as gallic acid equivalent (GAEq) per g of
fresh weight.

2.2.2. Ascorbic Acid Content

Approximately 600 mg of leaf powder was extracted in 10 mL of distilled water. The homogenates
were centrifuged for 15 min at 3000x ¢ and 4 °C. The reaction mixture contained 300 pL of
aqueous extract, 100 uL of 13.3% trichloroacetic acid, 25 pL of deionized water, and 75 uL of
2,4-dinitrophenylhydrazine (DNPH) reagent. The DNPH reagent was prepared by dissolving 2 g of
DNPH in 230 mg of thiourea and 270 mg of CuSO, in 100 mL of 5 M H,SO4 [17]. Blanks were made
in parallel for each sample as described above without addition of DNPH reagent. Samples were
incubated in a water bath for 60 min at 37 °C. After incubation and addition of DNPH reagent to
the blanks, 500 uL of 65% H,S50,4 was added to all reaction mixtures. The absorbance was measured
at 520 nm. The concentration of ascorbic acid was obtained from a standard curve with known
concentrations of ascorbic acid (2.5-20 ug mL~1). The ascorbic acid content was expressed in mg per
100 g of fresh weight.

2.2.3. Measurement of Total Carotenoids

Approximately of 0.1 g of leaf tissue was ground in liquid nitrogen with the addition of
Mg(HCO3),. Fine powder was extracted in absolute acetone for 24 h at —20 °C. Samples were
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centrifuged at 18,000 x g for 10 min and 4 °C; the absorbance was measured at 470 nm, 645 nm, and
662 nm. Absolute acetone was used as a blank test. The content of total carotenoids was estimated
according to the method described by Lichtenthaler and Buschmann [18].

2.2.4. Antioxidant Activity

Antioxidant activity was determined using the Brand-Williams method [19]. The supernatant
obtained by extraction with 96% ethanol for 24 h at —20 °C was used. The reaction mixture
contained 20 uL of leaf extract and 980 pL of 0.094 mM 2,2-diphenyl-1-picrylhydrazyl (DPPH)
previously dissolved in methanol. The reaction was carried out in the dark at 22 °C for
15 min with occasional stirring. After 15 min, the absorbance at 515 nm was measured. Then,
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) dissolved in methanol was used
as a calibration standard, as Trolox is a water-soluble synthetic analog of x-tocopherol widely used
as an antioxidant standard when plant extracts are analyzed [20,21]. Hence, the total antioxidant
activity of A. vera extract was expressed as the equivalent (Eq) of Trolox per g of fresh weight of A. vera
leaves (FW).

2.3. Cell Cultures and Treatments

Aiming to evaluate whether the activity principles of A. vera extract include interference with
the bioactivities of ROS and HNE, we used four different human cell lines and three complementary
analytical methods. Each experiment and analysis was done using triplicates of identical cultures,
while statistical evaluation was done using a t-test, with values of p < 0.05 considered as significant.
For these experimental treatments, obtained leaf powder was dissolved with ice-cold physiological
saline solution at a 1:1 w/v ratio, vortexed, and left at 4 °C overnight. After centrifugation (5000 g,
4 °C, 10 min), supernatants were transferred to and combined in a new tube. Thus, the produced crude
extract was filtered through a 0.45-pm filter (Millipore, Merck, Germany) and stored in a refrigerator
in sterile plastic tubes as 1-mL aliquots before being used further in experimental work. This in-house
prepared A. vera extract is denoted as AV in the study presented.

2.3.1. Cell Cultures

The human uterine cervical carcinoma cell line (HeLa), human dermal microvascular endothelial
cells (HMEC), the human spontaneously transformed aneuploid immortal keratinocyte cell line from
adult human skin (HaCaT), and the human osteosarcoma cell line (HOS), which grows resembling
osteoblast cells in vitro, were purchased from the American Type Culture Collection (ATCC). The cells
were cultivated in T75 cell culture flasks (TPP, Switzerland) in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% (v/v) fetal calf serum (FCS) at 37 °C in humidified atmosphere with 5% CO,.

Prior to the experiments, the cells were harvested with 0.25% (w/v) Trypsin/0.53 mM
ethylenediaminetetraacetic acid (EDTA) solution and counted with a Trypan Blue Exclusion Assay in a
Biirker-Tiirk hemocytometer (Brand). The cells were seeded into 96-microwell plates (TPP, Trasadingen,
Switzerland) at a specific density different for each cell line to acquire optimal short-term culturing
conditions of 4 x 10* cells/well (HMEC and HaCaT), or 1 x 10° cells/well (HeLa and HOS), and left
for 2 h to attach before further treatment.

2.3.2. Experimental Treatments with AV, H,O,, and HNE

In the first set of experiments, the potential influence of AV extract on the acute cytotoxicity of
H,0O;, which is the most common (patho)physiological non-radical ROS, was evaluated. To do that,
AV extract was added either as 1% or as 10% final v/v concentration one hour after treating the cells
with either 0.0025% or 0.05% v/v concentration, which should cover the range of median lethal dose
(LDsg) for the majority of the cell lines. The respective control cell cultures were either treated only
with H,O, or with AV extract, or were not treated at all. After 24 h, the cells were harvested and
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analyzed using the Trypan Blue Exclusion Assay in a Biirker-Tiirk hemocytometer, counting not only
total cells per culture, but also the incidence of live vs. dead cells.

According to the obtained data, the second set of experiments in which HNE was used to treat the
cells was performed. The treatment protocol was almost identical to the first one, except that, instead
of hydrogen peroxide, HNE was used at 50 pM concentration resembling the LDsg for the majority of
the cells, while the AV extract was used only at 1% dose one hour after HNE. During the one-hour
period, the aldehyde should mostly be metabolized, bound to the cellular proteins, or eliminated from
the cells, thereby gaining its major immediate effects [22]. Two hours later, cell cultures were used
for determination of the levels of HNE—protein adducts in the cells or for analysis of the endogenous
(i.e., intracellular) production of ROS, notably of H,O5.

2.3.3. Determination of Intracellular HNE-Protein Adducts Using Cell-Based HNE-His ELISA

After the above-described treatment with HNE and/or AV extract, the cells were treated for 5 min
with 90% ethanol and were fixed with 10% buffered formalin to be processed immunocytochemically
for determination of the intracellular content of HNE—protein adducts. For determination of the
HNE-protein adducts, the genuine monoclonal antibody obtained from the culture medium of the
clone derived from a fusion of Sp2/Ag8 myeloma cells with B-cells of a BALBc mouse immunized
with HNE-modified keyhole limpet hemocyanine specific for the HNE-His adducts (courtesy of
Prof. G. Waeg from KF-University in Graz, Austria) were used [23]. Therefore, the well-known genuine
HNE-His ELISA designed for in vitro research was combined for the first time as a cell-based ELISA
with a standardized immunocytochemical procedure [22,24]. Shortly after the cells were fixed for
24 h, formalin was removed, and possible endogenous peroxidase activity of the samples was blocked
with 1.5% H,O,, 0.1% NaN3, and 2% bovine serum albumin (BSA), and the primary antibody against
HNE-histidine conjugates was added. For detection of the HNE adducts, the immunoperoxidase
technique was used, with secondary rabbit anti-mouse antibody (Dako, Glostrup, Denmark) applying
3,3'-diaminobenzidine tetrahydrocloride (DAB) as a chromogen. After the remaining reagents were
removed, 100 uL of sterile saline was added to each microculture well, which was then analyzed at
620 nm using an ELISA plate reader with a 405-nm reference filter (Multiskan EX; Thermo Fisher
Scientific, Waltham, MA, USA). To allow easier evaluation of the obtained data, the results are presented
as a percentage of respective control values (100%).

2.3.4. Measurement of Intracellular ROS Production

The ROS measurement based on the intracellular oxidation of 2’,7'-dichlorodihydrofluorescein
diacetate (DCFH-DA; Sigma-Aldrich, St. Louis, MO, USA) to fluorescent 2/,7’-dichlorofluorescein
(DCF) was used to determine ROS generation inside the cells [25]. The cells were incubated with
10 pM DCFH-DA at 37 °C for 30 min. The medium was replaced with a fresh one and the zero point
was measured with a Cary Eclipse Fluorescence Spectrophotometer (Varian, Agilent, Santa Clara, CA,
USA) with an excitation wavelength of 500 nm and an emission detection wavelength of 530 nm, while
fluorescence was measured after 30 min. To allow easier evaluation of the obtained data, the results
obtained as relative fluorescence units (RFU) measured are presented as a percentage of respective
control values (100%).

3. Results

3.1. The Levels of Antioxidants in A. vera Leaves

The amounts of major antioxidants present in A. vera leaves with respect to antioxidant capacity
expressed in comparison to Trolox are shown in Figure 1.

The total antioxidant activity of A. vera leaves was 1102.42 £+ 56.7 mg Trolox Eq/g of FW.
Composition analysis revealed the following amounts of the known antioxidants in the A. vera leaves:
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ascorbic acid (0.172 %+ 0.03 mg/g of FW), total carotenoids (0.055 £+ 0.002 mg/g of FW), and total
soluble polyphenols (355.9 £ 10.2 mg GAEq/g of FW).
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Figure 1. Partial characterization of the antioxidant levels of Aloe vera leaves. Values are given as mean
values for triplicates.

3.2. The Effects of HyO, and AV Extract on Cell Viability

The effects of different concentrations of AV extract added one hour after different doses of H,O,
are shown in Figures 2-5.
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Figure 2. The effects of Aloe vera (AV) extract (1 or 10%) on the human cervical cancer (HeLa) cells
with respect to HyO, treatment (0.0025% or 0.05%). The cell count values (viability determined using
Trypan blue) were obtained 24 h after treatment (H,O, followed by AV extract 1 h later) and are given
as mean values for triplicates. * significant difference to untreated control; ** significant difference to
H,0, treatment alone.

The HeLa cells did not show sensitivity to a lower dose of HyO,, while a higher concentration
reduced the cell count and increased the incidence of dead cells, thus indicating a further decay of the
H,O,-treated cells. The AV extract did not show any prominent effects if used at 1% concentration;
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however, at the higher 10% concentration, the growth of the HeLa cells increased slightly and the
cytotoxicity was reduced.

In contrast, in the case of HMEC cells, AV used at the 10% dose reduced the growth of the
cells, while, if used at 1%, it caused a slight enhancement in the growth of these cells, as can be
seen in Figure 3. Despite such concentration-dependent effects of AV on the HMEC cells if given
alone, the plant extract did not influence the concentration-dependent cytotoxicity of H,O, as could be
expected. This was because 1% AV enhanced the growth of the HMEC cells; as such, its combined effect
with a lower dose of H,O, resulted in relatively (in comparison to 1% AV alone) more pronounced
cytotoxicity of HyO,, while, in the case of the 10% AV extract, its influence on the cytotoxicity of HyO,
was the opposite. However, in comparison to the cells treated by H,O, alone, these difference were
not significant (p > 0.05).
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Figure 3. The effects of AV extract (1 or 10%) on the human microvascular endothelial cells (HMEC)
with respect to H,O, treatment (0.0025% or 0.05%). The cell count values (viability determined using
Trypan blue) were obtained 24 h after treatment (H,O, followed by AV extract 1 h later) and are given
as mean values for triplicates. * significant difference to untreated control.

The concentration-dependent growth-inhibiting effects of AV extract were observed for the HaCaT
cells (Figure 4), although the cytotoxicity of H,O, for this cell line did not depend on the used dose
of HyO,. The combined treatment with 1% AV did not influence the cytotoxicity of HyO,, while
10% concentration of the plant extract showed obviously additive suppressing (i.e., toxic) effects with
H,O, for the HaCaT cells.

Finally, it should be said that, for the HOS cells (Figure 5), the AV extract did not show any
prominent effect, although these cells expressed relatively high sensitivity to the cytotoxic effects of
H,0O, (more than 60% inhibition).
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Figure 4. The effects of AV extract (1 or 10%) on the human keratinocyte (HaCaT) cells with respect to
H,0O, treatment (0.0025% or 0.05%). The cell count values (viability determined using Trypan blue)
were obtained 24 h after treatment (H,O, followed by AV extract 1 h later) and are given as mean
values for triplicates. * significant difference to untreated control; ** significant difference to respective

H,0O, treatment alone.
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Figure 5. The effects of AV extract (1 or 10%) on the human osteosarcoma (HOS) cells with respect to
H,0O; treatment (0.0025% or 0.05%). The cell count values (viability determined using Trypan blue)
were obtained 24 h after treatment (H,O, followed by AV extract 1 h later) and are given as mean

values for triplicates. * significant difference to untreated control.

The toxic effects of HyO, for the HOS cells did not depend on the dose of peroxide used.
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3.3. The Effects of AV Extract on HNE-Pretreated Cells

In the next set of experiments, the cells were exposed to 50 pM HNE concentration, which was
followed by AV extract after 1 h, applied at 1% concentration. The results of these treatments are
shown in Figures 6 and 7.

3.3.1. The Effects AV on HNE Binding to Cellular Proteins
The amounts of HNE—protein adducts developed in the cells after treatment with HNE and AV

1% extract, or without the plant extract are presented in Figure 6.
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Figure 6. The effects of AV extract (1%) on the cellular generation of 4-hydroxynonenal (HNE)-protein
adducts induced by HNE treatment (50 uM). The amounts of HNE-protein adducts were determined
by cell-based HNE-His ELISA and are given as mean values for triplicates. * significant difference to
respective untreated control (ctrl); ** significant difference to respective HNE-treated control.

The treatment with AV extract itself did not induce the production of HNE—protein adducts in
any type of cell used, while increased amounts of HNE—protein adducts developed in the cells after
treatment with HNE were observed for all cell lines (significant for all with respect to the plain controls,
p < 0.05). If the cells were treated with the AV extract one hour after treatment with HNE, a tendency
of enhanced accumulation of the cellular proteins modified by HNE was observed for all cell lines.
However, it was significant only for the HMEC cells.

3.3.2. The Effects of AV on Cellular ROS Production Induced by HNE

The levels of ROS developed in the cells after treatment with HNE and AV 1% extract, or without
the plant extract are presented in Figure 7.

The HMEC cells were the only cell line that responded to HNE treatment in terms of change
in endogenous production of ROS. However, while treatment with HNE slightly increased (by 29%)
intracellular production of ROS in the HMEC cells, the AV extract had no influence, as it did not induce
ROS production in any cell line tested.
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Figure 7. The effects of AV extract (1%) on the cellular generation of reactive oxygen species (ROS;
mostly H,O,) induced by HNE treatment (50 uM). The amounts of the HNE-protein adducts were
determined using luminescence and are given as mean values for triplicates. * significant difference to
respective untreated control.

4. Discussion

The results obtained in this study show that A. vera extract prepared from plant leaves has
prominent antioxidant capacity, most likely reflecting the activities of various antioxidants produced
by the plant. Because the AV extract itself did not induce ROS or HNE production in any cell line
used, its observed bioactivities probably reflect complex interactions of different plant substances
with cellular redox homeostasis challenged by ROS- or HNE-induced oxidative stress. Since the cell
lines used expressed differential sensitivity to the H,O, toxicity, as well as reacting differently to the
AV treatment, we assume that such complex cell differences might reflect not only redox alterations
differently expressed by different types of cells upon H,O, treatment interfering with antioxidants
present in the AV extract, but also might be, at least in a part, due to the lipid peroxidation chain
reactions that might generate HNE acting as a second messenger of free radicals. That should not
be surprising since plants exposed to oxidative stress also experience lipid peroxidation generating
reactive aldehydes, indicating that HNE and related aldehydes have important biological roles not only
in animals and humans, but also in plants; these roles are not only toxic, but also regulatory, most likely
related to the activity of antioxidants and regulatory proteins [26]. A possibility that such bioactive
substances of plant origin could also affect the human cells is supported by our findings of enhancing
effects of AV on accumulation of HNE—protein adducts upon HNE treatment, noticed for all cell lines
used, especially for the HMEC cells, which also showed enhanced production of ROS upon HNE
treatment associated with rapid accumulation of the advanced (aldehydic) lipoxidation end products
(ALESs). Since microvascular endothelial cells (such as those used to establish the HMEC cell line) have
crucial roles in various inflammatory and degenerative diseases, and above all, in tissue growth, either
in wound regeneration or cancer development, the findings detailing the highest sensitivity of the
HMEC cells to treatment with AV extract and HNE, in comparison to the other cell lines used, might be
important for better understanding the bioactivity principles of AV extracts. Since this is the first study
which reveals the possible relevance of HNE for the activity principles of AV extracts, we hope it will
encourage further research in the field.



Antioxidants 2018, 7, 125 11 of 14

HNE acts in a concentration- and cell-type-dependent manner, regulating the majority of cellular
processes interfering with lipids, especially PUFAs, and carbohydrate metabolism, crucial for cellular
stress response and adaptation to stress, occurring even in yeast cells [27,28]. In the case of mammalian
cells, HNE may interfere with cellular, as well as with extracellular, factors, eventually acting as a
growth-regulating factor suppressing the growth of cancer, and enhancing the growth of non-malignant
cells [29-32]. Among such interactions of HNE, the most important are its effects on enzymes involved
in cellular metabolism and redox homeostasis, as well as on cytokines and their signaling pathways,
which might result either in negative (co-carcinogenic) or positive (anti-cancer) effects [33,34]. Here,
it should be stressed that such bioactivities of HNE occur not only in vitro, but also in vivo, and might
represent an anti-cancer defense mechanism of the non-malignant cells [35-37]. Eventually, that might
be of high importance for a better understanding of the interference of various antioxidants with
carcinogens and anti-cancer therapies [38—41].

Since Aloe vera is a very popular medicinal plant, over 4000 studies were performed on the
effectiveness of AV extracts in medical treatments, out of which many addressed the usefulness and
activity principles of AV for cancer patients. Thus, aloe anthraquinones were quite extensively studied
for their anticancer properties. In fact, the anthraquinones, aloin A and B, as well as aloe emodin,
are structurally similar to DNA-binding drugs such as anthracyclines. The antitumor effect of aloe is
also based on known mechanisms, including the induction of apoptosis and a significant elevation
of key antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
Pecere et al. [42] reported on selective in vitro and in vivo killing of neuroectodermal tumor cells by
aloe emodin both in tissue cultures and in animal models. Grimaudo et al. investigated the effect of
purified anthraquinines on sensitive and multidrug-resistant leukemia cells, and showed that only aloe
emodin had reproducible cytotoxic activity, but at concentrations much higher than those of common
anticancer agents such as daunorubicin and etoposide [43]. Lee et al. demonstrated that the time- and
dose-dependent treatment of human lung squamous carcinoma CH27 cells by aloe emodin resulted
in apoptosis, while combined effect of aloe emodin with cisplatinum confirmed that the inhibitory
effect of aloe emodin acted in a dose-dependent manner [44]. Similar to AV extracts, HNE also has a
strong pro-apoptotic capacity, which is related to its protein-binding capacity, while it can act also in
cell-type-specific manner, being selectively toxic for cancer, but not for non-malignant cells [10,11,14,32].
Moreover, HNE can affect tumor-host relationships, acting as an effector of anti-cancer activities of
leukocytes, stromal cells, and non-malignant cells bordering invading cancer, and might even result in
the spontaneous regression of cancer, such as W256 [35,36,45].

Furthermore, concomitant administration of the potent antioxidant pineal indole melatonin (MLT)
and A. vera extract had better effects than those obtained by MLT used alone in patients suffering
either from lung cancer, gastrointestinal tract tumors, breast cancer, or glioblastoma, all of which are
otherwise known to be associated with the synthesis of HNE-protein adducts [37,38,46,47]. Treatment
with MLT plus A. vera extracts produced therapeutic benefits, at least in terms of stabilization of
disease and survival, in patients with advanced solid tumors for whom no other standard effective
therapy was available [48]. Since HNE has an important role in defense activities of normal cells
against primary and metastatic cancer, and can reflect the overall tumor-host relationship, especially
on a metabolic level, we believe that further studies on AV should include immunohistochemical
evaluation of the HNE—protein adducts in cancer and in surrounding tissue, complemented by their
determination using the HNE-His ELISA in the blood. Such an analytical approach might not only
help better understand the biomedical effects of AV and the pathophysiology of HNE, but could also
further enhance the development of modern integrative biomedicine [49-52].

5. Conclusions

Aloe vera leaves used to prepare the extract (AV) had prominent antioxidant capacity, reflecting the
overall activities of various antioxidants. AV on its own did not at all induce ROS or HNE production
in the cells treated, while its observed bioactivities might reflect a complex interaction of different
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plant substances with cellular redox homeostasis for cells challenged by ROS- or HNE-induced
oxidative stress. The complexity of the biological effects of HNE (regulation of proliferation,
differentiation, and apoptosis), particularly if bound to proteins, plays an important role in the
pathogenesis of various diseases, including cancer, but also in the cellular and systemic defense
against stress- and age-associated diseases. In particular, the effects of AV on microvascular endothelia
could be an important activity principle of AV; thus, we suggest further studies on AV to include
an immunohistochemical evaluation of HNE—protein adducts in cancer and surrounding tissue,
complemented with their determination using HNE-His ELISA in the blood.

Author Contributions: Formal analysis, V.C., L]. and S.M. Funding acquisition, S.B.S. and N.Z. Methodology,
T.V. Resources, L.B. Writing—Original draft, H.L.

Funding: This research received no external funding.

Acknowledgments: This study is dedicated to all the brave people fighting terror and to the family of Ogunmola
Julius Femi, who inspired us to do the study.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Radha, M.H.; Laxmipriya, N.P. Evaluation of biological properties and clinical effectiveness of Aloe vera:
A systematic review. |. Tradit. Complement. Med. 2015, 5, 21-26. [CrossRef] [PubMed]

2. Eshun, K; He, Q. Aloe vera: A valuable ingredient for the food, pharmaceutical and cosmetic
industries—A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 91-96. [CrossRef] [PubMed]

3.  Hamman, ].H. Composition and applications of Aloe vera leaf gel. Molecules 2008, 13, 1599-1616. [CrossRef]
[PubMed]

4. Lucini, L.; Pellizzoni, M.; Molinari, G.P.; Franchi, F. Aloe anthraquinones against cancer. Med. Aromat. Plant
Sci. Biotechnol. 2012, 6, 20-24.

5. Choi, S.; Chung, M.H. A review on the relationship between Aloe vera components and their biologic effects.
Semin. Integr. Med. 2003, 1, 53-62. [CrossRef]

6. Bourdeau, M.D.; Beland, EA. An evaluation of the biological and toxicological properties of Aloe barbadensis
(Miller), Aloe vera. J. Environ. Sci. Health C 2006, 24, 103-154.

7. Zarkovic, N. 4-Hydroxynonenal as a bioactive marker of pathophysiological processes. Mol. Asp. Med. 2003,
24,281-291. [CrossRef]

8. Vistoli, G.; Maddis, D.D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and
lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res.
2013, 47, 3-27. [CrossRef] [PubMed]

9.  Poli, G.; Zarkovic, N. Editorial Introduction to the Special Issue on 4-Hydroxynonenal and Related Lipid
Oxidation Products. Free Radic. Biol. Med. 2017, 111, 2-5. [CrossRef] [PubMed]

10. Sovic, A.; Borovi¢, S.; Loncari¢, I.; Kreuzer, T.; Zarkovic, K,; Vukovic, T.; Wég, G.; Hrascan, R.;
Wintersteiger, R.; Klinger, R.; et al. The carcinostatic and proapoptotic potential of 4-Hydroxynonenal
in HeLa cells is associated with its conjugation to cellular proteins. Anticancer Res. 2001, 21, 1997-2004.
[PubMed]

11.  Borovic Sunyjic, S.; Cipak, A.; Rabuzin, F; Wildburger, R.; Zarkovic, N. The influence of 4-hydroxy-2-nonenal
on proliferation, differentiation and apoptosis of human osteosarcoma cells. Biofactors 2005, 24, 141-148.
[CrossRef] [PubMed]

12.  Zarkovic, N.; Cipak, A.; Jaganjac, M.; Borovic, S.; Zarkovic, K. Pathophysiological relevance of aldehydic
protein modifications. J. Proteom. 2013, 92, 239-247. [CrossRef] [PubMed]

13.  Milkovic, L.; Hoppe, A.; Detsch, R.; Boccaccini, A.R.; Zarkovic, N. Effects of Cu-doped 45S5 bioactive glass
on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro. . Biomed. Mater Res.
Part A 2014, 102, 3556-3561. [CrossRef] [PubMed]

14. Milkovic, L.; Cipak Gasparovic, A.; Zarkovic, N. Overview on major lipid peroxidation bioactive factor
4-hydroxynonenal as pluripotent growth regulating factor. Free Radic. Res. 2015, 49, 850-860. [CrossRef]
[PubMed]


http://dx.doi.org/10.1016/j.jtcme.2014.10.006
http://www.ncbi.nlm.nih.gov/pubmed/26151005
http://dx.doi.org/10.1080/10408690490424694
http://www.ncbi.nlm.nih.gov/pubmed/15116756
http://dx.doi.org/10.3390/molecules13081599
http://www.ncbi.nlm.nih.gov/pubmed/18794775
http://dx.doi.org/10.1016/S1543-1150(03)00005-X
http://dx.doi.org/10.1016/S0098-2997(03)00023-2
http://dx.doi.org/10.3109/10715762.2013.815348
http://www.ncbi.nlm.nih.gov/pubmed/23767955
http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.016
http://www.ncbi.nlm.nih.gov/pubmed/28576671
http://www.ncbi.nlm.nih.gov/pubmed/11497289
http://dx.doi.org/10.1002/biof.5520240117
http://www.ncbi.nlm.nih.gov/pubmed/16403974
http://dx.doi.org/10.1016/j.jprot.2013.02.004
http://www.ncbi.nlm.nih.gov/pubmed/23438936
http://dx.doi.org/10.1002/jbm.a.35032
http://www.ncbi.nlm.nih.gov/pubmed/24243858
http://dx.doi.org/10.3109/10715762.2014.999056
http://www.ncbi.nlm.nih.gov/pubmed/25532703

Antioxidants 2018, 7, 125 13 of 14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Zarkovic, K.; Jakovcevic, A.; Zarkovic, N. Contribution of the HNE-immunohistochemistry to modern
pathological concepts of major human diseases. Free Radic. Biol. Med. 2017, 111, 110-125. [CrossRef]
[PubMed]

Randhir, R.; Shetty, K. Developmental stimulation of total phenolics and related antioxidant activity in
light-and dark-germinated corn by natural elicitors. Process Biochem. 2005, 40, 1721-1732. [CrossRef]
Bessey, O.A.; Lowky, O.H.; Brock, M.]. A method for the rapid determination of alkaline phosphatase with
five cubic millimeters of serum. J. Biol. Chem. 1946, 164, 321-329. [PubMed]

Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by
UV-VIS Spectroscopy. In Current Protocols in Food Analytical Chemistry (CPFA); Wrolstad, R.E., Acree, TE.,
An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P, Eds.; John Wiley
and Sons: New York, NY, USA, 2001; pp. F4.3.1-F4.3.8.

Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant
activity. LWT-Food Sci. Tech. 1995, 28, 25-30. [CrossRef]

Pisoschi, A.M.; Cheregi, M.C.; Danet, A.F. Total antioxidant capacity of some commercial fruit juices:
Electrochemical and spectrophotometrical approaches. Molecules 2009, 14, 480-493. [CrossRef] [PubMed]
Tiveron, A.P.; Melo, P.S.; Bergamaschi, K.B.; Vieira, TM.; Regitano-d’Arce, M.A.; Alencar, S.M. Antioxidant
activity of Brazilian vegetables and its relation with phenolic composition. Int. J. Mol. Sci. 2012, 13, 8943-8957.
[CrossRef] [PubMed]

Borovi¢, S.; Rabuzin, F; Waeg, G.; Zarkovi¢, N. Enzyme-linked immunosorbent assay for 4-hydroxynonenal-
histidine conjugates. Free Radic. Res. 2006, 40, 809-820. [CrossRef] [PubMed]

Zivkovié, M.; Zarkovié, K.; ékrinjar, L.; Georg, W,; Poljak-BlaZi, M.; gunji(:, B.S.; Schaur, R.J.; Zarkovié, N.
A new method for detection of HNE-histidine conjugates in rat inflammatory cells. Croat Chem. Acta 2005,
78,91-98.

Spickett, C.M.; Wiswedel, I.; Siems, W.; Zarkovic, K.; Zarkovic, N. Advances in methods for the determination
of biologically relevant lipid peroxidation products. Free Radic. Res. 2010, 44, 1172-1202. [CrossRef] [PubMed]
Jaganjac, M.; Almuraikhy, S.; Al-Khelaifi, F.; Al-Jaber, M.; Bashah, M.; Mazloum, N.A.; Zarkovic, K,;
Zarkovic, N.; Waeg, G.; Kafienah, W.; et al. Combined metformin and insulin treatment reverses metabolically
impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients. Redox Biol.
2017, 12, 483-490. [CrossRef] [PubMed]

Tekli¢, T.; Engler, M.; Cesar, V.; Lepedus, H.; Paradikovi¢, N.; Loncari¢, Z.; Stolfa, 1.; Marotti, T.; Mikac, N.;
Zarkovié¢, N. Copper excess influence on lettuce (Lactuca sativa L.) grown in the soil and nutrient solution.
J. Food Agric. Environ. 2008, 6, 439-444.

Wonisch, W.; Kohlwein, S.D.; Schaur, J.; Tatzber, F.; Guttenberger, H.; Zarkovic, N.; Winkler, R.; Esterbauer, H.
Treatment of the budding yeast (Saccharomyces cerevisiae) with the lipid peroxidation product 4-HNE
provokes a temporary cell cycle arrest in G1 phase. Free Radic. Biol. Med. 1998, 25, 682-687. [CrossRef]
Cipak, A.; Jaganjac, M.; Tehlivets, O.; Kohlwein, S.D.; Zarkovi¢, N. Adaptation to oxidative stress induced by
polyunsaturated fatty acids in yeast. BBA-Mol. Cell Biol. Lipids 2008, 178, 283-287. [CrossRef] [PubMed]
Zarkovié, N.; Schaur, R.J.; Puhl, H.; Jurin, M.; Esterbauer, H. Mutual dependence of growth modifying effects
of 4-hydroxy-nonenal and fetal calf serum in vitro. Free Radic. Biol. Med. 1994, 16, 877-884.

Zarkovi¢, N.; Zarkovi¢, K.; Schaur, RJ,; Stolc, S.; Schlag, G.; Redl, H.; Waeg, G.; Borovi¢, S.; Loncari¢, L.;
Juri¢, G,; et al. 4-Hydroxynonenal as a second messenger of free radicals and growth modifying factor.
Life Sci. 1999, 65, 1901-1904. [CrossRef]

Semlitsch, T,; Tillian, M.H.; Zarkovi¢, N.; Borovi¢, S.; Purtscher, M.; Hohenwarter, O.; Schaur, J.R. Differential
Influence of the Lipid Peroxidation Product 4-Hydroxynonenal on the Growth of Human Lymphatic
Leukaemia Cells and Human Peripheral Blood Lymphocytes. Anticancer Res. 2002, 22, 1689-1697. [PubMed]
Borovi¢, S.; Cipak, A.; Meinitzer, A.; Kejla, Z.; Perovic, D.; Waeg, G.; Zarkovic, N. Differential effect of
4-hydroxynonenal on normal and malignant mesenchimal cells. Redox Rep. 2007, 207, 50-54. [CrossRef]
[PubMed]

Mouthuy, P.A.; Snelling, S.J.B.; Dakin, S.G.; Milkovi¢, L.; Gasparovi¢, A.C.; Carr, A.].; Zarkovié, N.
Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials 2016, 109, 55-68.
[CrossRef] [PubMed]

Cipak-Gasparovic, A.; Milkovic, L.; Borovic-Sunjic, S.; Zarkovic, N. Cancer Growth Regulation by
4-Hydroxynonenal Article Type. Free Radic. Biol. Med. 2017, 111, 226-234. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.009
http://www.ncbi.nlm.nih.gov/pubmed/27993730
http://dx.doi.org/10.1016/j.procbio.2004.06.064
http://www.ncbi.nlm.nih.gov/pubmed/20989492
http://dx.doi.org/10.1016/S0023-6438(95)80008-5
http://dx.doi.org/10.3390/molecules14010480
http://www.ncbi.nlm.nih.gov/pubmed/19158657
http://dx.doi.org/10.3390/ijms13078943
http://www.ncbi.nlm.nih.gov/pubmed/22942744
http://dx.doi.org/10.1080/10715760600693422
http://www.ncbi.nlm.nih.gov/pubmed/17015259
http://dx.doi.org/10.3109/10715762.2010.498476
http://www.ncbi.nlm.nih.gov/pubmed/20836661
http://dx.doi.org/10.1016/j.redox.2017.03.012
http://www.ncbi.nlm.nih.gov/pubmed/28334683
http://dx.doi.org/10.1016/S0891-5849(98)00110-5
http://dx.doi.org/10.1016/j.bbalip.2008.03.010
http://www.ncbi.nlm.nih.gov/pubmed/18452720
http://dx.doi.org/10.1016/S0024-3205(99)00444-0
http://www.ncbi.nlm.nih.gov/pubmed/12168855
http://dx.doi.org/10.1179/135100007X162194
http://www.ncbi.nlm.nih.gov/pubmed/17263909
http://dx.doi.org/10.1016/j.biomaterials.2016.09.010
http://www.ncbi.nlm.nih.gov/pubmed/27669498
http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.030
http://www.ncbi.nlm.nih.gov/pubmed/28131901

Antioxidants 2018, 7, 125 14 of 14

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Bauer, G.; Zarkovic, N. Revealing mechanisms of selective, concentration-dependent potentials of
4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated
catalase. Free Radic. Biol. Med. 2015, 81, 128-144. [CrossRef] [PubMed]

Zhong, H.; Xiao, M.; Zarkovic, K.; Zhu, M.; Sa, R.; Lu, J.; Tao, Y.; Chen, Q.; Xia, L.; Cheng, S.; et al.
Mitochondrial Control of Apoptosis through Modulation of Cardiolipin Oxidation in Hepatocellular
Carcinoma: A Novel Link between Oxidative Stress and Cancer. Free Radic. Biol. Med. 2017, 176, 67-76.
[CrossRef] [PubMed]

Piska¢ Zivkovi¢, N.; Petrovecki, M.; Lonéari¢, T.C.; Nikoli¢, L; Waeg, G.; Jaganjac, M.; Zarkovié, K.;
Zarkovi¢, N. Positron Emission Tomography-Computed Tomography and 4-Hydroxynonenal-histidine
Immunohistochemistry Reveal Differential Onset of Lipid Peroxidation in Primary Lung Cancer and in
Pulmonary Metastasis of Remote Malignancies. Redox Biol. 2017, 11, 600-605. [CrossRef] [PubMed]
Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher, J.;
Grune, T;; et al. Pathological aspects of lipid peroxidation. Free Radic. Res. 2010, 44, 1125-1171. [CrossRef] [PubMed]
Kujundzi¢, R.N,; Zarkovi¢, N.; TroSelj, K.G. Pyridine nucleotides in regulation of cell death and survival by
redox and non-redox reactions. Crit. Rev. Eukar. Gene Express. 2014, 24, 287-309. [CrossRef]

Milkovic, L.; Siems, W.; Siems, R.; Zarkovic, N. Oxidative stress and antioxidants in carcinogenesis and
integrative therapy of cancer. Curr. Pharm. Des. 2014, 20, 6529-6542. [CrossRef] [PubMed]

Milkovic, L.; Zarkovic, N.; Saso, L. Controversy about pharmacological modulation of Nrf2 for cancer
therapy. Redox Biol. 2017, 12, 727-732. [CrossRef] [PubMed]

Pecere, T.; Gazzola, M.V.; Mucignat, C.; Parolin, C.; Vecchia, FED.; Cavaggioni, A.; Basso, G.; Diaspro, A.;
Salvato, B.; Carli, M.; et al. Aloe-emodin is a new type of anticancer agent with selective activity against
neuroectodermal tumors. Cancer Res. 2000, 60, 2800-2804. [PubMed]

Grimaudo, S.; Tolomeo, M.; Gancitano, R.; Dalessandro, N.; Aiello, E. Effects of highly purified anthraquinoid
compounds from Aloe vera on sensitive and multidrug resistant leukemia cells. Oncol. Rep. 1997, 4, 341-343.
[CrossRef] [PubMed]

Lee, H.Z.; Hsu, S.L.; Liu, M.C.; Wu, C.H. Effects and mechanisms of aloe-emodin on cell death in human
lung squamous cell carcinoma. Eur. J. Pharmacol. 2001, 431, 287-295. [CrossRef]

Jaganjac, M.; Poljak-Blazi, M.; Schaur, R.J.; Zarkovic, K.; Borovi¢, S.; Cipak, A.; Cindri¢, M.; Uchida, K.;
Waeg, G.; Zarkovi¢, N. Elevated neutrophil elastase and acrolein-protein adducts are associated with W256
regression. Clin. Exp. Immunol. 2012, 170, 178-185. [CrossRef] [PubMed]

Biasi, F; Tessitore, L.; Zanetti, D.; Citrin, ].C.; Zingaro, B.; Chiarpotto, E.; Zarkovic, N.; Serviddio, G.; Poli, G.
Associated changes of lipid peroxidation and TGF 1 levels in human cancer during tumor progression. Gut
2002, 50, 361-367. [CrossRef] [PubMed]

Zarkovi¢, K.; Juric, G.; Waeg, G.; Kolenc, D.; Zarkovi¢, N. Immunohistochemical appearance of HNE-protein
conjugates in human astrocytomas. Biofactors 2005, 24, 33-40. [CrossRef] [PubMed]

Harlev, E.; Nevo, E.; Lansky, E.P; Ofir, R.; Bishayee, A. Anticancer potential of Aloes: Antioxidant,
antiproliferative, and immunostimulatory attributes. Planta. Med. 2012, 78, 843-852. [CrossRef] [PubMed]
Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.;
Oettrich, J.; Ruskovska, T.; et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal.
2015, 23, 1144-1170. [CrossRef] [PubMed]

Gegotek, A.; Nikliniski, J.; Zarkovi¢, N.; Zarkovié, K.; Waeg, G.; Luczaj, W.; Charkiewicz, R.; Skrzydlewska, E.
Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells.
Redox Biol. 2016, 9, 210-219. [CrossRef] [PubMed]

Fedorova, M.; Zarkovic, N. Preface to the special issue on 4-hydroxynonenal and related lipid oxidation
products. Free Radic. Biol. Med. 2017, 111, 1. [CrossRef] [PubMed]

Egea, J.; Fabregat, I.; Frapart, YM.; Ghezzi, P.; Gorlach, A.; Kietzmann, T.; Kubaichuk, K.; Knaus, U.G.;
Lopez, M.G.; Olaso-Gonzalez, G.; et al. European Contribution to the study of ROS: A Summary of the
Findings and Prospects for the Future from the COST Action BM1203 (EU-ROS). Redox Biol. 2017, 13, 94-162.
[CrossRef] [PubMed]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.010
http://www.ncbi.nlm.nih.gov/pubmed/25619142
http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.494
http://www.ncbi.nlm.nih.gov/pubmed/27838437
http://dx.doi.org/10.1016/j.redox.2017.01.005
http://www.ncbi.nlm.nih.gov/pubmed/28110216
http://dx.doi.org/10.3109/10715762.2010.498478
http://www.ncbi.nlm.nih.gov/pubmed/20836660
http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2014011828
http://dx.doi.org/10.2174/1381612820666140826152822
http://www.ncbi.nlm.nih.gov/pubmed/25341930
http://dx.doi.org/10.1016/j.redox.2017.04.013
http://www.ncbi.nlm.nih.gov/pubmed/28411557
http://www.ncbi.nlm.nih.gov/pubmed/10850417
http://dx.doi.org/10.3892/or.4.2.341
http://www.ncbi.nlm.nih.gov/pubmed/21590055
http://dx.doi.org/10.1016/S0014-2999(01)01467-4
http://dx.doi.org/10.1111/j.1365-2249.2012.04639.x
http://www.ncbi.nlm.nih.gov/pubmed/23039888
http://dx.doi.org/10.1136/gut.50.3.361
http://www.ncbi.nlm.nih.gov/pubmed/11839715
http://dx.doi.org/10.1002/biof.5520240104
http://www.ncbi.nlm.nih.gov/pubmed/16403961
http://dx.doi.org/10.1055/s-0031-1298453
http://www.ncbi.nlm.nih.gov/pubmed/22516934
http://dx.doi.org/10.1089/ars.2015.6317
http://www.ncbi.nlm.nih.gov/pubmed/26415143
http://dx.doi.org/10.1016/j.redox.2016.08.010
http://www.ncbi.nlm.nih.gov/pubmed/27567474
http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.017
http://www.ncbi.nlm.nih.gov/pubmed/28552693
http://dx.doi.org/10.1016/j.redox.2017.05.007
http://www.ncbi.nlm.nih.gov/pubmed/28577489
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plant Material and Extract Preparation 
	Total Soluble Phenolic Content and Antioxidant Activity 
	Phenolic Content 
	Ascorbic Acid Content 
	Measurement of Total Carotenoids 
	Antioxidant Activity 

	Cell Cultures and Treatments 
	Cell Cultures 
	Experimental Treatments with AV, H2O2, and HNE 
	Determination of Intracellular HNE–Protein Adducts Using Cell-Based HNE–His ELISA 
	Measurement of Intracellular ROS Production 


	Results 
	The Levels of Antioxidants in A. vera Leaves 
	The Effects of H2O2 and AV Extract on Cell Viability 
	The Effects of AV Extract on HNE-Pretreated Cells 
	The Effects AV on HNE Binding to Cellular Proteins 
	The Effects of AV on Cellular ROS Production Induced by HNE 


	Discussion 
	Conclusions 
	References

