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Abstract: Aflatoxin (AFT) contamination poses a significant global public health and safety concern,
prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its
pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular
disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has
emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning
cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This
protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation,
and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial
biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2
(Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-
γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450)
enzymes. This review provides an overview of the protective effects of lycopene against AFB1
exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores
the safety profile and potential clinical applications of lycopene. The present review underscores
lycopene’s potential as a promising detoxification agent against AFB1 exposure, with the intent to
stimulate further research and practical utilization in this domain.

Keywords: aflatoxin B1 (AFB1); lycopene; molecular mechanism; safety; clinical prospects

1. Introduction

Mycotoxins are secondary toxic metabolites naturally produced by certain filamentous
fungi. Approximately 500 mycotoxins have been identified, including aflatoxins (AFTs),
deoxynivalenol (DON), T-2 toxin, HT-2 toxin, ochratoxin A (OTA), zearalenone (ZEN),
nivalenol (NIV), and fumonisins (FBs) [1–3]. These mycotoxins can contaminate a variety
of food items, encompassing fruits, grain crops, and processed products such as beer, dried
fruits, cereals, and animal feed [1,4,5]. A recent report has indicated mycotoxins could be
detected in Chinese herbal medicine [6]. Prior to 1985, the Food and Agriculture Organiza-
tion (FAO) estimated that global food crop contamination from mycotoxins was around
25% annually. Currently, the figure may be up to 60–80%, based on detectable levels [2,7].
Developing countries face higher rates of mycotoxin contamination. For instance, Xu et al.
found 100% positivity for DON, 68.7% for ZEA, and 99.5% for deoxynivalenol-3-glucoside
(DON-3-G) among 370 wheat samples in Anhui Province, China [8]. Exposure to myco-
toxins has been linked to various chronic diseases, including neurodegenerative issues,
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cardiovascular disease, chronic enteritis, and endemic diseases [9–11]. Acute mycotoxin
poisoning can be fatal to both animals and humans [12]. Given the widespread contamina-
tion and significant health risks associated with mycotoxins, efforts to prevent, control, and
detoxify these contaminants have emerged as a global imperative.

Of particular concern among mycotoxins are AFTs, known for their potent toxicity
and carcinogenic properties [13,14]. The primary producers of AFTs are Aspergillus (A.)
flavus and A. parasiticus [15]. Over recent decades, a total of 21 AFTs have been identified,
with the most prevalent variants being aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2
(AFB2), aflatoxin B1-8,9-epoxide (AFBO), M1 (AFM1), and M2 (AFM2) [1,16]. As early
as 1987, the International Agency for Research on Cancer (IARC) had classified AFB1
and AFM1 as human Group 1 and Group 2B carcinogens, respectively [17]. Epidemio-
logical data have shown a positive association between AFB1 exposure and liver cancer
incidence, with 4.6–28.2% of liver cancer cases linked to AFB1 exposure [18–20]. Previous
in vitro and animal studies have demonstrated that AFB1 exposure can lead to a range of
toxic effects, including neurotoxicity, hepatotoxicity, cardiotoxicity, and gastrointestinal
toxicity in mammals and poultry [21–29]. Mechanistic studies have revealed that AFB1-
induced toxic effects involve various pathways, such as lipid peroxidation, inflammatory
response, oxidative stress, and cell death (e.g., pyroptosis, apoptosis, necroptosis, and
ferroptosis) mechanisms [1,30–37]. Further exploration by scientists reveals multiple sig-
naling pathways, including the NOD-like receptor (NLR) family pyrin domain-containing
3 (NLRP3), aryl hydrocarbon receptor (AHR), phosphoinositide 3-kinase (PI3K)/protein
kinase B (Akt), toll-like receptors (TLRs), adenosine 5′-monophosphate (AMP)-activated
protein kinase (AMPK), the mammalian target of rapamycin (mTOR), tumor protein P53
(p53), mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor
gamma (PPARγ) coactivator 1 alpha (PGC-1α), phosphatase and tensin homolog (PTEN)-
induced kinase 1 (PINK1)/Parkin, Wnt/β-catenin, nuclear factor erythroid 2-related factor
2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1), nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases (NOXs), nuclear factor-kappa B (NF-κB), and mitochondrial
apoptotic pathways [1,30–38]. By targeting these critical signaling pathways, some com-
pounds, including resveratrol, curcumin, caffeic acid, gallic acid, proanthocyanidin, and
quercetin, have been demonstrated to own the potential detoxification effects against AFB1
exposure-induced toxicity by using in vitro cell or experimental animal models [1,39–45].
Several Chinese herbal extracts or probiotics could also effectively improve AFB1 exposure-
induced toxic effects [42,46]. Recent studies have highlighted the protective effects of
lycopene (Figure 1), a natural carotenoid, against AFB1 exposure-induced toxicity in animal
models [47–54]. Lycopene, derived mainly from the diet, has shown promising safety
profiles in both humans and animals and is commercially available in health care products
in the U.S., China, and Europe [55–57]. This review aims to provide a comprehensive
overview of lycopene’s protective effects against AFB1 toxicity, including its molecular
mechanisms and clinical implications, to inform future research and interventions aimed at
mitigating the health risks posed by AFB1 exposure.
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Figure 1. The chemical molecular structure of lycopene (i.e., C40H56). 
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Figure 1. The chemical molecular structure of lycopene (i.e., C40H56).

2. An Overview of Lycopene’s Protections against Aflatoxin B1 Toxicity

Lycopene is a common non-provitamin, comprising a 40-carbon acyclic carotenoid
with 13 double bonds and 11 linearly arranged conjugated double bonds. It is typically
abundant in various vegetables and fruits, including watermelons, tomatoes, apricots, pink
grapefruits, cranberries, papayas, guavas, and peaches [57,58]. Lycopene exhibits diverse
biological activities such as anti-oxidative stress, anti-aging, anti-inflammatory, anti-cancer,
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and immune regulation functions [55,59–62]. The beneficial effects of lycopene in mitigating
the harmful effects induced by AFB1 exposure are outlined in Table 1. Studies have
demonstrated that the potential molecular mechanisms through which lycopene protects
against AFB1-induced toxicity involve the inhibition of reactive oxygen species (ROS)
production, the suppression of the inflammatory response, the mitigation of mitochondrial
dysfunction, the enhancement of endogenous antioxidant levels and antioxidant enzyme
activities, and the activation of the Nrf2/KEAP1 pathway and the PGC-1α pathway [47–54].
Furthermore, it was also reported that lycopene supplementation could influence the
metabolism of AFTs by modulating cytochrome P450 (CYP450) isozymes in animals [63,64].
Subsequent sections will offer an in-depth examination of the precise molecular mechanisms
responsible for the protective effects of lycopene.

Table 1. A summary of lycopene protecting against AFB1 exposure-induced harmful effects in vivo
and in vitro.

Animal
Models Treatments Protective Effects of Lycopene Refs.

Male
Kunming

mice

Mice were orally administrated
with AFB1 at the dose of

0.75 mg/kg/day or cotreated
with lycopene at the dose of
5 mg/kg/day. All mice were

treated for consecutive 30 days.

Lycopene supplementation significantly attenuated AFB1
exposure-caused lesions of testicular microstructure and

ultrastructure, and sperm abnormalities in mice. Meanwhile,
lycopene supplementation significantly ameliorated AFB1

exposure-induced oxidative stress and the functional deficiency
of mitochondrial biosynthesis, and significantly activated the

Nrf2 pathway and the PGC-1α pathway in the testicular tissue
of mice.

[47]

One-day-old
Pekin

ducklings

The ducklings were fed a ration
contaminated with 30 ppb (equal
to 30 µg/kg body weight) of AFTs
(a mixture containing AFB1 and

other AFTs) for 2 weeks and
co-treated with or without

lycopene, at the final dose of
100 mg/kg body weight. After
AFT treatment, the ducklings

were orally fed continually for an
additional 10 days.

Lycopene supplementation markedly attenuated AFTs
exposure-induced liver dysfunction. Lycopene

supplementation also significantly increased the levels of total
antioxidant capacity (TAC), catalase (CAT), and glutathione

S-transferase (GST) activities, and significantly decreased the
levels of malondialdehyde (MDA), finally effectively improving

AFTs exposure-induced hepatic oxidative stress damage.
Meanwhile, lycopene treatment significantly decreased the

residues of AFTs in the liver tissue.

[54]

Male F344
rats

Rats were orally administrated
with AFB1 at the final dose of

250 µg/kg body weight daily and
co-treated with lycopene at the
final dose of 100 mg/kg body

weight daily. All rats were treated
for 3 weeks (5 days per week).

Lycopene treatment markedly attenuated AFB1
exposure-induced toxic symptoms, including weakness,

anorexia, bloody urine, ascites, and ataxia. In addition, gross
necropsy and histopathological examination found lycopene
treatment marked decreased AFB1 exposure-caused necrosis,

hepatotropism, fatty infiltration, and bile duct epithelium
hyperplasia in liver tissue. In addition, lycopene treatment

greatly modulated AFB1 metabolism and metabolic activation,
and significantly reduced formation of AFB1–DNA adducts.

[49]
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Table 1. Cont.

Animal
Models Treatments Protective Effects of Lycopene Refs.

One-day-old
male Arbor

Acres broiler
chicks

Chicks were orally fed with a
100 µg/kg AFB1-contaminated

basal diet and co-fed with or
without lycopene (purity ≥ 80%)
with a 200 mg/kg basal diet. All
chicks were treated for 42 days.

Lycopene supplementation significantly improved the liver
function of AFB1-treated chicks. It significantly decreased the
levels of H2O2 and reactive oxygen species (ROS) levels, and
significantly increased the levels of GSH and the activities of
superoxide dismutase (SOD), thioredoxin peroxidase (TPX),

and glutathione peroxidase (GPX) in AFB1-treated liver tissue.
Meanwhile, lycopene supplementation significantly attenuated

AFB1 exposure-induced mitochondrial dysfunction and the
functional loss of mitochondrial biogenesis, increased the

activities of mitochondrial electron transfer chain complexes,
and activated the PGC-1α pathway. Lycopene supplementation
decreased the intestinal villus height (VH) and crypt depth ratio

(VCR) while increasing the crypt depth. Lycopene
supplementation could also decrease the activities of

cytochrome P450 (CYP450) isozymes (e.g., CYP1A1 and
CYP2A6), then reduced the formation of AFB1–DNA in the

liver tissue of chicks.

[48,64]

One-day-old
male Arbor

Acres broilers

Chicks were orally fed with a
100 µg/kg AFB1-contaminated

basal diet and co-fed with or
without lycopene (purity ≥ 80%)
with a 200 mg/kg basal diet. All
chicks were treated for 42 days.

Lycopene treatment significantly increased the levels of
interleukin (IL)-10 protein and downregulated the expression of
IL-1β mRNA, as well as attenuating the inflammatory response

in the jejunum tissue of AFB1-treated chicks. Moreover,
lycopene supplementation also significantly attenuated AFB1

exposure-induced oxidative damage in the jejunum tissue
of chicks.

[52,65]

Male Wistar-
Albino rats

Rats were orally administrated
with AFB1 at a dose of

0.5 mg/kg/day for 7 days and
lycopene at a dose of

5 mg/kg/day, for 15 days.

Lycopene supplementation markedly attenuated AFB1
exposure-induced liver dysfunction and liver oxidative damage

through upregulating the levels of antioxidants and the
activities of antioxidant enzymes.

[51]

Male Wistar-
Albino rats

Rats were orally administrated
with AFB1 at the dose of

0.5 mg/kg/day for 7 days or
1.5 mg/kg/day for 3 days, and all

AFB1-treated rats were treated
with or without lycopene at a

dose of 5 mg/kg/day for 15 days.

Lycopene supplementation significantly attenuated AFB1
exposure-induced pathological changes in the kidney and heart

tissues of rats. It also significantly inhibited AFB1
exposure-induced lipid peroxidation and upregulated

antioxidant enzyme activities in the kidney and heart tissues
of rats.

[53]

Male
Kunming

mice

Mice were orally administrated
with AFB1 at the dose of

0.75 mg/kg body weight per day
and co-treated orally with

lycopene at the dose of 5 mg/kg
body weight per day. All mice

were treated for 30 days.

Lycopene supplementation significantly protected against
AFB1-induced erythrocyte dysfunction and spleen toxicity via
the inhibition of the inflammatory response, oxidative stress,

and the mitochondrial apoptotic pathway and via the
improvement in immune function in mice.

[26,66]

2.1. Inhibition of Oxidative Stress

Oxidative stress generally occurs due to an imbalance between the body’s oxidative
and antioxidant systems, often resulting in the overproduction of reactive oxygen species
(ROS) [67]. ROS comprise various free radicals, such as superoxide anion (O2

•−), hy-
droxyl radical (•OH), peroxynitrite (ONOO−), and nitric oxide (NO) [68]. Under normal
physiological conditions, these free radicals are efficiently neutralized by intracellular
endogenous antioxidants or antioxidant enzymes, including superoxide dismutase (SOD),
glutathione peroxidase (GPX), catalase (CAT), and glutathione (GSH) [67]. Studies have
shown that exposure to AFB1 can induce oxidative stress by promoting the generation of
free radicals and reducing the levels of the antioxidants mentioned above or of antioxidant
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enzymes [40,69–81]. The generation of ROS by AFB1, like O2
•– and •OH, is partially at-

tributed to its metabolic processing in tissue [53]. Elevated levels of intracellular ROS can
cause damage to lipids, proteins, DNA, and other cellular components, leading to various
forms of cell death, such as apoptosis, autophagic cell death, ferroptosis, necroptosis, and
necrosis, among others [82].

Lycopene has been reported to exhibit potent radical scavenging activities. Results
from in vitro biochemical analyses have suggested that lycopene’s antioxidant properties
are roughly twice as effective as curcumin, another powerful protective agent against AFB1
toxicity [1,83,84]. This potent radical scavenging activity is suggested to be associated with
the number of conjugated double bonds in the structure of lycopene [85]. For example,
a 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and O2

•– radical scavenging test showed that
the half maximal inhibitory concentrations (IC50s) of lycopene are approximately 20 and
5 µg/mL, respectively [86]. Lycopene supplementation has shown significant protective
effects against AFB1-induced oxidative stress damage in various organs of mammals (e.g.,
mice and rats) and poultry (e.g., chicks and ducklings) [47–49,51–54,66]. For instance, El-
Sheshtawy et al. demonstrated that a 25-day lycopene supplementation regimen markedly
reduced AFB1-induced increases in intracellular malondialdehyde (MDA), a lipid peroxida-
tion marker, while also enhancing the activities of glutathione S transferase (GST), catalase
(CAT), and total antioxidant capacity (TAC), thereby attenuating AFB1-induced liver dam-
age in ducklings [54]. Wan et al. observed that lycopene supplementation at 200 mg/kg
via the basal diet significantly inhibited the production of reactive oxygen species (ROS)
and lipid peroxidation products, such as MDA and 4-hydroxynonenal (4-HNE), in chicken
liver tissue [48]. Huang et al. found that oral lycopene supplementation at 5 mg/kg per
day for 30 days lowered MDA and H2O2 levels, while upregulating superoxide dismutase
(SOD) and CAT activity, leading to a partial reduction in AFB1-induced testicular lesions in
mice [47]. Furthermore, several studies indicated that lycopene supplementation effectively
mitigated AFB1-induced oxidative stress in the livers, kidneys, and hearts of rodents by
increasing GSH levels and the activities of GPX and thioredoxin reductase [22,48,51,53].
A recent study has shown that administering oral lycopene supplements at a dosage of
10 mg/kg body weight per day significantly reduced oxidative stress, mitochondrial dys-
function, and ferroptotic cell death caused by a combination of mycotoxins in the jejunum
tissue of mice. These mycotoxins included ZEN at 10 mg/kg body weight, DOX at 1 mg/kg
body weight, and AFB1 at 0.5 mg/kg body weight [87]. The study found that lycopene’s
ability to activate the body’s antioxidant system played a crucial role in protecting against
the toxic effects triggered by AFB1.

The Nrf2 belongs to the cap ‘n’ collar subfamily of basic region leucine zipper tran-
scription factors and is recognized as a housekeeping gene that responds to oxidative
stress triggered by xenobiotics [88]. In unstressed cells, Nrf2 interacts with KEAP1 in the
cytoplasm. Under oxidative stress conditions, ROS and electrophiles can directly bind
to KEAP1 at multiple sites, including cysteines 151 (C151), 273 (C273), and 288 (C288),
facilitating the release of Nrf2 from KEAP1-mediated degradation and its translocation
into the cell nucleus. Subsequently, Nrf2 activates the expression of over 200 cytoprotective
genes involved in anti-inflammatory and antioxidant responses, phase II detoxification
enzymes, and xenobiotic metabolism [89,90]. Previous studies have indicated that exposure
to AFB1 can markedly suppress Nrf2 gene expression, leading to an increased sensitivity
to AFB1 in Nrf2 knockout mice and underscoring the critical role of Nrf2 as a target of
AFB1 [91]. Multiple studies have demonstrated that supplementation with lycopene ef-
fectively activates the Nrf2/KEAP1 pathway, leading to the upregulation of downstream
genes such as SOD, CAT, glutathione S-transferase (GST), heme oxygenase-1 (HO-1), and
quinone oxidoreductase 1 (NQO1), among others. This activation provides protection
against various drugs (including colistin, cisplatin, and atrazine), environmental toxins
(such as aristolochic acid, atrazine, and chlorpyrifos, Di[2-ethylhexyl]phthalate), and tissue
damage induced by ischemia-reperfusion [92–97]. Huang et al. recently reported that oral
supplementation with 5 mg/kg of lycopene per day for 30 days significantly increased the
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expression of nuclear Nrf2 protein in the testicular tissues of mice [47]. Yu et al. found that
lycopene supplementation at the same dosage for the same duration notably upregulated
Nrf2 and its downstream targets, including CAT, NQO1, SOD1, glutathione synthetase
(GSS), glutamate–cysteine ligase catalytic (GCLC), and glutamate–cysteine ligase modi-
fier subunit (GCLM), thereby mitigating AFB1-induced renal damage in mice [22]. In a
chick model, researchers demonstrated that lycopene supplementation at a basal diet level
(200 mg/kg) significantly upregulated Nrf2 expression and downstream genes like HO-1,
Cu/ZnSOD, MnSOD, CAT, and GPX mRNAs, leading to a pronounced reduction in AFB1-
induced intestinal damage [52]. These results suggest that the activation of the Nrf2/KEAP1
pathway plays a role in the protective effects of lycopene against oxidative stress induced
by AFB1 exposure. Previous studies have suggested that lycopene-induced activation of
Nrf2/KEAP1 may be modulated by p62, AMP-activated protein kinase (AMPK), and silent
information regulator 1 (SIRT1) [95,98,99]. Nonetheless, the direct interaction of lycopene
with KEAP1 remains unclear, highlighting the need for further investigations to elucidate
the precise molecular mechanisms of lycopene in activating the Nrf2/KEAP1 pathway.

In summary, supplementation with lycopene may provide robust protection against
AFB1-induced oxidative stress damage by eliminating ROS, enhancing antioxidant enzyme
activity, and activating the Nrf2/Keap1 pathway (see Figure 2).
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Figure 2. A working model of lycopene protecting against AFB1-induced oxidative stress. AFB1
exposure could induce oxidative stress damage through the inhibition of antioxidant enzymes’
activities, via the inhibition of the Nrf2 pathway. Lycopene supplementation could offer a protection
for AFB1 exposure-induced production of ROS and oxidative stress damage by activating the Nrf2
pathway and enhancing intracellular antioxidant enzyme activity and antioxidant levels. AFB1,
aflatoxin B1; ARE, antioxidant response element; CAT, catalase; ETC, electron transport chain; GCLC,
glutamate–cysteine ligase catalytic subunit; GSSG, oxidized glutathione; GPX, glutathione peroxidase;
GSH, glutathione; H2O2, hydrogen peroxide; HO-1, heme oxygenase 1; NQO1, NAD (P)H quinone
oxidoreductase 1; Nrf2, nuclear factor erythroid 2-related factor 2; O2

•–, superoxide anion; •OH,
hydroxyl radical; ROS, reactive oxygen species; SOD, superoxide dismutase.

2.2. Improvement in Inflammatory Response and Immune Function

Prior investigations have demonstrated that exposure to AFB1 can activate an in-
flammatory response [72,100–102]. Epidemiological studies have established a positive
association between AFB1 exposure and various chronic diseases, such as neurodegener-
ative disease, chronic enteritis, and liver cancer [16,100,103,104]. Experimental evidence
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suggests that AFB1 exposure can enhance the development of lung tumorigenesis and
liver cancer by activating inflammatory responses, particularly pronounced in individuals
co-infected with hepatitis B and C viruses [38,105–110]. Furthermore, chronic exposure to
AFB1 can lead to immunosuppression, as evidenced by decreased spleen weights, lympho-
cyte reduction (B and T cells), and decreases in immune cells and immune-related factors
like IL-2, IL-10, and interferon-gamma (IFN-γ) [26,111,112]. The potential molecular mecha-
nisms underlying AFB1-induced inflammatory responses and immunotoxicity may involve
various pathways, such as the protein kinase C (PKC), AHR, NF-κB, toll-like receptor 4
(TLR4), NRLP3, MAPK, and receptor-interacting serine/threonine-specific protein kinase 1
(RIPK1) pathways [1,38,113–115].

Various studies have demonstrated the immune-regulatory and anti-inflammatory
properties of lycopene. Its effectiveness is attributed to its lipophilic nature, which allows it
to modulate signaling pathways of inflammatory mediators and induce the expression of
antioxidant genes by interacting with cellular components [116]. Xu et al. demonstrated
that oral lycopene supplementation at a dose of 5 mg/kg per day for 30 days significantly
reduced AFB1-induced histopathological injuries in mouse spleens; meanwhile, lycopene
supplementation notably increased spleen weight, spleen coefficient, T lymphocyte subsets,
and upregulated the mRNA expressions of TNF-α, IFN-γ, and IL-2 genes in the spleen and
the corresponding proteins in the bloodstream [26]. Another study by Sarker et al. showed
that lycopene supplementation through diet (200 mg/kg feed) for 42 days effectively
inhibited increases in IFN-γ, IL-1β proteins, and mRNA expression, caused by AFB1
exposure, upregulated levels of IL-10 protein in the intestine mucosa of chicks, enhanced
intestinal barrier function, and improved intestinal health [52]. Lycopene is also an inhibitor
of NF-κB, which is a critical transcription factor mediating the expression of multiple
inflammatory factors, including TNF-α, IL-1β, COX2, and IL-6 [117]. The inhibitory effects
of lycopene on the NF-κB pathway could be mediated via the blockade of the MAPK and
TLR4 pathways [118,119]. In addition, excessive ROS production could exacerbate the
generation of pro-inflammatory cytokines and chemokines via triggering the PKC, NLRP3,
TLR4, NF-κB, and MAPK pathways [16,120].

Taken together, these results indicate that lycopene may mitigate AFB1-induced in-
flammatory responses by inhibiting the TLR4, NF-κB, and MAPK pathways and reducing
ROS production (Figure 3). However, the precise molecular mechanisms responsible
for lycopene’s effectiveness in countering AFB1-induced inflammation remain incom-
pletely understood, highlighting the need for further comprehensive investigations into
these mechanisms.
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pathway. It also may be partly attributed to the inhibition of ROS production.
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2.3. Inhibition of Mitochondrial Dysfunction and Apoptosis

Mitochondria play a crucial role in sustaining life by facilitating the production of
adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) [121]. They
are also involved in regulating apoptotic cell death processes [121]. Dysfunctions in mito-
chondria, resulting from sustained damage, can affect various cellular processes such as
mitochondrial membrane potential, respiration, and electron transfer [122,123]. This dys-
function can be triggered by factors like drugs, toxins, and excessive production of reactive
oxygen species (ROS), ultimately leading to cell apoptosis and other forms of regulated cell
death [121]. Studies have demonstrated that exposure to aflatoxin B1 (AFB1) can induce mi-
tochondrial dysfunction, as evidenced by disruptions in mitochondrial DNA, electron trans-
port chain, membrane potential, and biosynthesis [48,124–126]. Notably, even low doses of
AFB1 exposure can lead to abnormal changes in mitochondrial structure, membrane poten-
tial, and expression of genes involved in electron transport chain complexes in the liver of
mice [127]. Moreover, AFB1 exposure has been linked to the diminished mRNA expression
of key regulators, such as nuclear respiratory factor 1 (Nrf1), mitochondrial transcription
factor A (MTFA), PGC-1α, and peroxisome proliferator-activated receptor γ coactivator 1α
(PPAR1α), important for mitochondrial biosynthesis [48,127,128]. Notably, MTFA is a direct
regulator of mitochondrial DNA replication/transcription. The activation of PGC-1α could
stimulate a powerful expression of Nrf1 and Nrf2 genes; it also binds to Nrf1 and coactivates
the expression of MTFA, promoting mitochondrial DNA replication/transcription [129].
These data indicate that AFB1 exposure-induced abnormalities of mitochondrial biosynthe-
sis may involve the inhibition of the PGC-1α/Nrf1/MTFA pathway.

Recently, Huang et al. found that oral lycopene supplementation at the dose of
5 mg/kg per day for 30 days could effectively improve AFB1 exposure to the damage
in mitochondrial structure and upregulate the expression of PGC-1α, Nrf1, MTFA, and
cytochrome C oxidase IV (COXIV) mRNAs in the testicular tissues of mice [47]. Similarly,
Wan et al. found that lycopene supplementation at 200 mg/kg via the basal diet for 42 days
significantly improved mitochondrial function, evidenced by reduced swelling, increased
activities of mitochondrial complexes III, IV, and V, elevated ATP levels, and enhanced
expression of PGC-1α, Nrf1, and MTFA mRNAs in AFB1-treated chickens’ livers [48]. A
previous study found that lycopene-mediated upregulation of PGC-1α is partly depen-
dent on the expression of sirtuin 1 (SIRT1), which could deacetylate PGC-1α at multiple
lysine sites and consequently increase the activities of PGC-1α [130]. In addition, the
activation of AMPK by lycopene could enhance PGC-1α-dependent transcription via the
phosphorylation of SIRT1 [131]. These evidences indicated that the activation of PGC-1α
pathways may be dependent on the activation of AMPK and SIRT1 proteins. Further-
more, Xu et al. demonstrated that 5 mg/kg per day of oral lycopene supplementation
for 30 days mitigated AFB1-induced loss of mitochondrial membrane potential in mouse
spleen tissues [26]. In conclusion, the evidence suggests that lycopene supplementation
can ameliorate AFB1-induced mitochondrial damage, loss of membrane potential, and
dysfunction of the ETC and biosynthesis processes. The precise molecular mechanisms still
need to be further investigated.

Generally, an increase in the ratio of the pro-apoptotic protein Bax to the anti-apoptotic
proteins Bcl-2 or Bcl-XL can lead to the formation of mitochondrial permeability transition
pores (MPTPs), the subsequent release of CytC from the mitochondria, the activation
of caspase-9 and caspase-3, and ultimately culminate in cell apoptosis [132]. Previous
research has shown that exposure to AFB1 significantly elevates the Bax/Bcl-2 protein
ratio, enhances caspase-9 and caspase-3 activities, and increases their mRNA expressions,
ultimately resulting in cell apoptosis in HepG2 cells, IMR-32 cells (a neuroblastoma cell line),
as well as in the brain, spleen, liver, and renal tissues of animals [26,80,133–135]. Numerous
studies have indicated that lycopene supplementation can effectively mitigate apoptotic
cell death induced by colistin, tert-butyl hydroperoxide, and lead through the inhibition of
mitochondrial dysfunction and the mitochondrial pathway [94,136,137]. Consistent with
these findings, researchers have observed that lycopene supplementation at different doses
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can successfully attenuate AFB1 exposure-induced cell apoptosis, as evidenced by the
suppression of cytoplasmic CytC, Bax, and cleaved caspase-3 proteins’ expression, as well
as the activities and mRNA expression of caspases-3 and -9, and the upregulation of Bcl-2
protein [26,47,87,138].

A proposed model illustrating the protective effect of lycopene supplementation
against AFB1 exposure-induced mitochondrial dysfunction and mitochondrial apoptotic
pathway is presented in Figure 4. Notably, the ameliorated effects of lycopene supplemen-
tation on AFB1 exposure-induced mitochondrial dysfunction may be partly attributed to
the activation of PGC-1α/Nrf1/MTFA pathway-mediated mitochondrial biosynthesis, the
improvement in ETC function, and the increases in mitochondrial membrane potential.
Additionally, oxidative stress is a critical contributor for mitochondrial dysfunction [139].
Therefore, the inhibitory effects of lycopene on the production of ROS may also play a
critical role. Nevertheless, the specific molecular mechanisms underlying lycopene’s effi-
cacy against AFB1-induced mitochondrial dysfunction remain largely unclear, the detailed
exploration for these mechanisms are still required.
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Figure 4. Lycopene supplementation attenuated AFB1-induced mitochondrial dysfunction and
apoptotic cell death. AFB1 exposure could inhibit the activation of PGC-1α directly or indirectly
via the inhibition of AMPK and SIRT1 proteins, then reduce the mitochondrial biogenesis via the
Nrf1/Nrf2/MTFA pathway, and, finally, ameliorate mitochondrial dysfunction and apoptosis. Ly-
copene supplementation could protect AFB1 exposure-induced mitochondrial dysfunction and
apoptosis via the activation of the PGC-1α pathway, the inhibition of oxidative stress and the loss of
mitochondrial membrane potential, and the activation of the mitochondrial apoptotic pathway.

2.4. Metabolic Intervention

The liver plays a dual role in the metabolism of aflatoxin B1 (AFB1), serving as
both a target for its toxic effects and a crucial organ for its detoxification in humans and
animals [1,140]. Variations in the metabolism of AFB1 among species and organs are
attributed to differences in the expression and content of metabolic enzymes [141]. Dohnal
et al. provide a comprehensive review of these differences. AFB1 undergoes four major
pathways of metabolism, including hydroxylation, ketoreduction, O-dealkylation, and
epoxidation [142]. Broadly, four major pathways have been identified in the metabolism
of AFB1, including hydroxylation, ketoreduction, O-dealkylation, and epoxidation [141].
Approximately 95% of AFB1 undergoes transformation into highly toxic AFBO and AFM1,
as well as other less toxic forms (e.g., AFP1, AFK1, or AFB2a), by cytochrome P450 (CYP450)
enzymes (such as CYP1A1, CYP1A2, CYP1A5, CYP2A6, CYP2A13, CYP3A37, and CYP3A4)
in the liver tissues [141,143–146]. Notably, AFBO is considered the primary toxic metabolite
of AFB1 due to its direct interaction with DNA, leading to multiple toxic effects within
cells [147]. AFBO can be detoxified through conjugation with glutathione (GSH) or through
hydrolysis by epoxide hydrolase enzymes, to produce the highly cytotoxic AFB1–8,9-
dihydro diol (AFB1–dhd) [141].
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Previous studies have indicated that lycopene can modulate the activities of metabolic
enzymes, including CYP3As, CYP2C, CYP2D, and CYP2E [148]. Nosková et al. reported
that oral supplementation of lycopene at doses ranging from 4 to 100 mg/kg per day for
10 days could enhance the activities of CYP2B, CYP2D, and CYP3A [149]. Wan et al. demon-
strated that lycopene supplementation at a dose of 200 mg/kg in the basal diet for 42 days
significantly decreased the activities of CYP1A1 and CYP2A6, albeit not affecting CYP1A2
and CYP3A4, thereby leading to a reduction in the formation of AFB1–DNA adducts and
DNA damage in the liver tissues of chickens [64]. Lin et al. observed that pretreatment with
lycopene at a dose of 10 mg/kg per day through oral supplementation for 14 days markedly
decreased the expression of hepatic CYP2E1 protein, consequently lowering AFB1-induced
liver toxicity [150]. Moreover, Tang et al. found that oral administration of lycopene at
a dose of 100 mg/kg/day for 15 days significantly reduced the formation of AFB–DNA
adducts in liver tissues, as well as the levels of AFM1, AFQ1, and AFP1 excreted in urine,
along with AFB1–albumin adducts in serums of rats [49]. Additionally, AFB1-induced
AFB1–N7-guanine adducts could lead to apoptotic cell death and the suppression of the
p53 protein expression [138]. Reddy et al. reported that lycopene supplementation at a dose
of 0.5 µg/mL notably diminished the formation of AFB1–N7-guanine and its excretion in
HepG2 cells [138]. Correspondingly, lycopene supplementation also markedly decreased
the levels of AFB1–N7-guanine in rat urine and elevated levels of AFB–NAC in urine
excretion [49]. AFB–NAC is the primary detoxifying metabolic product of AFBO, and its
formation is reliant on the activities of phase II enzymes, including GPX and GST [151].
This observation aligns with prior studies indicating that lycopene can elevate GSH levels
and the activity of enzymes such as GPX, GST, and glutathione reductase (GR) in tissues
exposed to AFB1 (e.g., kidney, heart, liver, and intestine) across various animal models
including chickens, ducklings, rats, and mice [22,51–54]. These findings suggest that ly-
copene may protect against AFB1 toxicity by modulating the activities of CYP450 enzymes
and phase II detoxification enzymes (see Figure 5).
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Figure 5. An overview of lycopene supplementation modulating the metabolism of AFB1 in animals’
livers. Lycopene supplementation could reduce the formation of AFBO, AFP1, AFM1, AFQ1, and
AFB1–DNA adducts in the body via the inhibition of CYP1A1, CYP2A6, and CYP2E1 enzyme
activities in the liver tissues of animals. It also could upregulate the level of GSH and phase II
enzyme GSTs, enhance the formation of AFBO–GSH and AFB1–dialcohol, and, finally, promote the
detoxification of AFB1.
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3. Safety of Lycopene and Its Clinical Application

Lycopene, a potent antioxidant found in tomatoes and tomato-based products, is a signif-
icant component of human dietary intake, typically ranging from 0.7 to 25.2 mg/day [152,153].
The absorption of lycopene from the diet typically ranges from 10% to 30% of the intake
amount, with the remainder excreted [153]. Studies have indicated that, in humans, the
time to reach maximum concentration (tmax) and the elimination half-life (t1/2) of ly-
copene are 0.5 and 48 days, respectively. Numerous clinical trials have demonstrated that
lycopene supplementation offers various health benefits in the prevention and treatment of
chronic diseases, such as cancer, high-density lipoprotein (HDL)-associated inflammation,
and heart disease [154–156]. Experimental studies have shown that oral supplementation
of lycopene, at doses ranging from 5 to 200 mg/kg/day, can have multiple biological effects,
such as antioxidant, anti-aging, anti-inflammatory, immune regulation, and antimicrobial
functions [157–160]. Previous studies have shown that lycopene has a high safety profile.
An older study reported that a subcutaneous injection of lycopene at a dose of 3 g/kg
body weight led to only a temporary decrease in muscle tone in mice, while oral and
intraperitoneal administration of this dose had no effect [161]. Moreover, recent research by
Michael and colleagues demonstrated that rats treated with lycopene beadlet formulations,
at doses up to 500 mg/kg body weight/day for 14 weeks or 1000 mg/kg body weight/day
for 4 weeks, showed no significant toxicity, establishing a non-observable adverse effect
level (NOAEL) of 500 mg/kg body weight/day for lycopene [162]. These findings suggest
that the effective dose of lycopene is below its safety threshold, making it a viable option in
both medical and food industries [154–156,163].

While animal studies have shown the effectiveness of lycopene in mitigating AFB1
exposure-induced toxicity, limited clinical evidence exists regarding its detoxification effects
against AFB1 in humans. Therefore, further clinical trials or subclinical investigations are
necessary to fully understand the detoxification potential of lycopene against AFB1.

4. Conclusions and Future Directions

The global concern regarding AFB1 contamination arises from its significant toxicity
and carcinogenicity in both human and animal populations. Extensive studies, encom-
passing both animal experimentation and epidemiological inquiries, have elucidated the
various adverse effects associated with AFB1 exposure. These effects include, but are not
limited to, neurotoxicity, immune toxicity, reproductive toxicity, genotoxicity, hepatotoxicity,
nephrotoxicity, and gastrointestinal toxicity in mammals and poultry. Notably, lycopene,
a lipid-soluble natural carotenoid obtained from the daily diet, has shown promise in
protecting against the multiple toxic effects induced by AFB1 exposure, such as immune
toxicity, reproductive toxicity, genotoxicity, hepatotoxicity, nephrotoxicity, cardiac toxicity,
and hematologic toxicity. The underlying molecular mechanisms of this protection involve
the inhibition of oxidative stress, inflammation, lipid peroxidation, CYP450 enzyme activity,
and the mitochondrial apoptotic pathway, as well as the activation of mitochondrial bio-
genesis, the endogenous antioxidant system, and the Nrf2/KEAP1 and PGC-1 pathways.
Moreover, supplementation with lycopene has demonstrated the ability to enhance gut
health and immune function.

These findings collectively suggest that lycopene holds promise as a potent therapeutic
agent against AFB1-induced toxic effects in mammals and poultry. However, despite these
promising results, the precise protective mechanisms of lycopene remain incompletely
understood, and there is a dearth of effective clinical evaluations regarding its protective
effects against AFB1-induced harm in both human and animal populations. Furthermore,
addressing the issue of lycopene’s bioavailability is crucial. Consequently, additional
research efforts are warranted to gain a comprehensive understanding of the molecular
basis of lycopene’s protective capabilities, its bioavailability, and its clinical efficacy.
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