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Abstract: Fucoidan (FC) is known for its antioxidant properties, but it has unclear effects and
mechanisms on weaned piglets. Two experiments were conducted to determine the optimal FC
dosage in piglet diets and its protective effect against lipopolysaccharide (LPS)-induced oxidative
stress. In experiment one, 24 low weight weaned piglets were randomly assigned to four dietary
treatments: a basal diet (FC 0), or a diet supplemented with 150 (FC 150), 300 (FC 300), or 600 mg/kg
FC (FC 600). In experiment two, 72 low-weaning weight piglets were randomly allocated into four
treatments: a basal diet (CON), or 300 mg/kg of fucoidan added to a basal diet challenged with LPS
(100 µg LPS/kg body weight) or not. The results showed that FC treatments increased the G:F ratio,
and dietary FC 300 reduced the diarrhea incidence and increased the plasma IGF-1 concentrations.
In addition, FC 300 and FC 600 supplementation increased the plasma SOD activity and reduced
the plasma MDA concentration. LPS challenge triggered a strong systemic redox imbalance and
mitochondrial dysfunction. However, dietary FC (300 mg/kg) supplementation increased the activity
of antioxidant enzymes, including SOD, decreased the MDA concentration in the plasma and liver,
down-regulated Keap1 gene expression, and up-regulated Nrf2, CAT, MFN2, SDHA, and UQCRB gene
expression in the liver. These results indicated that dietary fucoidan (300 mg/kg) supplementation
improved the growth performance and antioxidant capacity of low-weaning weight piglets, which
might be attributed to the modulation of the Keap1/Nrf2 signaling pathway and the mitochondrial
function in the liver.

Keywords: fucoidan; lipopolysaccharide; liver; oxidative stress; low-weaning weight piglets

1. Introduction

In current intensive farming, the employment of high-yielding sows coupled with
early weaning strategies has become a prevalent practice, helping to enhance sow pro-
ductivity and bolster the economic yield of farms [1,2]. However, a consequence of this
practice is the surge in the number of low-weaning weight piglets. The digestive system
of these low-weaning weight piglets is not fully mature, the growth rate is relatively slow,
the resistance to external stimuli is poor, and the diarrhea incidence and mortality rate
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are often high [3–5]. Early weaning would trigger a series of complex physiological and
psychological reactions in piglets, including changing eating habits and adapting to the new
social environment, which may lead to their physiological and immune function abnormal-
ities, causing serious oxidative stress [6,7]. Oxidative stress is due to the overproduction
of reactive oxygen species (ROS) that exceeds the processing capacity of the antioxidant
system, so maintaining the redox balance within cells is crucial for maintaining intestinal
homeostasis [8,9]. In addition, the early weaning may lead to oxidative stress and mito-
chondrial dysfunction in the liver, which in turn affects its redox status and function [10]. It
has been found that weaning stress can cause oxidative stress and oxidative damage in the
liver of piglets, activate the MAPK pathway, increase the apoptosis of liver cells, and affect
liver function [11,12]. A disturbance in the balance of oxidation reduction can interfere
with the biological processes of mitochondria, leading to mitochondrial dysfunction [13].
Although mitochondria play a crucial role in energy production, they are also one of the
main organelles that produce ROS [14]. Mitochondrial dysfunction can lead to excessive
ROS production and affect liver function [15].

At present, research focusing on enhancing the body’s antioxidant capacity through the
inclusion of functional additives in the diet is gaining increasing attention. Previous studies
in our laboratory have found that functional feed additives can enhance the antioxidant
capacity of piglets [7,8], improve mitochondrial function [9], and promote the growth
of piglets. Recent research in our laboratory has revealed that functional feed additives
can improve the antioxidant capacity of weaned piglets by activating the Nrf2 signaling
pathway and optimize their mitochondrial function, thus effectively reducing the oxidative
damage of paraquat to the liver [16]. The Nrf2 signaling pathway plays a central regulatory
role in the oxidative stress response in vivo, and it controls the expression of a variety
of genes or enzymes related to antioxidants [17]. In the non-stressed state, Keap1 forms
ubiquitin E3 ligase complexes with CULLIN3 (CUL3), resulting in the polyubiquitination
of Nrf2, which is then rapidly degraded by the proteasome system. However, under
electrophilic or ROS stress, the active cysteine residue of Keap1 is directly modified, which
reduces the ubiquitin E3 ligase activity of the Keap1–CUL3 complex, thereby stabilizing
Nrf2 [18,19]. Therefore, the regulation of Nrf2 by Keap1 plays a crucial role in cell resistance
to oxidative stress and maintenance of cell homeostasis.

Fucoidan is a natural polysaccharide compound derived from kelp and brown algae,
first identified in 1913 by the Swedish scientist Professor Kylin, who ultimately christened it
“Fucoidan” [20]. As a substance with significant antioxidant properties, Fucoidan has been
the subject of extensive research in recent years. Previous in vitro and in vivo studies found
that fucoidan could improve cell viability and protect cells from oxidative damage induced
by 2,2′-Azobis (2-methylpropionamidine) dihydrochloride (AAPH) by clearing intracellular
ROS and inhibiting cell apoptosis. Fucoidan improves the survival rate of zebrafish by
eliminating ROS, inhibiting lipid peroxidation, inhibiting cell death, and thus inhibiting ox-
idative stress [21]. A further study demonstrated that the oral intake of fucoidan decreased
the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in mouse
serum, while simultaneously boosting the activity of glutathione peroxidase (GSH-Px)
and superoxide dismutase (SOD), increasing the production of adenosine triphosphate
(ATP), and restoring the concentrations of mitochondrial respiratory chain complexes in
cardiac tissue, thereby reducing oxidative stress and preventing mitochondrial functional
damage [22]. Furthermore, fucoidan demonstrated the ability to decrease lipid peroxide
(LPO) and MDA concentrations in the liver. However, it is noteworthy that higher doses of
fucoidan (2000 mg/kg) may potentially trigger inflammation and metabolic disorders [23].
Drawing from the findings of prior studies, we found that fucoidan has potential as a new
antioxidant, but there is a need to pay attention to the dosage in use.

To our knowledge, the literature offers limited insights into the impact of fucoidan
on weaned piglets, particularly with regard to the effects of the dosage of fucoidan and
antioxidant capacity of weaned piglets. In this study, we focused on piglets with lower
weaning weights, who are more prone to oxidative stress. We designed two experiments
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with the aim of preliminarily determining the optimal dosage of fucoidan and its effect on
the plasma antioxidant status of low-weaning weight piglets. Subsequently, an oxidative
stress model was established by stimulating low-weaning weight piglets with lipopolysac-
charide (LPS). This model was utilized to further investigate the mechanisms by which
fucoidan regulates oxidative damage in low-weaning weight piglets.

2. Materials and Methods
2.1. Animal Ethics Approval

The trial was conducted from July to August 2022 and September to October 2023 at
the Tianpeng Experimental Farm located in Langfang, Hebei province. The animal protocol
in this study was approved by the Animal Care and Use Committee of the Institute of
Feed Research of the Chinese Academy of Agricultural Sciences (IFR-CAAS20221010 for
experiment one and IFR-CAAS20230825 for experiment two).

2.2. Animals and Treatment

Experiment one: In reference to the previous selection scheme [5,24], this study se-
lected 72 healthy weaned piglets (Duroc × Landrace × Yorkshire), with an average body
weight (BW, 6.62 ± 0.13 kg) and age (25 ± 1 days). These weaned piglets were catego-
rized into high, medium, and low weight groups based on their body weight. A total of
24 weaned piglets with low-weaning body weight (BW, 5.81 ± 0.05 kg) were randomly
divided into 4 treatment groups with 6 replicates per group and 1 piglet per replicate. The
dietary treatments were as follows: basal diet without FC (FC 0), FC 0 + 150 mg/kg FC
(FC 150), FC 0 + 300 mg/kg FC (FC 300), or FC 0 + 600 mg/kg FC (FC 600). The experiment
lasted for 21 days and plasma samples were collected (Figure 1A). The Fucoidan used in this
study was purchased from Zhenlu Biotechnology Co., Ltd. (Xi’an, China), purity ≥ 98%
and derived from kelp.
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Figure 1. Schematic diagram of experimental design. (A) experiment one; (B) experiment two.

Experiment two: According to the selection protocols of experiment one, this study se-
lected 72 healthy low weight weaned piglets (BW, 6.01 ± 0.32 kg) from 216 healthy weaned
piglets (Duroc × Landrace × Yorkshire) with an average body weight (BW, 8.14 ± 0.15 kg)
and age (28 ± 1 day). They were randomly allocated into 4 treatments with 6 replicates
per treatment and 3 piglets per pen: a basal diet (CON) or 300 mg/kg of fucoidan added
to a basal diet (FC) challenged with LPS or not. On day 21, one piglet was selected from
each pen. Piglets in the challenged groups were intraperitoneally injected with 1 mL of
LPS (Escherichia coli O55:B5, Sigma Chemical, Burlington, MA, USA) at 100 µg/kg BW, and
the other piglets were intraperitoneally injected with the same amount of sterile saline
(0.9% NaCl). The selection of LPS dosage was based on previous studies on weaned
piglets [25]. All the selected piglets were euthanized 4 h later, and plasma and liver samples
were collected (Figure 1B).

Animals were purchased from a Langfang commercial farm and housed in a nursery
room. During the experiment, the diet for the piglets was formulated meeting the National
Research Council (2012) nutrient requirements (Appendix A: Tables A1 and A2).

The experiment one and experiment two composition and nutrient levels of the basal
diet are shown in Table A1. The basal diet did not contain any antibiotic growth pro-
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moters and the form of diet was mash. Piglets were accommodated in slatted floor pens
(1.7 m × 1.5 m) with unrestricted access to feed and water. The room’s initial temperature
was 28 ◦C and was gradually reduced to 26 ◦C. The room was lit naturally and artificially,
with ventilation provided by speed-controlled fans. Each pen had two drinking foun-
tains and an adjustable trough. Standard farm procedures were followed for disinfection
and vaccination.

2.3. Sample Collection

Experiment one: Body weight (BW) was recorded individually at the beginning and
the end of the trial. Any culling or mortality was recorded daily and feed consumption
was corrected for accordingly. Growth performance was evaluated by calculating the
average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F)
for each pen. To determine the incidence of diarrhea, fecal scores were monitored daily by
visually appraising each subject using the following five-point fecal consistency scoring
system: 1 = hard, dry pellet; 2 = firm, formed stool; 3 = soft, moist stool that retains its shape;
4 = soft, unformed stool; and 5 = watery liquid that can be poured. A liquid consistency
(score 4–5) was considered indicative of diarrhea [26]. The incidence of diarrhea (%) was
calculated as a percentage of the number of piglets with diarrhea divided by the total
number of piglets in each treatment. At the end of the experiment (day 21), blood was
taken from each piglet through the jugular vein to the heparin tube, left for 30 min, and
centrifuged at 3000 rpm for 10 min. The plasma was separated and stored at −20 ◦C
for analysis.

Experiment two: At the end of the experiment (day 21), the plasma of the selected
piglets after LPS challenge (4 h) was collected. The specific procedure was the same as
in experiment one. After LPS challenge for 4 h, the piglets were stunned by a portable
electrical stunner (the output voltage is 220 V) and bled quickly to be euthanized. Liver
samples were collected and placed in cryogenic vials (Corning Incorporated, New York,
NY, USA), frozen in liquid nitrogen, and stored at −80 ◦C for analysis.

2.4. Assay of Antioxidant Indices

The antioxidant indicators in both the plasma and liver, including the activities of
SOD, catalase (CAT), and GSH-Px, as well as the concentrations of MDA, and the plasma
growth hormone concentrations of insulin-like growth factor 1 (IGF-1), were determined
using commercial assay kits as instructed (Enzyme-linked Biotechnology Co., Ltd., Shang-
hai, China). The concentrations of SOD, MDA, CAT, and GSH-Px were determined by
micromethod according to the instructions. The absorbance was determined by microplate
spectrophotometer (Bio Tek Instruments, Inc, Shanghai, China) at the appropriate wave-
length, and the sample concentration was calculated. The superoxide anion (O2−) was
generated via the reaction system of xanthine and xanthine oxidase. This anion can interact
with WST-8 to yield a water-soluble dye, formazan, which exhibits absorption at 450 nm.
The activity of SOD, which can eliminate O2−, thereby inhibiting the formation of for-
mazan, can thus be measured. MDA reacts with thiobarbituric acid (TBA) to produce a red
product that has a maximum absorption peak at 532 nm. The content of lipids containing
peroxides can be estimated by colorimetry. Concurrently, the absorbance at 600 nm was
measured, and the difference in absorbance at these two wavelengths was used to calculate
the MDA content. CAT has the ability to decompose H2O2, which has a characteristic
absorption peak at 240 nm. Consequently, the absorbance of the reaction solution at 240 nm
decreased over time. The activity of CAT can be calculated based on the rate of change
in absorbance. GSH-Px catalyzes the oxidation of glutathione (GSH) by H2O2 to produce
glutathione disulfide (GSSG). Glutathione reductase (GR) then catalyzes the reduction
of GSSG by nicotinamide adenine dinucleotide phosphate (NADPH) to regenerate GSH,
oxidizing NADPH to NADP+ in the process. NADPH has a characteristic absorption peak
at 340 nm, while NADP+ does not. Therefore, the activity of GSH-Px can be calculated
by measuring the rate of decrease in absorption at 340 nm. The IGF-1 concentration was
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determined using an ELISA kit, samples were measured using microplates pre-coated with
porcine IGF-1-trapping antibodies, and color was developed using TMB substrates through
incubation and thorough cleaning. TMB turned blue under peroxidase and eventually
yellow under acid. Finally, the absorbance was measured at a wavelength of 450 nm using
an enzyme labeler to calculate the concentration of the sample. The protein concentration
of the liver crude enzyme fluid was determined using the BCA protein quantitative kit, and
the specific steps were carried out according to the instructions (Beijing Huaxing Bochuang
gene Technology Co., Ltd., Beijing, China).

2.5. Real-Time Quantitative PCR Analysis (qPCR)

The hepatic RNA extraction and quantitative polymerase chain reaction (qPCR) pro-
cedure follows the method outlined by Cai et al. [8]. In succinct terms, for liver samples,
the total RNA extraction employed Trizol reagent (Beijing AidLab Biotechnology Co., Ltd.,
Beijing, China) in accordance with the manufacturer’s stipulations. Firstly, we took 50 mg
of liver tissue and added it to 1 mL of lysis buffer for tissue homogenization, then incu-
bated it at room temperature for 5 min. Next, we added 0.2 mL of chloroform, vigorously
shacked it for 15 s, and then incubated it at room temperature for 3 min. Afterwards, the
sample was centrifuged at 12,000 rpm at 4 ◦C for 10 min using a centrifuge (Hitachi Koki
Co., Ltd., Tokyo, Japan). Then, we took the supernatant, added anhydrous ethanol equal
to half its volume, mixed well, and transferred it into an RA adsorption column, then
centrifuged it at 12,000 rpm for 45 s. Subsequently, we added 500 µL of RE deproteinization
solution, centrifuged it at 12,000 rpm for 45 s, and then discarded the waste liquid. Next,
we added 500 µL of RW wash solution, centrifuged it at 12,000 rpm for 45 s, and repeated
this step once. Then, we centrifuged the sample at 13,000 rpm for 2 min, added 60 µL of
Rnase-free water, let it stand at room temperature for 2 min, centrifuged it at 12,000 rpm
for 1 min, and finally obtained the liver RNA. The concentration and quality of RNA were
scrutinized using a Nano Drop™ One/One Cmicro UV-Vis spectrophotometer (Thermo
Fisher Scientific, Inc., Boston, MA, USA). The instrument calibration was performed using
Rnase-free water prior to detection. Following this, complementary deoxyribonucleic
acid (cDNA) was synthesized by a two-step reverse transcriptional procedure using the
appropriate concentration of the reagent according to the quantitative concentration of
liver RNA and the kit instructions (Beijing Takara Biomedical Technology Co., Ltd., Beijing,
China). The cDNA was diluted with Rnase-free water at the appropriate concentration,
packaged, and stored for further detection. The qPCR analysis was executed utilizing a
CFX96 Touch real-time fluorescent qPCR system (Bio-Rad Laboratories Inc., Berkeley, CA,
USA). The relative expression of the target gene was determined by employing the 2−∆∆CT

method, wherein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functioned as the
designated housekeeping gene. The specific primer sequences utilized in the qPCR assay
can be found in Appendix B: Table A3.

2.6. Statistical Analysis

SPSS 19 (IBM, Armonk, NY, USA) was used for the statistical analysis. The univariate
analysis of variance (ANOVA) and Tukey’s honest significance difference test were used
for the statistical analysis. In addition, the Kruskal–Wallis test for non-normally distributed
data sets was used to determine statistical significance. Orthogonal polynomial comparison
tests with linear and quadratic effects were used to evaluate the effects of different doses
of FC supplementation. Data are expressed as the mean of the standard error (SE). The
difference was considered to be significant when p < 0.05, and the difference was considered
to have a trend when 0.05 ≤ p < 0.10.

3. Results
3.1. Growth Performance and Diarrhea Incidence

The effects of different doses of FC supplementation on the growth performance of
low-weaning weight piglets are presented in Figure 2A–E. Compared with the FC 0 group,
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dietary FC 150, FC 300, and FC 600 significantly increased the G:F ratio of low-weaning
weight piglets (p < 0.05), and dietary FC 300 and FC 600 tended to increase the final BW
(p = 0.059) and ADG (p = 0.057). There were no significant differences in the ADFI among
experimental groups (p > 0.05). In addition, FC supplementation linearly increased the
final BW, ADG, and G:F ratio (p < 0.05), and tended to linearly increase the ADFI (p = 0.097).
In addition, there was a quadratic effect of FC supplementation on the G:F ratio (p < 0.05).

The result of different doses of FC supplementation on the diarrhea incidence of
low-weaning weight piglets in experiment one is shown in Figure 2F. Compared with
the FC 0 group, FC 300 supplementation significantly reduced the diarrhea incidence of
low-weaning weight piglets from day 0 to 21 (p < 0.05). However, there was no significant
difference in diarrhea incidence among FC 0, FC 150, and FC 600 groups (p > 0.05).
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of average daily gain to average daily feed intake (E) from 0 to 21 days. (F) Diarrhea incidence (DI)
from day 0 to 21. Data were expressed as mean with their standard errors represented by vertical
bars, (n = 6). Orthogonal polynomials were used to evaluate linear and quadratic responses to the
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3.2. Plasma IGF-1 Concentrations

The effects of different doses of FC supplementation on the plasma IGF-1 concentra-
tions of low-weaning weight piglets are shown in Figure 3E. Compared with the FC 0
group, the plasma IGF-1 concentrations in the FC 300 group were significantly increased
(p < 0.05). In addition, the plasma IGF-1 concentrations linearly increased with the in-
crease in FC supplemental concentrations (p < 0.05). There was no quadratic effect of FC
supplementation on the plasma IGF-1 concentrations (p > 0.05).
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Figure 3. The effects of different doses of FC supplementation on plasma antioxidant enzyme activity
and IGF-1 concentrations of low-weaning weight piglets is presented at day 21. (A–D) The plasma
concentrations of indicators related to antioxidants (SOD, MDA, CAT, GSH-Px). (E) The plasma
concentrations of IGF-1. Data were expressed as mean with their standard errors represented by
vertical bars, (n = 6). Orthogonal polynomials were used to evaluate linear and quadratic responses
to the concentrations of FC treatment. FC 0: basal diet, FC 150, FC 300, and FC 600 group, basal diet
adding 150, 300, and 600 mg/kg FC, respectively. a,b Means listed in the same row with different
superscripts are significantly different (p < 0.05).

3.3. Plasma Antioxidant Enzyme Activity

The effects of different doses of FC supplementation on the plasma antioxidant enzyme
activity of low-weaning weight piglets are shown in Figure 3A–D. FC 300 and FC 600
supplementation significantly increased the plasma SOD activity and reduced the plasma
MDA concentration compared to the FC 0 group (p < 0.05). There were no significant effects
on plasma GSH-Px and CAT activities in all treatment groups (p > 0.05). In addition, FC
supplementation linearly and quadratically increased the plasma SOD activity (p < 0.05)
and linearly reduced the plasma MDA concentration (p < 0.05).

In addition, the effects of FC supplementation on plasma antioxidant enzyme activity
of low-weaning weight piglets under LPS challenge are shown in Figure 4A–D. LPS
challenge decreased the plasma SOD activity and increased the MDA concentration of
low-weaning weight piglets (p < 0.05). Compared with the LPS group, the plasma SOD
activity in the LPS + FC group was increased (p < 0.05), and the MDA concentration tended
to be decreased in the LPS + FC group (p = 0.091). In addition, dietary FC significantly
increased the plasma SOD activity and decreased the plasma MDA content compared to
the CON group (p < 0.05).

3.4. Hepatic Antioxidant Enzyme Activity

The effects of FC supplementation on hepatic antioxidant enzyme activity of low-
weaning weight piglets under the LPS challenge are shown in Figure 4E–H. Compared with
the CON group, LPS reduced SOD activity and increased MDA concentration in the liver of
low-weaning weight piglets (p < 0.05). Compared with the LPS group, the activity of CAT
in the liver of LPS + FC piglets was significantly increased (p < 0.05), and the concentration
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of MDA was decreased in the LPS + FC group (p < 0.05), and dietary FC to LPS-challenged
piglets tended to increase the activity of SOD (p = 0.087). In addition, hepatic CAT activity
in the FC group was significantly increased compared with CON group (p < 0.05).
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Figure 4. The effects of FC supplementation on the antioxidant enzyme activity of plasma and liver in
LPS-challenged low-weaning weight piglets. (A–D) The plasma concentrations of indicators related
to antioxidants (SOD, MDA, CAT, GSH-Px). (E–H) The liver concentrations of indicators related to
antioxidants (SOD, MDA, CAT, GSH-Px). Data were expressed as mean with their standard errors
represented by vertical bars, (n = 6). CON: basal diet, FC: basal diet + 300 mg/kg FC. a–c Means listed
in the same row with different superscripts are significantly different (p < 0.05). x,y Means listed in
the same row with different superscripts showed a tendency to be different (0.05 ≤ p < 0.10).

3.5. Hepatic Antioxidant Genes mRNA Expression

The effects of FC supplementation on the hepatic antioxidant gene mRNA expression
in low-weaning weight piglets under LPS challenge are shown in Figure 5A–I. Compared
with the CON group, LPS challenge down-regulated GCLC mRNA expression in the liver
of low-weaning weight piglets (p < 0.05). Compared with the LPS group, administering
dietary FC to LPS-challenged piglets up-regulated CAT mRNA expression (p < 0.05) and
down-regulated Keap1 mRNA expression (p < 0.05) in the liver. The mRNA expression of
Nrf2 (p = 0.072), SOD1 (p = 0.091), and GCLM (p = 0.094) in the LPS + FC group tended to be
up-regulated compared to the LPS group. In addition, FC supplementation up-regulated the
mRNA expressions of Nrf2, SOD1, and GCLM and down-regulated the mRNA expression
of Keap1 compared to the CON group (p < 0.05). In addition, all treatment groups had no
significant effects on liver HO1 and NQO1 gene expression (p > 0.05).
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Figure 5. The effect of FC regulation and LPS challenge on liver antioxidant gene mRNA expression
in low-weaning weight piglets. (A–I) Relative mRNA expression of Keap1, Nrf2, SOD1, CAT, GPX2,
GPX4, GCLC, GCLM, and HO-1. Data were expressed as mean with their standard errors represented
by vertical bars, (n = 6). CON: basal diet, FC: basal diet + 300 mg/kg FC. a,b Means listed in the same
row with different superscripts are significantly different (p < 0.05). x,y Means listed in the same row
with different superscripts showed a tendency to be different (0.05 ≤ p < 0.10).

3.6. Hepatic Mitochondrial Genes mRNA Expression

The effects of FC supplementation on hepatic mitochondrial gene mRNA expression
in low-weaning weight piglets under LPS challenge are shown in Figure 6A–J. Compared
with the CON group, LPS challenge down-regulated the expression of the mitochondrial
fusion gene MFN2 and division gene FIS1 mRNA (p < 0.05) and tended to the decrease
the division gene DRP1 (p = 0.051) in the liver of low-weaning weight piglets. Conversely,
supplementation with FC partially improved mitochondrial biogenesis gene expression
in the liver (Figure 6A–E). Compared with the LPS group, administering dietary FC to
LPS-challenged piglets up-regulated the expression of the mitochondrial fusion gene MFN2
mRNA in the liver (p < 0.05). In addition, the analysis of the expression of genes related to
mitochondrial respiratory chain membrane proteins (Figure 6F–J) showed that supplemen-
tation with FC significantly up-regulated the expression of SDHA and UQCRB genes in the
liver of weaned piglets stimulated by LPS (p < 0.05). The Spearman correlation analysis
found significant correlations among Keap1/Nrf2 signaling pathway genes, antioxidant
enzyme-related genes, and mitochondrial respiratory chain membrane protein-related
genes (Figure 6K).
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Figure 6. The effect of FC regulation and LPS challenge on liver mitochondrial biogenesis and
respiratory chain membrane protein-related gene mRNA expression in low-weaning weight piglets.
(A–J) Relative mRNA expression of MFN1, MFN2, OPA1, FIS1, DRP1, ATP5H, SDHA, NDUFV2,
NDUFS2, and UQCRB. (K) The heatmap of Spearman’s correlation between the expression of mi-
tochondrial function-related genes and Keap1/Nrf2 signaling pathway genes. Data were expressed
as mean with their standard errors represented by vertical bars, (n = 6). CON: basal diet, FC: basal
diet + 300 mg/kg FC. a,b Means listed in the same row with different superscripts are significantly
different (p < 0.05). x,y Means listed in the same row with different superscripts showed a tendency to
be different (0.05 ≤ p < 0.10). * p < 0.05, ** p < 0.01. (A) MFN1 = mitofusin 1, (B) MFN2 = mitofusin 2,
(C) OPA1 = optic atrophy 1, (D) FIS1 = mitochondrial fission protein 1, (E) DRP1 = dynamin-
related protein 1, (F) ATP5H = ATP synthase, H+ transporting, mitochondrial F0 complex, subunit,
(G) SDHA = succinate dehydrogenase complex flavoprotein subunit A, (H) NDUFV2 = NADH
ubiquinone oxidoreductase core subunit V2, (I) NDUFS2 = NADH ubiquinone oxidoreductase core
subunit S2, and (J) UQCRB = ubiquinol cytochrome c reductase binding protein. (K) Keap1 = kelch-
like ECH-associated protein l, Nrf2 = nuclear factor-erythroid 2-related factor 2, SOD1 = superoxide
dismutase 1, CAT = catalase, GPX = glutathione peroxidase, GCLC = glutamate-cysteine ligase
catalytic subunit, GCLM = glutamate-cysteine ligase modifier subunit, HO1 = heme oxygenase 1.
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4. Discussion

Weaning usually induces an increase of ROS in piglets, particularly in low-weaning
weight piglets; consequently, weaning can disrupt the balance of oxidation reduction,
reduce antioxidant capacity, cause oxidative stress and oxidative damage in the tissues and
intestine, and potentially lead to diarrhea, inhibited growth, and even death [5,7,27–29]. It
is well understood that piglets with a lower weaning weight are more susceptible to post-
weaning challenges than pigs with a heavier weaning weight [5,30]. Therefore, piglets with
low-weaning weight need antioxidants with nutritional regulation functions to improve the
antioxidant capacity of weaned piglets, reduce diarrhea, and promote growth post weaning.

Our results in experiment one demonstrated that fucoidan (FC) supplementation could
linearly improve the growth performance of low-weaning weight piglets and the optimal
dose of FC was 300 mg/kg. The findings of this study were in accordance with previous
research, which found that supplementations with FC could increase feed conversion and
improve the growth performance of weaned piglets [31]. Moreover, the supplementation
of various forms and doses of FC can enhance the growth rate and health status of young
chicks [32], weaned kids [33], fish [34], and Penaeus monodon [35]. Previous studies
demonstrated that FC could reduce the diarrhea incidence of weaned piglets [36,37]. In
this study, FC supplementation at varying concentrations in low-weaning weight piglets
revealed a significant reduction in the incidence of diarrhea at a concentration of 300 mg/kg.
Walsh et al. [37] reported that adding 240 mg/kg FC to the diet of weaned piglets can
reduce the incidence of diarrhea. On the other hand, Rattigan et al. [38] found that adding
250 mg/kg FC effectively improved the fecal consistency of weaned piglets. Based on these
results, we speculated that the source and processing techniques of FC might determine its
optimal dosage and method of use. These findings provide us with valuable references,
helping us to better understand and utilize FC.

The free radical metabolism and antioxidant systems of piglets may undergo dis-
ruption after weaning, thereby instigating oxidative stress responses, which have the
potential to interfere with the host’s antioxidant system and disrupt the cellular redox equi-
librium [7,8,38,39]. The antioxidant defense system, which primarily comprises antioxidant
enzymes such as SOD, CAT, and GSH-Px, along with other non-enzymatic antioxidants,
can eliminate ROS [40,41]. MDA, the end product of lipid peroxidation, is frequently used
as a marker for oxidative damage [42]. The role of functional nutritional supplements
in improving the antioxidant capacity of piglets is widely recognized [43,44]; however,
the effectiveness would vary due to differences in the type, source, and dosage of sup-
plements. Our previous studies showed that supplementation with yeast hydrolysate
from Kluyveromyces fragilis at 10 g/kg could significantly increase the activity of SOD and
reduce the concentration of MDA in the plasma of weaned piglets, thereby enhancing the
antioxidant capacity [7]. Furthermore, our studies revealed that a supplementation with
400 mg/kg of silybin could efficaciously mitigate the redox imbalance in weaned piglets
and counteract the growth retardation induced by paraquat [8]. Our results in experiment
one showed that supplementation with 300 and 600 mg/kg FC could enhance the activity
of SOD and decrease the concentration of MDA in the plasma of piglets with a low-weaning
weight. Consistent with previous studies, the use of FC or brown algae extracts to improve
the antioxidant capacity of animals and inhibit oxidative stress has been verified in a variety
of animal models [21,22,32,33,35]. Moreover, our study observed that the supplementation
of FC at a dosage of 300 mg/kg notably elevated the concentrations of IGF-1 in the plasma
of piglets with a low-weaning weight; the increase in IGF-1 concentrations exhibited a
positive correlation with the piglets’ growth performance [45], thereby substantiating the
growth-enhancing impact of FC supplementation. This is a finding that further corroborates
the beneficial role of FC in promoting growth.

Although our preliminary investigation suggested that FC has the potential to augment
the antioxidant and growth-enhancing capabilities of low-weaning weight piglets, this is
far from sufficient to fully elucidate the mechanism of action of FC on oxidative stress in
piglets. Therefore, we further designed an experiment and established an oxidative stress
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model using LPS-challenged low-weaning weight piglets to further study the alleviating
effect of FC on oxidative damage. LPS has been substantiated as an effective inducer of
oxidative stress in experimental animals, thereby validating its use in the establishment of
oxidative stress models [25,46]. Our research findings indicate that LPS challenge triggers
a pronounced systemic redox imbalance in low-weaning weight piglets, as evidenced
by a decrease in SOD activity and an increase in MDA concentration in the plasma and
liver. The challenge model in our study was similar to previous results, verifying the
successful establishment of our experimental animal model [25,46,47]. The liver, being the
primary organ for metabolism and detoxification, plays a crucial role in defending against
severe infections and exogenous stimuli, and in tissue repair [48]. Keap1 acts as a negative
regulator of Nrf2, inhibiting its nuclear translocation. The Nrf2 signaling pathway serves as
the central regulator of oxidative stress responses within biological organisms, controlling
the expression of various antioxidant response-related genes or enzymes [17]. When cells
are damaged, Nrf2 is up-regulated and activates phase II enzymes, enhancing the cells’
tolerance to oxidative stress [49]. Therefore, the Keap1 regulation of Nrf2 plays a crucial
role in cellular resistance to oxidative stress and the maintenance of cellular homeostasis.
In experiment two, our observations revealed that the supplementation with FC could
down-regulate the expression of the Keap1 gene, up-regulate the activation of the Nrf2
pathway, and stimulate the expression of CAT antioxidant-related genes. This regulatory
mechanism effectively mitigates oxidative stress, thereby offering substantial protection
against liver damage induced by LPS to low-weaning weight piglets. This dual regulatory
effect further underscores the potential of FC supplementation as a potent modulator of
gene expression in the context of antioxidant defense mechanisms.

The mitochondrion, an essential organelle, is instrumental in controlling redox pro-
cesses and lipid metabolism within liver cells [50]. Fission and fusion are crucial for
maintaining mitochondrial balance by isolating and eliminating impaired components.
When mitochondria malfunction, this may hinder fusion or stimulate fission to stop the
integration of damaged parts into the healthy mitochondrial system [51]. The genes FIS1
and DRP1 play a regulatory role in mitochondrial division, while MFN1, MFN2, and
OPA1 primarily oversee the regulation of mitochondrial fusion [52]. Our research findings
indicate that LPS challenges mitochondrial function by down-regulating the mRNA ex-
pression of MFN2, FIS1, and DRP1. Dietary supplementation with FC can partially reverse
these adverse effects. Specifically, FC can alleviate LPS challenge-induced mitochondrial
damage in the liver of low-weaning weight piglets by regulating the mitochondrial MFN2
gene in the liver. Previous studies demonstrated that FC could prevent mitochondrial
functional damage [22,53]. The mitochondrial oxidative phosphorylation system, which
is crucial to cellular metabolism, consists of five enzyme complexes, including NADH
dehydrogenase (Complex I), succinate dehydrogenase (Complex II), ubiquinol cytochrome
c oxidoreductase (Complex III), cyanide sensitive oxidase (Complex IV), and ATP synthase
(Complex V) [54,55]. Our findings demonstrated that the addition of FC counteracted the
reduction in the expression of SDHA (Complex IV) and UQCRB (Complex II) genes in the
liver of LPS-challenged low-weaning weight piglets. Thus, our results suggest that FC may
enhance the activity of the mitochondrial oxidative phosphorylation system, preventing
mitochondrial function damage.

5. Conclusions

The supplementation with an optimal dose of FC (300 mg/kg) exhibits benefits in
the antioxidant capacity and growth performance of low-weaning weight piglets. The
antioxidant function of FC might be attributed to the inhibited Keap1 expression, controlled
nuclear migration of Nrf2, enhanced CAT activity, various antioxidant enzymes, and
improved mitochondrial function. Further, the antioxidant function may have eventually
played a protective role against liver oxidative stress damage. Thus, the optimal dose of FC
used in this study could provide a theoretical reference for the application of FC as a novel
and natural antioxidant in swine production.
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Appendix A

Table A1. The composition of basal diet and nutrient levels in experiment one (as-fed basis, %).

Items
Experiment Treatments

FC 0 FC 150 FC 300 FC 600

Ingredients
Corn 16.45 16.45 16.45 16.45
Extruded corn 32.00 32.00 32.00 32.00
Soybean meal, 46%CP 14.00 14.00 14.00 14.00
Extruded soybean 11.50 11.50 11.50 11.50
Fish meal 5.60 5.60 5.60 5.60
Whey 15.00 15.00 15.00 15.00
Soybean oil 1.00 1.00 1.00 1.00
Dicalcium phosphate 0.40 0.40 0.40 0.40
Limestone (CaCO3) 0.75 0.75 0.75 0.75
Salt 0.30 0.30 0.30 0.30
Choline chloride (60%) 0.05 0.05 0.05 0.05
L-Lysine HCl 1.20 1.20 1.20 1.20
DL-Methionine 0.09 0.09 0.09 0.09
Threonine 0.27 0.27 0.27 0.27
Tryptophan 0.02 0.02 0.02 0.02
Phytase 0.02 0.02 0.02 0.02
Acidifier 0.35 0.35 0.35 0.35
Zinc oxide 0.20 0.20 0.20 0.20
Vitamin and mineral premix 1 0.80 0.80 0.80 0.80
Total 100.00 100.00 100.00 100.00

Nutrition composition (Analyzed value)
GE, KJ/g 16.84 16.80 16.85 16.84
Crude protein 19.45 19.48 19.45 19.46
Calcium 0.77 0.76 0.78 0.77
Phosphorus 0.65 0.66 0.64 0.65
Ether extract 4.22 4.21 4.21 4.22
Crude Ash 6.21 6.19 6.18 6.21

Nutrition composition (Calculated value)
ME, MJ/kg 14.23 14.23 14.23 14.23
Lysine 1.30 1.30 1.30 1.30
Methionine 0.38 0.38 0.38 0.38
Threonine 0.76 0.76 0.76 0.76
Tryptophan 0.21 0.21 0.21 0.21

1 Premix supplied per kg of diet: niacin, 38.4 mg; calcium pantothenate, 25 mg; folic acid, 1.68 mg; biotin, 0.16 mg;
vitamin A, 35.2 mg; vitamin B1, 4 mg; vitamin B2, 12 mg; vitamin B6, 8.32 mg; vitamin B12, 4.8 mg; vitamin D3,
7.68 mg; vitamin E, 128 mg; vitamin K3, 8.16 mg; zinc (ZnSO4·H2O), 110 mg; copper (CuSO4·5H2O), 125 mg;
selenium (Na2SeO3), 0.19 mg; iron (FeSO4·H2O), 171 mg; cobalt (CoCl2), 0.19 mg; manganese (MnSO4·H2O),
42.31 mg; iodine (Ca(IO3)2), 0.54 mg.
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Table A2. The composition of basal diet and nutrient levels in experiment two (as-fed basis, %).

Items
Experiment Treatments

CON FC LPS FC + LPS

Ingredients
Corn 16.45 16.45 16.45 16.45
Extruded corn 32.00 32.00 32.00 32.00
Soybean meal, 46%CP 14.00 14.00 14.00 14.00
Extruded soybean 11.50 11.50 11.50 11.50
Fish meal 5.60 5.60 5.60 5.60
Whey 15.00 15.00 15.00 15.00
Soybean oil 1.00 1.00 1.00 1.00
Dicalcium phosphate 0.40 0.40 0.40 0.40
Limestone (CaCO3) 0.75 0.75 0.75 0.75
Salt 0.30 0.30 0.30 0.30
Choline chloride (60%) 0.05 0.05 0.05 0.05
L-Lysine HCl 1.20 1.20 1.20 1.20
DL-Methionine 0.09 0.09 0.09 0.09
Threonine 0.27 0.27 0.27 0.27
Tryptophan 0.02 0.02 0.02 0.02
Phytase 0.02 0.02 0.02 0.02
Acidifier 0.35 0.35 0.35 0.35
Zinc oxide 0.20 0.20 0.20 0.20
Vitamin and mineral premix 1 0.80 0.80 0.80 0.80
Total 100.00 100.00 100.00 100.00

Nutrition composition (Analyzed value)
GE, KJ/g 17.00 16.89 17.00 16.89
Crude protein 19.29 19.31 19.29 19.31
Calcium 0.79 0.78 0.79 0.78
Phosphorus 0.67 0.65 0.67 0.65
Ether extract 4.32 4.29 4.32 4.29
Crude Ash 6.23 6.13 6.23 6.13

Nutrition composition (Calculated value)
ME, MJ/kg 14.23 14.23 14.23 14.23
Lysine 1.30 1.30 1.30 1.30
Methionine 0.38 0.38 0.38 0.38
Threonine 0.76 0.76 0.76 0.76
Tryptophan 0.21 0.21 0.21 0.21

1 Premix supplied per kg of diet: niacin, 38.4 mg; calcium pantothenate, 25 mg; folic acid, 1.68 mg; biotin, 0.16 mg;
vitamin A, 35.2 mg; vitamin B1, 4 mg; vitamin B2, 12 mg; vitamin B6, 8.32 mg; vitamin B12, 4.8 mg; vitamin D3,
7.68 mg; vitamin E, 128 mg; vitamin K3, 8.16 mg; zinc (ZnSO4·H2O), 110 mg; copper (CuSO4·5H2O), 125 mg;
selenium (Na2SeO3), 0.19 mg; iron (FeSO4·H2O), 171 mg; cobalt (CoCl2), 0.19 mg; manganese (MnSO4·H2O),
42.31 mg; iodine (Ca(IO3)2), 0.54 mg.

Appendix B

Table A3. Primer sequences used for RT-qPCR.

Gene Primer Sequence (5′→3′) Product Length, bp Accession No.

ATP5H F: CATTGACTGGGTAGCCTTTG 115 XM_021066093.1
R: CTTCTCAGGTAGAGCAGCCA

CAT F: CCTGCAACGTTCTGTAAGGC 72 NM_214301.2
R: GCTTCATCTGGTCACTGGCT

DRP1 F:GTAAACCGAAGCCAGAAGGACA 102 XM_021069575.1
R: CAAGTGGCGATAGGAAGGGTGG

FIS1 F:CCAAAGGGAGCAAAGAGGAGCA 132 XM_021086263.1
R: CCTGGTTGTTCTGTGGCTCTGT

GAPDH F: GCTTGTCATCAATGGAAAGG 86 NM_001206359.1
R: CATACGTAGCACCAGCATCA

GCLC F: GGAGAGGGGAGAAAGTTGTC 103 XM_021098556.1
R: GCCTTCGCTGCTTCATCATC

GCLM F: GCTTCGAGACTGTATCCAAA 132 XM_001926378.4
R: CTTTCATCGGGATTTATTTT

GPX2 F: TCTCCAGTGTGTCGCAATGA 104 NM_214201.1
R: TCGATGGTCAGAAAGCGACG

GPX4 F: GATTCTGGCCTTCCCTTGC 173 NM_214407.1
R: TCCCCTTGGGCTGGACTTT

HO1 F: GAGAAGGCTTTAAGCTGGTG 74 NM_001004027.1
R: GTTGTGCTCAATCTCCTCCT

Keap1 F: AGCTGGGATGCCTCAGTGTT 100 NM_001114671.1
R: AGGCAAGTTCTCCCAGACATTC
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Table A3. Cont.

Gene Primer Sequence (5′→3′) Product Length, bp Accession No.

MFN1 F:CAATAGAAGAGAGGGAAGACC 117 NM_001315732.1
R: TATTTGCCACCTCCTCTGTAA

MFN2 F:AGAGGAGAAGAGGAGCGTCAAGA 95 XM_021095370.1
R: ACATCACACTCACCAGGCTGC

NDUFS2 F: CTAAACGCGCAGAGATGAAGA 108 XM_005663166.3
R: CCTCAATGGCAGTGTATGTGG

NDUFV2 F:CCCAGATACTCCATTTGATTTCA 169 NM_001097475.2
R: AATTTCTGCCACCTTGTTCATG

Nrf2 F: GAGAAGGCTTTAAGCTGGTG 103 XM_005671981.3
R: GTTGTGCTCAATCTCCTCCT

OPA1 F:CAGAGGATGGTGCTTGTTGAC 128 XM_021070065.1
R: AGTATGATGGCGTTGGGATTC

SDHA F:TCTCTGAGGCCGGGTTTAACACA 124 XM_021076930.1
R: CACCTCCAGTTGTCCTCCTCCAT

SOD1 F: GAAGACAGTGTTAGTAACGG 93 NM_001190422.1
R: CAGCCTTGTGTATTATCTCC

UQCRB F: GGATGACGATGTAAAAGAAGCCA 141 NM_001185172.1
R: TCCTCCTCATATTTTGTCCACTG

ATP5H: ATP synthase, H+ transporting, mitochondrial Fo complex, subunit, CAT: catalase, DRP1: dynamin
related protein 1, FIS1: mitochondrial fission protein 1, GAPDH: glyceraldehyde-3-phosphate dehydrogenase,
GCLC: glutamate-cysteine ligase catalytic subunit, GCLM: glutamate-cysteine ligase modifier subunit, GPX2: glu-
tathione peroxidase 2, GPX4: glutathione peroxidase 4, HO1: heme oxygenase 1, Keap1: kelch-like ech-associated
protein 1, MFN1: mitofusin 1, MFN2: mitofusin 2, NDUFS2: NADH ubiquinone oxidoreductase core subunit S2,
NDUFV2: NADH ubiquinone oxidoreductase core subunit V2, OPA1: optic atrophy 1, SDHA: succinate dehy-
drogenase complex flavoprotein subunit A, Nrf2: nuclear factor erythroid2-related factor 2, SOD1: superoxide
dismutase 1, UQCRB: ubiquinol cytochrome c reductase binding protein.
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