
Citation: Hong, Y.; Boiti, A.; Vallone,

D.; Foulkes, N.S. Reactive Oxygen

Species Signaling and Oxidative

Stress: Transcriptional Regulation and

Evolution. Antioxidants 2024, 13, 312.

https://doi.org/10.3390/

antiox13030312

Academic Editors:

Fabiana Pizzolongo and

Stefania Filosa

Received: 19 January 2024

Revised: 26 February 2024

Accepted: 29 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

Reactive Oxygen Species Signaling and Oxidative Stress:
Transcriptional Regulation and Evolution
Yuhang Hong, Alessandra Boiti , Daniela Vallone and Nicholas S. Foulkes *

Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology,
76344 Eggenstein-Leopoldshafen, Germany; yuhang.hong@kit.edu (Y.H.); alessandra.boiti@kit.edu (A.B.);
daniela.vallone@kit.edu (D.V.)
* Correspondence: nicholas.foulkes@kit.edu

Abstract: Since the evolution of the aerobic metabolism, reactive oxygen species (ROS) have rep-
resented significant challenges to diverse life forms. In recent decades, increasing knowledge has
revealed a dual role for ROS in cell physiology, showing they serve as a major source of cellular
damage while also functioning as important signaling molecules in various biological processes. Our
understanding of ROS homeostasis and ROS-mediated cellular signaling pathways has presumed
that they are ancient and highly conserved mechanisms shared by most organisms. However, emerg-
ing evidence highlights the complexity and plasticity of ROS signaling, particularly in animals that
have evolved in extreme environments. In this review, we focus on ROS generation, antioxidative
systems and the main signaling pathways that are influenced by ROS. In addition, we discuss ROS’s
responsive transcription regulation and how it may have been shaped over the course of evolution.

Keywords: reactive oxygen species; cellular signaling; DNA repair; transcriptional regulation;
vertebrate evolution

1. Introduction

The evolution of aerobic respiration represented a significant milestone in the history
of life on Earth. It is a metabolic process that enables organisms to efficiently extract
energy from complex organic compounds by the use of an electron transport chain in
the presence of oxygen as a final electron acceptor [1]. As organisms evolved to exploit
the benefits of aerobic respiration, a major challenge emerged due to the accumulation
of reactive oxygen species (ROS), inevitable by-products of cellular aerobic respiration,
including the superoxide anion (O2•−), hydrogen peroxide (H2O2) and the hydroxyl radical
(HO•) [2]. ROS serve both as potent sources of macromolecular damage as well as essential
signaling molecules and so maintaining a balance between these negative and positive
effects is fundamentally important for normal cellular physiology. These basic properties
of ROS have been extensively documented in many previous reviews [2–4]. However,
in this current review we aim to broaden the view of the role of ROS in cell biology and
physiology by also exploring species-specific differences in the mechanisms which react
to and regulate ROS as well as speculating how the environment may have shaped these
mechanisms over the course of evolution.

2. The Origins of ROS and Oxidative Stress

As the powerhouse of the cell, mitochondria consume approximately 90% of the body’s
oxygen to generate ATP through oxidative phosphorylation, rendering them a significant
source of ROS [5]. On the inner membrane of mitochondria, the superoxide anion (O2•−)
is primarily produced in complexes I or III of the electron transport chain as a result of
the monoelectronic reduction of O2. Then a series of enzymatic reactions comprise the
metabolic pathways for the processing of endogenously generated ROS during aerobic
respiration [6]. ROS species represent chemically reactive molecules which are highly toxic
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since they induce damage in various cellular macromolecules including lipids, proteins
and nucleic acids [7], demonstrating that there is a high price to pay for the use of O2 to
enhance energy production. As a consequence, ROS participate in various pathological
processes in almost all aerobes [8].

Oxidative stress is a physiological condition characterized by an imbalance between
the production of ROS and the ability of cells to detoxify them [9]. It plays a significant
role in the disruption of normal cellular function and can lead to inflammation, tissue
injury and organ dysfunction. As shown in Figure 1, while cellular ROS can be generated
endogenously in the mitochondria as the primary intracellular site for oxidative phos-
phorylation, other organelles linked with ROS production include the peroxisome where
several peroxisomal enzymes serve to generate and metabolize ROS [10], as well as the
endoplasmic reticulum where misfolded protein aggregation leads to “ER stress” and an
associated increase in ROS [11]. Production of ROS by metabolic enzymes such as the
NADPH oxidases (NOX) represents another important source of oxidative stress [7,12]. Fur-
thermore, excess ROS may be induced by exposure to sunlight or xenobiotic compounds [3].
Accumulation of ROS leads to cellular damage by either direct reaction with biological
molecules or the indirect regulation of signaling pathways [13,14]. Thereby, oxidative stress
has been implicated in the progression of cancer by promoting DNA mutations and altering
cell signaling pathways [15]. Furthermore, it has been implicated in the aging process, as
accumulation of oxidative damage over time contributes to the decline in cellular function
and the development of age-related diseases. Therefore, understanding and managing
oxidative stress represent important challenges for biomedicine.
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Figure 1. Schematic representation of oxidative stress induced by intracellular and extracellular
stimuli. Extracellular sources of ROS include environmental factors such as radiation and xenobiotics.
Intracellular ROS are generated mainly in the mitochondria, as well as other organelles such as the
peroxisome and endoplasmic reticulum, and in addition by some metabolic enzymes. Excessive ROS
production can lead to cell apoptosis, autophagy, lipid peroxidation and DNA damage.

3. Intracellular ROS Balance and Antioxidant Systems

Due to the high toxicity and carcinogenic effect of ROS, the maintenance of ROS
levels within well-defined limits is a critical facet of cellular physiology, with profound
implications for health and disease. Several ROS-based redox regulatory pathways govern
intracellular ROS homeostasis, with the ROS-mediated oxidation of cysteine residues being
among the most extensively studied mechanisms [2]. Cysteine residues serve as specific
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targets for ROS and constitute the catalytic centers of many ROS scavenger proteins, such as
thiol peroxidases. For example, peroxiredoxins (Prxs) contain conserved cysteine residues
within their catalytic sites, which are susceptible to oxidation by H2O2. Upon exposure to
H2O2, the peroxidatic cysteine residue of Prxs undergoes oxidation to form a sulfenic acid
intermediate. Subsequent reversible reactions with “resolving” cysteine residues within
the same or neighboring Prx subunits result in the formation of disulfide bonds or higher
oxidation states. These oxidative modifications can alter the activity and oligomeric state
of Prxs, thereby modulating their peroxidase activity and interaction with downstream
signaling molecules [3]. In addition, another crucial oxidative modification involves me-
thionine residues. When exposed to ROS, the majority of methionine residues undergo
conversion to methionine sulfoxides, resulting in structural and functional modifications of
proteins [16]. With the help of methionine sulfoxide reductase, methionine oxidation by
ROS becomes a reversible process and this protects the integrity and stability of proteins
from oxidative damage.

3.1. Cellular Antioxidative Systems

Cells employ a multifaceted antioxidant defense system to regulate ROS levels and
prevent oxidative stress. This system includes a network of enzymatic and non-enzymatic
antioxidants that work in concert to neutralize ROS (Figure 2) [17]. Enzymatic antioxidants
are mainly represented by enzymes such as superoxide dismutase (SOD) and catalase
(CAT). SOD constitutes the primary line of antioxidative defense, playing a pivotal role by
catalyzing the dismutation of superoxide anions (O2•−) to form H2O2 [18]. The subsequent
detoxification of H2O2 into water and oxygen is catalyzed by enzymes including CAT,
glutathione peroxidase (GPx) and peroxiredoxins (Prxs) [19]. In addition, the glutathione-
associated enzymes such as glutathione reductase (GR) and glutathione S-transferase (GST)
participate in glutathione metabolism and constitute a secondary level of defense [20]. Upon
exposure to ROS, the majority of methionine residues undergo conversion to methionine
sulfoxides, resulting in structural and functional modifications of proteins [16]. With the
help of methionine sulfoxide reductase, methionine oxidation by ROS becomes a reversible
process and this protects the integrity and stability of proteins from oxidative damage.
Other proteolytic enzymes and DNA repair enzymes which remove lesions from protein
or DNA have also been identified as important antioxidants, which indirectly function in
cellular redox balance [21,22].

Non-enzymatic antioxidants encompass a diverse range of molecules, such as vita-
mins, glutathione and metal-binding proteins like ferritin, which quench ROS directly or
participate in the regeneration of enzymatic antioxidants [23]. Ascorbic acid, for exam-
ple, commonly known as vitamin C, serves to neutralize free radicals. The antioxidative
properties of vitamin C are primarily attributed to its ability to readily donate electrons,
stabilizing and thereby quenching the damaging oxidative reactions initiated by ROS [24].
Furthermore, vitamin C has been shown to regenerate other important antioxidants, such
as vitamin E, thereby enhancing the overall antioxidant defense network [25]. This micronu-
trient’s versatile role extends beyond direct radical scavenging, as it also modulates the
activity of transcription factors involved in the expression of antioxidant enzymes, further
bolstering the body’s innate defense against oxidative stress [26,27]. Moreover, vitamin
C’s hydrophilic properties allow it to exert its antioxidative influence in both aqueous and
lipid environments, making it a crucial player in protecting various cellular components
from oxidative damage [28]. However, ascorbic acid also exhibits pro-oxidant effects under
certain conditions, particularly in the presence of transition metal ions such as iron and
copper. In these circumstances, ascorbic acid can undergo redox cycling, donating electrons
to transition metals, and lead to ROS generation [29]. This pro-oxidant activity of ascorbic
acid has been implicated in mediating the cytotoxic effects of oxidative stress and DNA
damage at pharmacologic concentrations. Thereby, this property may also be beneficial for
anti-tumor therapies due to the associated induction of DNA repair enzymes and selective
cytotoxicity in tumor cells [30,31].
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Figure 2. Schematic presentation of antioxidation systems with enzymatic and non-enzymatic
antioxidants. Black arrows indicate enzymatic reactions and green lines indicate non-enzymatic
reactions. NOXs: the NADPH oxidases; SOD: superoxide dismutase; Prx: peroxiredoxin; GPx:
glutathione peroxidase; GR: glutathione reductase; GSH: glutathione; GSSG: glutathione disulfide.

3.2. Reactive Sulfur Species as Antioxidants

Reactive sulfur species (RSS) represent a diverse group of sulfur-containing molecules
that play significant roles in oxidative stress pathways. While traditionally overshadowed
by ROS, RSS have gained increasing recognition for their involvement in redox signaling
and cellular homeostasis [32]. Hydrogen sulfide (H2S), a well-known RSS, has emerged
as a key player in modulating oxidative stress responses due to its potent antioxidant
properties and regulatory effects on cellular signaling pathways. H2S can scavenge ROS
directly or indirectly through the upregulation of antioxidant enzymes, such as SOD and
CAT, thereby mitigating oxidative damage. Moreover, H2S can reversibly modify cysteine
residues in proteins via sulfhydration, regulating protein function and redox signaling
cascades [33]. Additionally, other RSS, such as hydropersulfides and polysulfides, con-
tribute to cellular antioxidant defenses and redox homeostasis as endogenous antioxidants
through similar mechanisms [34]. Although the chemical nature of RSS in various biological
activities remains poorly understood, recent studies have indicated their regulatory roles in
pathophysiological conditions, including cardiovascular diseases [35], neurodegenerative
disorders and cancer [36].

3.3. Role of Nitric Oxide in Oxidative Stress

Nitric oxide (NO) is a versatile signaling molecule in biological systems, exerting both
pro-oxidant and antioxidant effects depending on its concentration, cellular context and
interaction with other molecules. At low concentrations, NO acts as an antioxidant by
scavenging free radicals and inhibiting lipid peroxidation, thereby protecting cells from
oxidative damage [37]. For example, NO can directly interact with lipid peroxyl radicals
(LOO•), inhibiting the propagation of lipid peroxidation chain reactions and protecting cell
membranes [38]. However, due to a lack of enzymatic scavengers, NO overproduction by
inducible NO synthase (iNOS) under stress conditions can give rise to reactive nitrogen
oxide species (RNOS), such as peroxynitrite (ONOO−), and so contribute to a reversal
from protective to deleterious effects of NO [39]. For example, excessive NO production
by iNOS in inflammatory cells has been implicated in pro-inflammatory effects during the
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pathogenesis of various autoimmune and chronic inflammatory diseases [29]. Therefore, the
delicate balance between NO and ROS exemplifies the dynamic interplay within oxidative
stress pathways, highlighting the need for a more detailed understanding of their roles in
cellular physiology and pathology in order to develop effective strategies for managing
oxidative stress-related diseases.

4. ROS Serve as Signaling Molecules

Although traditionally recognized for their potentially damaging effects, recent re-
search has unveiled the dual role of ROS as vital signaling molecules engaged in regulating
numerous biological processes [4]. At physiological levels, ROS serve as crucial signaling
molecules in a multitude of cellular functions, including but not limited to cell growth,
proliferation, differentiation, apoptosis, immune response and stress adaptation [40]. Once
they exceed the normal physiological range, they lead to cellular damage resulting in patho-
genesis (Figure 3). H2O2 is considered the best candidate to serve as a signaling molecule
due to its higher stability, selective reactivity and diffusibility compared to other ROS
molecules [2]. The physiological range of intracellular H2O2 concentrations seems to be
conserved in various life forms, and it becomes toxic at concentrations above 0.5 × 10−4 M,
at which it induces cell apoptosis [41]. ROS function as secondary messengers, via the
modulation of the activity of numerous enzymes, transcription factors and signaling cas-
cades [4]. Therefore, an understanding of the dual nature of ROS, as both harmful and
regulatory molecules, provides essential insight into the complex interplay between cellular
metabolism, oxidative stress and the regulation of biological processes.
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A combination of regulatory mechanisms ensures that ROS remain at “safe” levels but
also enables their signaling functionality. Characteristic features of these ROS-responsive
signaling pathways are that the function of certain “sensor” components is influenced
directly by the redox state, and also that transcription factors serve as “effectors” and
thereby can coordinate appropriate programs of gene expression. Over the past three
decades, several pivotal ROS-responsive signaling pathways and transcription factors
have been identified, showcasing their reliance on regulation by ROS [4,7,42]. In the next
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sections, we outline these ROS-responsive signaling pathways and illustrate how they
serve as bridges between ROS and changes in gene expression.

4.1. AP-1

The Activator Protein-1 (AP-1) family represents a diverse subgroup of the basic leucine
zipper (bZIP) transcription factors which are crucial for the regulation of cellular responses to a
myriad of extracellular stimuli including ROS. bZIP transcription factors are proteins which
comprise the second largest dimerizing network found in all eukaryotes [43]. They possess a
C-terminal leucine zipper domain, which enables them to form homo and heterodimers which
can bind to DNA in a sequence specific manner. DNA binding is mediated by a basic amino
acid-rich domain which lies adjacent to the leucine zipper. The AP-1 transcription factors are
comprised of homo- and heterodimers formed by members of the Jun (c-Jun, JunB, JunD), Fos
(c-Fos, FosB, Fra-1, Fra-2), Maf (c-Maf, MafA, MafB, MafG/F/K, Nrl) and ATF (ATF2, ATF3,
B-ATF, JDP1, JDP2) protein subfamilies. AP-1 proteins intricately regulate gene expression by
binding to specific DNA sequences, commonly known as AP-1 sites (with a core consensus
sequence of “TGACTCA”) within target gene promoters [44]. The composition of AP-1 dimers
imparts functional diversity, with distinct family members exhibiting unique affinities for
various DNA sequences and interacting partners. These proteins play indispensable roles in
fundamental cellular processes, including proliferation, differentiation and apoptosis [45]. AP-1
factors are activated by a variety of growth factors, cytokines, neurotransmitters, hormones
and environmental stressors like toxins and ultraviolet light (UV). In particular, numerous
studies have revealed a highly conserved property of AP-1 from yeast to mammals that it is
redox-regulated, and that the activation of AP-1 by extracellular stimuli is ROS-dependent
(Figure 4) [46,47]. For example, exogenous ROS exposure increases both gene expression and
protein levels of c-Fos and c-Jun, resulting in a stronger DNA-binding activity in epithelial
cells [48]. Thereby, ROS scavengers or antioxidants can effectively inhibit UVB [49,50] or
carcinogenic chemical-induced AP-1 activation [51,52]. The DNA-binding activity of c-Fos and
c-Jun is determined by the redox state of several conserved cysteine residues [53]. In addition,
many studies have revealed that AP-1 is also indirectly regulated by ROS signaling. The AP-1
family of transcription factors are targets for phosphorylation by the mitogen-activated protein
kinase (MAPK) cascades, which are ROS responsive, and this leads to enhanced transcriptional
activation [45,54]. The precise redox control of AP-1 activation is essential for maintaining
cellular homeostasis, and the dysregulation of AP-1 function has been implicated in numerous
pathological conditions, including cancer, inflammation and neurodegenerative diseases.
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Figure 4. ROS-mediated regulation of the AP-1 transcription factor family. ROS act as signaling
molecules, activating AP-1 protein complexes and enhancing their transcriptional activation function.
A key step in this process is the phosphorylation of the AP-1 factors by MAPKs (+P). In addition,
changes in the redox state of certain conserved cysteine residues (C) have been implicated in regulat-
ing DNA binding. Subsequently, the expression of genes involved in fundamental cellular processes
is regulated. Excessive amounts of ROS lead to aberrant AP-1 activation, potentially disrupting
cellular homeostasis.
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4.2. NF-kB

The nuclear factor-kappa B (NF-κB) represents a well-known family of transcription
factors (NF-κB1, NF-κB2, p65/RelA, c-Rel and RelB) modulating the expression of hun-
dreds of genes involved in cell survival, proliferation, inflammation and immune system
function. All of the NF-κB proteins contain a Rel-homology (RHD) domain that is essential
for their homo- or heterodimerization and DNA binding. The activation of the canonical
NF-κB pathway primarily occurs through the stimulation of proinflammatory receptors,
such as the TNF Receptor superfamily, and allows the NF-κB protein dimers to translocate
to the nucleus and bind to target genes [55]. Furthermore, NF-κB proteins play pivotal
roles in regulation of antioxidative and pro-oxidant genes to protect cells from oxidative
stress by ROS (Figure 5) [56]. At moderate concentrations, ROS serve as secondary messen-
gers, actively participating in signal transduction processes that lead to NF-kB activation,
whereas many antioxidants effectively block NF-κB activation [57,58]. ROS directly modify
and activate the IκB kinase (IKK) complex, which is responsible for phosphorylating the
NF-kB inhibitory protein IκB, targeting it for ubiquitin-mediated degradation. This step
results in the liberation of NF-kB dimers from their inhibitory complexes, enabling them to
translocate into the nucleus and initiate gene transcription [59].
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Figure 5. ROS modulation of the NF-κB pathway. At moderate levels, ROS facilitate NF-κB activation
and translocation to the nucleus to initiate gene transcription. This involves the phosphorylation of
IkB by IKK (indicated by P), thereby targeting it for ubiquitin-mediated degradation and liberating
NF-kB dimers, which translocate to the nucleus. Excessive ROS levels directly and indirectly disrupt
IKK regulation, resulting in sustained activation of NF-κB and inflammatory responses.

Conversely, when ROS levels surge beyond physiological thresholds, which often
occurs in response to pathogens, cytokines or environmental stressors, they can have
detrimental effects on NF-kB regulation [60]. Excessive ROS can cause sustained NF-kB
activation by impairing the negative feedback mechanisms that normally keep the pathway
in check. ROS can directly modify critical cysteine residues within proteins involved
in the NF-kB cascade, such as IKK, leading to persistent activation [61]. Furthermore,
ROS-induced DNA damage can stimulate NF-kB activation indirectly. The DNA damage
sensors, including the ATM and ATR kinases, respond to DNA strand breaks and other
lesions by phosphorylating the NF-kB essential modulator (NEMO), a subunit of the IKK
complex. This phosphorylation event can promote IKK activation and, consequently, NF-kB
activation, linking genotoxic stress to inflammatory responses [62].

4.3. p53

p53, often referred to as the “guardian of the genome,” is critical for maintaining
genomic integrity and orchestrating cellular responses to stress [63]. ROS intricately mod-
ulate the activity of p53, serving as both triggers and regulators within this pathway
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(Figure 6) [64]. ROS can act as signaling molecules to initiate p53 activation in response to
DNA damage. For example, exposure of cells to genotoxic stress such as ionizing radiation
or chemotherapeutic agents results in the generation of ROS. This ROS can oxidize specific
cysteine residues on the p53 protein leading to a conformational change that stabilizes and
activates p53. Once activated, p53 translocates to the nucleus and engages in transcriptional
regulation, influencing the expression of genes involved in cell cycle arrest, DNA repair and
apoptosis [65]. When ROS levels become chronically elevated, typically due to persistent
stressors or pathologies such as chronic inflammation, they can cause severe DNA damage.
In this scenario, p53 is activated as a safeguard mechanism to prevent the propagation of
damaged cells. It induces cell cycle arrest to allow for DNA repair, and if the damage is
irreparable, p53 promotes apoptosis, eliminating cells with compromised genomes [64]. In
addition to its direct effects on p53, ROS also impacts on the delicate balance between p53
and its principal negative regulator, MDM2. ROS can oxidize specific cysteine residues
within MDM2, disrupting its interaction with p53. This disruption prevents MDM2 from
targeting p53 for degradation, resulting in p53 accumulation and elevated activity [66].
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Figure 6. ROS regulation of the p53 signaling pathway. ROS serve as both triggers and regulators of
p53 activation in response to cellular stressors. At physiological concentrations, ROS stabilize and
activate p53, promoting DNA repair and antioxidant responses, preventing spreading of damaged
cells and keeping ROS at non-toxic levels. These effects of ROS on p53 as well as its regulatory factor
MDM2 are mediated by oxidation of cysteine residues in both proteins (C). However, high p53 levels
lead to pro-oxidant responses, increasing ROS and suppressing antioxidant genes.

The interaction between p53 and ROS has been extensively studied [67]. One third
of the 48 most highly H2O2-responsive genes in human cells treated with H2O2 were
identified as p53 targets [68]. A major question is how ROS-regulated p53 results in a
differential cell response (e.g., cell cycle arrest, senescence or apoptosis) by selectively
regulating certain groups of target genes. It has been proposed that at basal, physiological
levels, p53 performs an antioxidant role by maintaining ROS at nontoxic levels through
transactivation of antioxidant genes [64]. However, when present at elevated levels, p53
instead can serve as a pro-oxidant by either inducing gene expression, which results in the
further elevation of ROS production, or suppressing antioxidant genes. In addition, the
p53 protein itself is redox-sensitive due to the presence of the cysteine residues, which can
be covalently modified upon redox changes [69]. Therefore, ROS act as pivotal regulators
in the p53 signaling pathway, both initiating and fine-tuning p53 activation in response to
diverse cellular stressors.

4.4. Keap1-Nrf2-ARE

The Keap1-Nrf2-ARE signaling pathway is an extensively studied regulatory sys-
tem that plays a critical role in preserving cellular redox homeostasis and shielding cells
from both internal and external stresses [70]. In this mechanism, ROS act as a central
player, providing a dynamic balance between Nrf2 activation and its inhibition by Keap1
(Figure 7) [71].
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balance between Nrf2 activation and inhibition. At physiological levels, Keap1 maintains Nrf2 at
low concentrations. However, at high ROS concentrations, Keap1 is oxidized at particular cysteine
residues (C) and Nrf2 degradation is prevented, thereby increasing transcription of antioxidant genes
via AREs and promoting defense against oxidative stress.

Under normal conditions, Keap1 serves as a substrate adaptor for the Cullin 3-based
E3 ubiquitin ligase complex. It interacts with Nrf2 in the cytoplasm, marking it for ubiquiti-
nation and subsequent degradation via the proteasome. This process maintains low levels
of Nrf2 in unstressed cells. ROS such as H2O2 serve as redox messengers that modify this
interaction. When cellular ROS levels rise, certain cysteine residues in Keap1 are oxidized.
These oxidative modifications cause a conformational change in Keap1, disrupting its ability
to ubiquitinate Nrf2. Consequently, Nrf2 accumulates and migrates into the nucleus. Once
in the nucleus, Nrf2 forms heterodimers with small Maf proteins, subsequently binding
to Antioxidant Response Elements (AREs) situated in the regulatory regions of numerous
genes. This interaction initiates the transcriptional activation of an array of antioxidant
and detoxification genes, encompassing NADPH quinone oxidoreductase 1 (NQO1), heme
oxygenase-1 (HO-1) and GST. These gene products collectively combat oxidative stress
and electrophilic insults by neutralizing harmful molecules and enhancing the cellular
antioxidant defense system [72].

4.5. The MAPK Signaling Pathway

As previously described, the MAPK signaling cascade represents an important link
between ROS and AP1 transcriptional regulators (Section 4.1). However, the MAPK
signaling cascade plays a more global role in the cell to coordinate multiple transcriptional
and non-transcriptional responses to oxidative stress [4]. MAPKs constitute a diverse family
of serine/threonine kinases that play a critical role in governing various essential cellular
functions such as proliferation, differentiation, stress adaptation and programmed cell
death (apoptosis) [73]. The MAPK family is organized into three distinctive subfamilies: the
extracellular signal-regulated kinases (ERK) [74], the c-Jun N-terminal kinases (JNK) [75]
and the p38 kinases [76]. Each of these subfamilies can be activated independently, although
their signaling pathways frequently intersect to transmit signals towards key effector
proteins, notably transcription factors that regulate gene expression [73]. The activation
of MAP kinases typically involves a cascade of kinase reactions, progressing from MAP
kinase kinase kinases (MAPKKKs) to MAP kinase kinases (MAPKKs) and culminating in
the activation of the final MAPK effectors [77]. One notable mechanism through which ROS
impact MAPK signaling involves the oxidative modification of cysteine residues within
key regulatory proteins (Figure 8). ROS-induced oxidation of cysteine residues can activate
MAPKKKs, which are upstream components of the MAPK cascade [78,79]. This activation
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occurs through conformational changes or by facilitating kinase activity. For example, the
oxidation of cysteine residues in apoptosis signal-regulating kinase 1 (ASK1), a MAPKKK,
leads to its activation. ASK1 then phosphorylates and activates downstream MAPKKs,
such as MKK4/7, further propagating the signal [79].
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Figure 8. ROS regulation of the MAPK signaling pathway. ROS serve as crucial regulators of the
MAPK signaling pathway both directly by activating upstream kinases, and so enabling them to
phosphorylate their downstream targets (P), and indirectly by inhibiting MAPK phosphatases via the
oxidation of cysteine residues (C) on these enzymes. MAPKs can increase ROS levels, reinforcing the
signal and its downstream effects.

Beside direct activation, ROS also mediate MAPK signaling indirectly, for example
by the inhibition of MAPK phosphatases (MKPs). ROS are reported to play a crucial
role in inhibiting JNK phosphatases, which are responsible for dephosphorylating and
deactivating JNK [80]. The oxidative modification of cysteine residues in MKPs inactivates
them, allowing MAPKs to remain phosphorylated and active for a longer period. This
sustained MAPK activation is essential for cellular responses to stimuli such as growth
factors and stress [81].

Intriguingly, MAPKs themselves can generate ROS as part of their signaling. For ex-
ample, the activation of p38 and ERK MAPKs can induce the expression of ROS-producing
enzymes, creating a positive feedback loop [82,83]. This amplifies the ROS signal and
reinforces MAPK activation and its downstream effects. In summary, ROS modulate the
MAPK signaling pathway by oxidatively modifying key regulatory components, leading
to the sustained activation of MAPKs and subsequent cellular responses.

5. Role of ROS in DNA Damage Responses

As previously mentioned, DNA is one of the main complex macromolecules that
is subject to damage upon oxidative stress and, therefore, the detection and repair of
ROS-induced DNA damage is vital for the normal functioning and survival of cells [84].
Left unrepaired, DNA damage can lead to mutations and genomic instability, which are
associated with various diseases, including cancer [85]. DNA is vulnerable to numerous
lesions like base modifications, single-strand breaks (SSBs) or double-strand breaks (DSBs),
ultimately posing a risk of mutations and genomic instability [86]. It has been estimated
that oxidative stress can induce approximately 10,000 alterations in DNA per cell per day,
encompassing various types of DNA damage. This constitutes a substantial portion of
endogenous DNA damage [71,87]. Therefore, amongst the key adaptations for surviving
cellular damage induced by ROS is the evolution of effective DNA repair mechanisms that
can repair different types of ROS-induced damage and that are temporally coordinated to
optimally tackle the damage. Among the well-documented DNA damage types resulting
from oxidative stress, the production of 8-Hydroxydeoxyguanosine (8-OHdG), an oxidized
derivative of guanine, has received considerable attention. Guanine, owing to its low
oxidation potential, is particularly vulnerable to ROS-induced modifications [88].

To counteract these deleterious effects, organisms have evolved a range of DNA repair
pathways that can efficiently recognize and rectify different types of DNA damage. For
example, the base excision repair (BER) pathway specializes in repairing oxidative damage.
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In BER, specific DNA glycosylases recognize and remove the damaged bases, creating an
abasic or apurinic-apyrimidinic (AP) site. Subsequently, an AP endonuclease cleaves the
DNA strand at the AP site, initiating the repair process through the coordinated action of
various enzymes and factors, ultimately restoring the original DNA sequence [89]. In this
case, 8-OHdG is excised by 8-oxoguanine DNA glycosylase (OGG1) leaving an AP site,
followed by either short or long patch BER. The human endonuclease VIII-like 1 (Neil1)
protein encoded by the DNA glycosylases Neil-like gene neil1, which are homologous to
the E. coli Nei gene, preferentially eliminates oxidized bases by initiation of base excision
repair [90].

Another crucial DNA repair pathway is nucleotide excision repair (NER), which deals
with the widest range of structurally unrelated DNA lesions, including ROS-generated
cyclopurines, UV-induced pyrimidine dimers and bulky chemical adducts [91]. NER in-
volves a dual incision mechanism that removes a damaged oligonucleotide, followed by
resynthesis using the complementary DNA strand as a template. NER incorporates two
subpathways: Global Genome NER (GG-NER) and Transcription-Coupled NER (TC-NER).
GG-NER is primarily responsible for safeguarding the genome against mutagenesis by
actively surveying the DNA for helix-distorting lesions. In contrast, TC-NER is specialized
in the removal of lesions that impede the transcription process, thereby ensuring the unim-
peded progression of transcription [92]. Within the core excision pathway, the xeroderma
pigmentosum complementation group C (XPC), a key protein together with its accessory
subunits RAD23 homologue B (RAD23B) and centrin2 (CETN2), serve as the main damage
sensor for GG-NER. This complex constantly surveys DNA for helix-distorting lesions with
the help of another component, the ultraviolet radiation-DNA damage-binding protein
(UV-DDB) complex, which is comprised of the DDB1 and DDB2 proteins. Deficiencies in
genes governing NER machinery frequently result in diverse clinical outcomes due to the
heightened accumulation of DNA damage. A notable example is observed in individuals
afflicted with xeroderma pigmentosum group C, where aberrant XPC protein expression
leads to heightened sensitivity to UV radiation and sun-induced skin conditions, substan-
tially increasing the risk of developing skin cancer [93]. In zebrafish, XPC has also been
demonstrated to be pivotal in repairing UV-induced DNA damage, since XPC mutant em-
bryos exhibit significantly higher levels of DNA damage and apoptotic cells upon exposure
to UV radiation, leading to severely impaired development [94]. Thus, XPC is an essential
component of the NER system for DNA damage recognition in vertebrates and, consistent
with this role, the expression levels of both xpc and ddb2 are robustly induced by visible
light, UV and ROS, which are proxies for sunlight exposure.

Many repair systems which target damage induced by ROS are themselves activated
by ROS [95]. Numerous studies in mammals have demonstrated that DNA repair genes are
regulated by cellular ROS indirectly via the activation of key transcription factors involved
in DNA repair signaling. For instance, this includes the activation of transcription of the
repair genes apex1 and neil1 in BER that occurs through the AP-1 pathway [96]. ROS-
activated CREB/c-Jun has been shown to bind to the AP-1 site in the neil1 promoter and
thereby to up-regulate mRNA expression of neil1 in mammalian cells [97]. Furthermore, a
study of changes in the zebrafish transcriptome in response to ROS has revealed that similar
gene expression programs are shared by zebrafish and human cells, indicating a generally
conserved transcriptional regulation effect of ROS [98]. However, direct transcriptional
regulation by ROS has been studied in the case of only a few DNA repair genes and
detailed mechanisms have not been well elucidated. A more detailed understanding of the
ROS-mediated transcription of DNA repair genes should provide a better understanding
of their essential role in physiological responses.

6. Fish as Models to Study How ROS Contribute to Physiological Systems

The choice of animal model is of fundamental importance for defining which facets of
ROS function and regulation can be effectively studied. Fish, constituting the largest group
of vertebrates, hold significant ecological importance and substantial commercial value. As
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a commonly used fish model, the zebrafish (Danio rerio) represents a versatile and valuable
tool for exploring various genetic and molecular mechanisms which underlie behavior,
physiology and cell biology. Its optical transparency during embryonic and larval stages
allows for non-invasive and real-time visualization of the dynamics of gene expression
within a living organism [99]. Within the context of this review, studies on zebrafish have
revealed many physiological roles of ROS in various biological processes.

In cardiovascular development, ROS play a pivotal role in angiogenesis, cardiomy-
ocyte proliferation and tissue regeneration. For example, experiments using zebrafish
have revealed the critical role of the HECT domain and Ankyrin repeat-containing E3
ubiquitin-protein ligase 1 (hace1) in the normal development and function of the vertebrate
heart in an ROS-dependent manner [100]. Expression of hace1 negatively regulates NOX-
dependent ROS generation to maintain normal cardiac development, whereas knockdown
of hace1 results in ROS accumulation and cardiac defects. Within the realm of neurobiology,
zebrafish have provided insight into the contribution of ROS to neural development and
function as well as axonal regeneration. Specifically, H2O2 promotes peripheral sensory
axon growth in the skin, which is crucial for cutaneous injury healing [101]. Another study
has reported that caudal fin amputation in adult zebrafish results in H2O2 production
in the wounded epidermis, and then activation of hedgehog signaling, probably by the
transcriptional activation of the sonic hedgehog gene (Shh) [102]. Taking advantage of
the use of ROS-specific biosensors and the optical transparency of zebrafish embryos and
larvae, ROS generation upon wounding has been visualized and quantified. However,
the detailed mechanism for how ROS are generated and how in turn ROS regulate down-
stream signaling has not been completely elucidated. Therefore, zebrafish studies have
shed light on how ROS are involved in various important physiological and pathological
processes and provide an important model for studying various human diseases. Notable
mechanisms where ROS play a key regulatory role include the circadian clock, as well as
DNA repair mechanisms and recently, these interconnections have been studied extensively
in various fish models including zebrafish and blind cavefish.

6.1. Links between ROS, DNA Repair and the Circadian Clock

Given the links between sunlight exposure and general levels of cellular metabolic
activity with the generation of ROS (Figure 1), it is evident that levels of oxidative stress
as well as associated macromolecular damage tend to vary significantly between the day
and night. Therefore, in turn, the regulation and activity of ROS-responsive mechanisms
including DNA damage repair are far from constant over the course of the day-night cycle
and are closely linked with the function of the circadian clock. Indeed, daily fluctuations in
oxidative stress are considered to have served as a significant selective pressure underlying
the evolution of the circadian clock. This adaptation allowed organisms to anticipate
variations in ROS levels associated with the extended exposure of cells and tissues to
sunlight before their actual occurrence, thus facilitating the optimal coordination of repair
and survival strategies [103].

The circadian clock is a timing mechanism that plays a key coordinating role in synchroniz-
ing the physiology of organisms with the day-night cycle [104]. The clock is a cell-autonomous
and self-sustaining mechanism that is present in most tissues and cell types and operates in-
dependently of external stimuli. However, it is reset on a daily basis by environmental signals
which are indicative of the time of day, so-called “zeitgebers” (time-givers), primarily light.
In mammals, peripheral organs like the heart, liver and skin possess cell-autonomous clocks
that are synchronized through neural and humoral signals stemming from the central “master
clock” located within the brain [105]. At the molecular level, the mechanism underlying the
circadian clock relies on a cell-autonomous transcriptional autoregulatory feedback loop. The
key constituents of this core clock machinery consist of the activator transcription factors CLOCK
and BMAL1, along with the transcriptional repressors PERIOD (PER) and CRYPTOCHROME
(CRY) [106]. In recent years, ROS-responsive genes have been found to exhibit time-of-day-
specific changes of expression both in plants [107] and animals [108,109]. ROS appear to function
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both as an input signal and a target for intracellular clock function in mammals, which could
further influence circadian clock-controlled downstream transcriptional responses. For example,
endogenous ROS levels were found to oscillate rhythmically in mammalian cells, which in
turn regulate circadian clocks by the redox control of the CLOCK protein [108]. In addition,
the expression level of antioxidant enzymes is regulated primarily by the transcription factor
Nrf2, which is under the circadian control by BMAL1: CLOCK complex [110,111]. Thereby, the
antioxidative systems which regulate intracellular ROS levels are clock-regulated. Therefore, the
redox state of cells and the circadian clock are tightly interconnected.

Studies using zebrafish have revealed that fundamental differences in the function
and organization of photic responses, DNA repair and the circadian clock exist between
fish and other major vertebrate groups. In mammals, the circadian timing system consists
of a set of peripheral clocks located in most organs and tissues that are coordinated by
specialized “central pacemakers”, notably the suprachiasmatic nucleus, and which rely
upon light detection by non-visual photoreceptors in the retina for entrainment by light.
In contrast, all peripheral tissue clocks in fish are entrainable via direct light exposure, a
property which is even shared by fish-derived cell cultures. A surprisingly diverse set of
non-visual opsin photoreceptors is widely expressed in most fish cell types and tissues, and
importantly visible light exposure triggers the transcription of a set of genes which includes
clock genes, genes related to DNA damage repair (including the photolyase genes cpd,
6-4phr and cry-dash and the NER gene ddb2) as well as genes involved in various aspects
of metabolism. Light-induced transcription is directed by D-box enhancers and the PAR-
E4BP4 family of transcription factors. Interestingly, the D-box enhancer and its associated
transcription factors also mediate UV and ROS-induced transcription. This situation differs
considerably from the role of the D-box in mammals, where D-box-regulating transcription
factors are clock-regulated and, therefore, the D-box enhancer serves as a clock output
mechanism [42]. This points to certain key elements of ROS-mediated transcription control
being relatively plastic over the course of evolution.

6.2. Role of the bZIP PAR/E4BP4 Factors in ROS- and Light-Regulated Transcription

The PAR-domain and E4BP4 factors are bZIP transcription factors which are highly
conserved in animals and have been demonstrated to participate in the core circadian
clock feedback loops. The three PAR factors, thyrotroph embryonic factor (TEF), hepatic
leukemia factor (HLF) and albumin D-site-binding protein (DBP), serve as transcriptional
activators, while the E4 binding protein 4 (E4BP4) has been shown to act as a repressor. They
share a conserved bZip-DNA-binding-dimerization domain but in the case of PAR factors,
they also contain a conserved proline and acidic amino acid-rich (PAR) domain [112]. In
certain animal groups such as fish, multiple homologs of PAR factors and E4BP4 have
been identified, namely TEF1, TEF2, HLF1, HLF2, DBP1, DPB2 and six members of E4BP4
(E4BP4-1 to 6) [113].

In mammals, it has been demonstrated that PAR/E4BP4 gene expression and function
are directly regulated by the core clock machinery. Specifically, the rhythmic expression of
DBP is driven by the CLOCK:BMAL complex through E-box-mediated activation [114]. In
turn, these clock-controlled transcription factors impart circadian rhythmicity on down-
stream genes, thereby influencing diverse physiological processes, including hepatic xeno-
biotic metabolism and detoxification [113]. A fundamentally different role for PAR factors
in transcriptional regulation has been identified in zebrafish. A previous study has demon-
strated that TEF1 activates the per2 promoter by binding to the D-box enhancer element
in zebrafish in response to light, indicating a novel clock input function [115]. Further
research has revealed that light-induced transcription that is mediated by the D-box is also
ROS-dependent [116]. This demonstrates that PAR/E4BP4 factors serve as key players in
the transcriptional response to ROS in vertebrates, and also provides evidence that this
functionality may have been adapted significantly over the course of evolution.
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6.3. Evolutionary Perspectives on ROS-Mediated Transcriptional Regulation in Fish

While the fundamental principles of ROS-mediated transcriptional regulation appear
to be conserved in animals, there are still many questions which remain incompletely
answered. Our understanding of mechanisms aiding organisms to survive elevated ROS
levels has largely stemmed from studies using a limited number of genetic and cell culture
models, predominantly of mouse and human origin. Therefore, our knowledge about the
conservation or adaptation of these mechanisms throughout vertebrate evolution under
diverse environmental conditions remains relatively sparse. Thus, for example, are the gene
regulatory pathways that respond to increased ROS levels identical in all vertebrate groups?
Does evolution under environmental conditions, where there are significant differences in
the levels of oxidative stress, result in alterations to these basic mechanisms? Answers to
these basic questions are vital for a more general understanding of the mechanisms whereby
toxic compounds and the environment impact on a range of different organisms and how
this process has shaped the evolution of redox signaling and antioxidation mechanisms.

Clues as to the evolutionary selection pressures that may have shaped ROS-responsive
transcription control mechanisms in vertebrates have come from comparative studies using
species of cavefish. The biology of various subterranean species which have evolved in
complete isolation from sunlight has provided us with valuable and unique insight into how
organisms evolve in response to extreme environments, characterized by constant darkness
and temperature and limited food availability. Both terrestrial and aquatic species which
have evolved in these conditions show common features known as “troglomorphisms”,
including degenerated visual systems, starvation tolerance, increased longevity and, in
particular, the loss of body pigmentation and eyes [117–119]. In contrast, their sensory
systems exhibit enhanced sensitivity for the detection of chemical and mechanical stimuli
in the absence of visual navigation clues. These adaptations are crucial for foraging and
navigating within the cave environment, which is characterized by limited food resources
and intricate subterranean landscapes [120,121].

There are more than 200 blind fish species that have been identified living in different
cave environments, and the Mexican tetra (Astyanax mexicanus) is one of the more exten-
sively studied species. They have both eyed surface forms, which are widely distributed
in northeast Mexico and south Texas, and several eyeless cave populations—for example,
a typical population called “Pachón”. Crosses between these two forms generate fertile
offspring and, therefore, this species can be used to explore the genetics which underlies
troglomorphisms as well as providing an advantageous and comparative model for the
study of evolutionary genetics [122]. Studies on cave populations of A. mexicanus indicated
a retaining but altered circadian oscillation compared with surface fish, due to increased
basal levels of light-inducible genes such as per2 [123].

The Somalian cavefish, Phreatichthys andruzzii, inhabits subterranean waters beneath
the central Somalian desert. Studies have demonstrated that this species initially colonized
cave habitats five million years ago and has been completely isolated from surface waters
for about three million years. Therefore, compared with A. mexicanus, P. andruzzii has been
adapting to its cave environment for a significantly longer time period and, as a result,
exhibits a much stronger troglomorphic phenotype. For example, P. andruzzii exhibits
complete loss of body pigmentation and the visual system including loss of the eyes, optic
nerves and chiasma [124]. Importantly, this was one of the first animals discovered with a
dysfunctional biological clock that was no longer entrained by the light/dark cycle [125].

Both zebrafish and P. andruzzi belong to the Cyprinidae family, and thereby share
significant similarities in their genetic makeup. With their close genetic relationship, the
comparison of the genomes or specific genes of P. andruzzii and zebrafish can provide
powerful insight into the specific genetic variation and adaptations that have occurred
during evolution in its cave environment. Many genetic tools and approaches established
in zebrafish can also be applied to P. andruzzii. So far, detailed molecular characterization
of the circadian clock and DNA repair systems on this fish model has been performed—for
example, the loss of light inducibility of clock genes [125] and the loss of photoreactivation
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DNA repair [95]. Previous studies demonstrated that light-induced gene expression in fish
cell lines is determined by the generation of intracellular ROS levels [95,116]. Considering
that cavefish evolved over prolonged periods in extreme environments characterized by
perpetual darkness and hypoxic aquatic environments, alteration of ROS signaling path-
ways might have been a causative factor contributing to the loss of light/clock-regulated
transcriptional responses.

Previous work has shown striking differences in the transcriptional regulatory mecha-
nisms which respond to light, UV and ROS between zebrafish and the Somalian cavefish
(P. andruzzii). The D-box enhancer element appears to mediate light and UV-induced tran-
scriptional responses in clock and DNA repair genes in zebrafish. Upon exposure to light
and UV radiation, ROS levels increase in zebrafish cells, leading to the activation of the
p38 and JNK MAPK pathways. Consequently, these MAPKs trigger the activation of PAR
transcription factors, which bind to the D-box, initiating the transcription of a specific set
of clock and DNA repair genes. Intriguingly, this D-box-mediated transcriptional process
appears significantly attenuated in Somalian cavefish, (Figure 9) [42,95]. As previously de-
scribed, in contrast the D-box element in mammals serves as a component of the circadian
network that involves the CLOCK/BMAL1, PER/CRY and REV-ERB/RORs interlocking
transcriptional feedback loops [106]. Similar to cavefish, no increase in D-box-driven tran-
scription is observed in mammalian cells upon H2O2 exposure [116]. These differences
between zebrafish, cavefish and mammals point to a degree of plasticity in transcription
control of D-box element regulation during evolution in different environments. Therefore,
studies of different transcriptional responses to ROS with an evolutionary perspective are
of fundamental importance.
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in turn activate the PAR factors. PAR factors bind to D-box enhancer elements in the promoters of
a set of clock and DNA repair genes and ultimately lead to induced gene transcription and clock
entrainment. In cavefish cells (right panel), this signaling fails to activate transcription of the same
genes via the D-box [95].

7. Conservation and Evolution of ROS Signaling

From a broader perspective, how has the evolution of ROS responsive mechanisms
been shaped by the redox state of the environment? The very earliest forms of life survived
the earth’s atmosphere, which was dominated by volcanic gases and mainly comprised
hydrogen, carbon dioxide, carbon monoxide, hydrogen sulfide and methane [126]. Under
this “toxic” environment, it is predicted that the first forms of life, the archaea and bacteria,
emerged probably in alkaline thermal vents in the oceans [127]. Thereafter, the advent of
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cyanobacteria began converting water to the hydrogen and oxygen required for metabolic
reactions, marking the origins of the aerobic atmosphere and the explosion of life on earth.
Since the dramatic rise of atmospheric O2 during the Precambrian period, an expansion
of multicellular species occurred, facilitating the evolution of complex life [128]. With
elevated O2 levels, the consumption rate of O2 was coupled with complex mechanisms
which ensured ROS homeostasis and led to ROS being recruited to serve in signaling
networks of organisms.

Considering the general mechanism of ROS production in cells, which is ubiquitous
in aerobic organisms, and the common role of ROS in the regulation of cell metabolism,
development and responses to the environment, ROS signaling in response to endogenous
and exogenous stimuli is regarded as being conserved across species from prokaryotes
to eukaryotes [129]. Indeed, a number of studies have demonstrated similar mechanisms
of ROS homeostasis being involved in various species. For example, the thioredoxin
(TXR) families play a pivotal role in catalyzing oxidoreductase reactions aimed at reducing
disulfide bonds within specific target proteins. These enzymes are recognized as potent
reductants and are ubiquitously present across various life forms, including bacteria, fungi,
plants and mammals [130]. Notably, akin to yeast and bacterial systems, the functional
significance of TRX is underscored in vertebrates, as exemplified by the observation of
embryo lethality in mice upon the loss of TRX1 [131]. GRXs are indicated as essential
for plant development with the double mutant of grxc1 and grxc2, leading to embryo
lethality [132]. Glutaredoxin (GRX) proteins exhibit a pivotal function as essential redox
transmitters within the thiol/disulfide redox network, modulating a myriad of cellular
processes, notably development. Additionally, a diverse array of ROS-related proteins,
including thiol peroxidases known for their high peroxide affinity in shielding target
protein thiols from oxidation, and the NADPH oxidase family responsible for generating
superoxide radicals by harnessing NADPH as an electron donor, appear ubiquitously across
various kingdoms. These proteins collectively contribute significantly to developmental
processes by sensing ROS and maintaining crucial redox equilibrium within cells [129].

In contrast to these evolutionarily ancient and conserved mechanisms of ROS signaling,
a diversity of key redox signaling regulators has been documented. For example, the
SOD and NOX enzyme families comprise some conserved members but also notable
variations across phyletic animal lineages. SOD1 and SOD2 are widely distributed across
the metazoans, whereas SOD3 is absent in most sponges, a group of species which occupy
a unique phylogenetic position as sister to other animal phyla. Traits unique to sponges
have been logically traced back to the divergent evolution from a common ancestor [133]. A
study of the ctenophore Mnemiopsis leidyi demonstrated substantial NOX gene loss with the
retention of only NOX5 [133,134]. Ctenophores have been considered the earliest diverging
animal lineage which share with bilaterians complex cell types such as neural cells [135].
M. leidyi exhibits daily vertical migration in response to high radiation levels, which may
affect their cellular redox state. Indeed, a comparatively wide range of Cu/ZnSODs are
encoded by M. leidyi, which has been suggested to compensate for the reduction in the
diversity of encoded NOX enzymes [133].

Nrf2-Keap1 signaling is identified as the major regulator of oxidative stress response
and considered evolutionarily conserved in metazoans [136]. A recent study regarding
the Keap1 protein, which is a crucial component of the Nrf2-Keap1 signaling pathway,
revealed that the molecular evolution of Keap1 from lower to higher vertebrates has been
indispensable for adaption to terrestrial life [137]. The Keap1A gene, a zebrafish paralog
which is absent in mammals, showed a stronger affinity for Cul3-RING ubiquitin ligase-
mediated degradation, resulting in a lower Nrf2-mediated antioxidation compared to
terrestrial species. This may explain how vertebrates successfully adapted to terrestrial
conditions where they encountered a higher level of oxidative stress compared to the
aquatic environment.

In Drosophila, the Cap’n’collar (CncC) gene encodes the CncC protein, which is ho-
mologous to mammalian Nrf2 [138]. The evolutionary conservation between the CncC
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gene in Drosophila and the Nrf2 pathway in mammals provides valuable insight into the
conservation of cellular stress response mechanisms. This conservation extends to other key
components such as Keap1 and Maf, underscoring the pathway’s fundamental importance
across species. The heightened sensitivity to oxidative stress observed in Nrf2-deficient
mice, without resulting in lethality, suggests the presence of compensatory mechanisms,
possibly involving other members of the Nrf family, such as Nrf1 or Nrf3 [139,140]. In
contrast, the developmental lethality seen in Drosophila lacking CncC underscores its es-
sential role, which likely extends beyond antioxidation, reminiscent of the multifaceted
functions of Nrf1 [141]. The proposition that CncC in insects may represent an ancestral
form of both Nrf1 and Nrf2 in mammals is intriguing, indicating potential evolutionary
diversification in the functions of these transcription factors [138]. This implies that insects
such as Drosophila may retain a more ancestral, multifunctional version of the protein.

Another example is the naked mole-rat, Heterocephalus glabera, a representative rodent
which lives an underground dwelling lifestyle. With strong hypoxia tolerance and high
DNA repair capacity, naked mole-rats tend to have the longest lifespan (maximum 37
years) among rodents and many fewer aging-related diseases [142]. Several studies have
reported that individuals of H. glabera are resistant to ROS and pro-oxidant toxins [143,144].
Higher consumption of H2O2 in the mitochondria of H. glabera tissues [145] and the highly
activated Nrf2-Keap1 signaling pathway [146] may contribute to the robust ROS resistance
in this species. Comparable to cavefish, the biological and molecular characteristics of
the naked mole-rat have been profoundly influenced by evolution and its environment,
contributing to exceptional longevity, tolerance to hypoxia and resistance to carcinogenesis.
The strategies developed by these organisms to respond to ROS and oxidative stress are
believed to be pivotal in their adaptation to subterranean environments.

Overall, the ROS signaling networks observed in diverse species appear to be tightly
connected with the ecological niches which they occupy, and the diversity of signaling
elements could provide new sight into the early evolution of key molecular mechanisms
which combat environmental oxidative stress.

8. ROS in Human Disease

Dysregulation of ROS signaling is tightly interconnected with human disease. For
example, oxidative stress is a fundamental characteristic of neurodegeneration and signifi-
cantly contributes to the advancement of neuronal damage in Alzheimer’s Disease (AD).
This damage to neurons mediated by ROS arises from disturbances in redox reactions,
marked by declines in the activities of antioxidant enzymes including SOD and CAT, as
well as reductions in the levels of antioxidants such as ascorbic acid and tocopherol [147].
This imbalance leads to elevated steady-state levels of ROS, exacerbating cellular dam-
age. Moreover, the accumulation of amyloid-beta (Aβ) in individuals with AD further
intensifies oxidative stress, constituting a cycle that worsens neuronal dysfunction and
hastens disease progression [148]. ROS also play a multifaceted role in cancer initiation
and progression, contributing to the complex landscape of carcinogenesis [149]. Excessive
ROS production induces oxidative stress, leading to DNA damage, lipid peroxidation, and
protein modifications, all implicated in oncogenic transformation. ROS-mediated activation
of redox-sensitive signaling pathways, such as nuclear factor kappa B (NF-κB) and mitogen-
activated protein kinase (MAPK), promotes tumor cell proliferation, survival, angiogenesis
and metastasis [150]. Conversely, cancer cells often exhibit enhanced antioxidant defenses
to counteract ROS-induced damage, conferring a selective advantage for survival and
tumor progression [151].

Since ROS play pivotal roles in pathogenesis, several therapeutic strategies target-
ing ROS hold promise for various diseases, including cancer, by exploiting the delicate
redox balance within cancer cells [152]. One such approach involves photodynamic ther-
apy, which harnesses the generation of ROS through the stimulation of photosensitizers
by light [153]. This results in the selective induction of oxidative stress within cancer
cells, leading to their demise while sparing healthy tissues. In addition, modulation of
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antioxidant enzymes represents another potential therapeutic strategy, as inhibition of
these enzymes can sensitize cancer cells to treatments that increase ROS levels, thereby
enhancing therapeutic efficacy [154]. Furthermore, studies have shown that depleting
ATP, whether through the manipulation of glycolytic enzymes, chemotherapy or radiation
therapy, can induce ROS-mediated apoptosis in cancer cells, highlighting the potential of
combinatorial therapies targeting ROS [155]. However, recent research has challenged the
traditional notion of using antioxidant drugs in cancer therapy, instead suggesting that
their administration may promote tumor progression. Therefore, a shift towards inhibiting
antioxidant systems in combination with ROS-inducing treatments represents a promising
alternative [152].

Currently, one significant challenge is achieving specificity in ROS modulation to
selectively target cancer cells while sparing healthy tissues. ROS are involved in numerous
physiological processes, and indiscriminate manipulation can lead to off-target effects
and unintended consequences, including cytotoxicity in normal cells and tissues [156]. In
addition, the complex interplay between ROS and various signaling pathways necessitates
a comprehensive understanding of ROS dynamics within the tumor microenvironment
in order to develop effective therapeutic strategies. For example, the dual role of ROS
as both mediators of cell death and promoters of cell survival complicates therapeutic
targeting. Depending on the context and cellular conditions, ROS can induce apoptosis or
promote cell proliferation and metastasis [152]. Thus, fine-tuning ROS levels to achieve the
desired therapeutic outcome while avoiding unintended consequences poses a significant
challenge. As a step towards this goal, the emergence of nanomedicine has revolutionized
cancer therapy by enabling targeted approaches that capitalize on the unique properties of
cancer cells [156]. This innovation allows for the delivery of pro-oxidant agents specifically
to primary lesions and subcellular structures within tumors, leading to significant success
in eliminating cancer cells while minimizing harm to healthy tissues [157,158]. While
antioxidant therapy alone has shown limited efficacy in clinical cancer treatment, the
combination of antioxidant agents with chemoradiotherapy has demonstrated remarkable
outcomes in clinical trials. However, more collaborative efforts involving basic research,
preclinical studies and clinical trials will be needed to realize the full potential of ROS
modulation in the treatment of various kinds of disease.

9. Conclusions and Perspectives

ROS play a multifaceted role in cell physiology, acting as a “double-edged” sword.
On one hand, while ROS can inflict substantial damage to macromolecules, their excessive
accumulation can trigger oxidative stress, contributing to the onset of various diseases. On
the other hand, ROS also function as crucial signaling molecules involved in numerous
cellular activities, such as redox homeostasis, circadian clock entrainment, gene expression
regulation, immune response and DNA repair. Currently, our understanding of the ROS-
mediated signal transduction and transcriptional regulation demonstrate a remarkable
conservation of many signaling pathways among vertebrates. However, some fundamental
differences have been revealed from fish to mammals—for example, the ROS-responsive
D-box-mediated transcription we discussed in this review. Comparative studies involving
diverse vertebrates, including zebrafish and cave-dwelling species like P. andruzzii, have
provided valuable new perspectives on the adaptive alterations in ROS-associated path-
ways. These investigations emphasize the delicate balance between conserved elements
and adaptive modifications in ROS-mediated signaling, shedding light on how different
species have fine-tuned responses to oxidative stress based on their ecological contexts.

Given these findings, it is evident that a comprehensive understanding of the biology
of ROS should fundamentally account for how they can generate macromolecular damage
and, at the same time, also serve as key cell signaling molecules. However, it should
also explain how each species adapts to the unique profile of oxidative stress that over
the course of evolution it encounters in its environment and as a result of its particular
lifestyle. Therefore, moving forward, further studies should delve into broader comparative
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genomics and functional studies across a wider array of species, to unravel the diverse nu-
ances and evolutionary trajectories of ROS-related mechanisms. Furthermore, they should
clarify the interplay between ROS and epigenetics as a potential mechanism accounting
for evolutionary change. Importantly, this approach should not only allow us to elucidate
the underlying mechanisms whereby ROS directly contribute to pathogenesis or immune
defenses, but also provide a global and precise view of the species-specific “targets” of
ROS. These could potentially serve as novel molecular targets for antioxidants or genetic
modifications in new therapeutic strategies to counter ROS-related diseases, such as aging,
cancer, neurodegeneration and chronic chemical intoxication.
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