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Abstract: Unconventional feed, which is abundant in China, contains anti-nutritional factors and
toxins; however, these can be greatly reduced with microbial fermentation, thus improving the
nutrient content of the feed, enhancing animal appetites, and ultimately significantly improving the
intestinal health and growth performance of animals. When oxidative stress occurs, fermented feed
can effectively reduce the damage caused by stress to the gastrointestinal tract, accelerate the removal
of gastrointestinal abnormalities, improve the ability to resist intestinal stress, and ensure the efficient
production of animals. This review introduces the application of unconventional fermented feed in
animal production, and expounds upon the function of unconventional fermented feed in animals
with oxidative stress symptoms, so as to provide a theoretical reference for the development and
application of unconventional fermented feed in antioxidative stress reduction.
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1. Introduction

Unconventional feed refers to feed that is different in terms of the raw material source
or preparation process compared to conventional feed. This kind of feed is usually obtained
from diversified raw materials such as agricultural and sideline products, aquatic product
by-products, and industrial by-products, which are obtained through special processing or
treatment; China possesses rich resources of such materials [1,2]. However, the nutrient
composition of unconventional feed is complex, and it has shortcomings such as a high
content of anti-nutritional factors and poisons, poor palatability, unstable nutrient composi-
tion, and significant quality variations [3]. Therefore, the comprehensive utilization level of
unconventional feed is low, resulting in a waste of resources, environmental pollution, and
other problems. At present, unconventional feed processed through microbial fermentation
technology, crushing, heating, hydrolysis, drying, and other methods, in order to degrade
the anti-nutritional factors, toxins, crude fiber, lignin, and other substances present in it
and reflect its high nutritional value [4] in terms of protein, minerals, and trace elements
required for livestock supplementation, is called “special feed” or “alternative feed”. There-
fore, unconventional feed is often used, in part, to replace conventional feed to reduce
feed costs, improve the economic value, and achieve sustainable development in the feed
industry. In recent years, the popularity of unconventional feeds has gradually increased.

With the development of the economy and the improvement of people’s living stan-
dards, agriculture and animal husbandry have developed rapidly, and the problem of
“human and livestock competing for food” is still severe due to the increase in demand
for feed and the insufficient supply [5]. At present, “bans of antibiotics” in feed have
become an important trend in the development of the livestock and poultry industry, along
with studies on several antibiotic alternatives, such as probiotics, antimicrobial peptides,

Antioxidants 2024, 13, 305. https://doi.org/10.3390/antiox13030305 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox13030305
https://doi.org/10.3390/antiox13030305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://doi.org/10.3390/antiox13030305
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox13030305?type=check_update&version=1


Antioxidants 2024, 13, 305 2 of 26

Chinese herbal additives, plant-derived phytochemicals, functional amino acids, organic
acids, and other functional additives that pose no potential threat to livestock quality [6–8].
At present, research into such alternatives mainly focuses on the application of probiotics in
fermented feed and how animal gut health and production performance can be maintained
and improved with fermented feed. It has been reported that the fermentation of raw
feed materials after inoculation with beneficial microorganisms can decompose organic
macromolecules such as proteins and lipids into small molecules such as organic acids; this
increases the feed’s nutritional content, allows it to be more easily absorbed by livestock and
poultry, and promotes animal intestinal health, thereby improving the growth performance
and health of livestock and poultry [9].

Oxidative stress [10] refers to the excessive production of highly reactive molecules,
such as reactive oxygen species (ROS) and reactive nitrogen radicals (RNS), which exceeds
the scavenging capacity of antioxidants, resulting in the disruption of the balance between
the oxidative system and the antioxidant system, and the occurrence of damage to cells
and tissues. When animals are faced with external environmental pressure, disease, feed
discomfort, transportation, or other adverse stimuli, the body, especially the intestines,
may experience oxidative stress, resulting in damage to cell membranes, abnormal or-
ganelle functions, the oxidation of DNA, proteins, and lipids, and even the induction of a
series of adverse physiological and pathological changes such as inflammatory reactions.
These reactions, in turn, affect the health and performance of the animal, in ways such
as by reducing immunity, slowing growth rates, and reducing the reproductive capacity.
Therefore, the effective control of oxidative stress is essential to maintaining animal health
and improving breeding efficiency [11]. Research has shown that the supplementation of
fermented feed can effectively help maintain the stability of the intestinal environment
and reduce the adverse effects of oxidative stress [12,13]. For example, Jairath et al. [14]
found that fermentation also resulted in a significant increase in antioxidant activities.
Liu et al. [15] showed that fermented mixed feed was able to regulate the gut microbial
community and metabolism of finishing pigs. Hu et al. [16] found that fermented tea
residue significantly improved the antioxidant capacity of a juvenile largemouth bass.

Although unconventional feed raw materials have limited nutritional value and con-
tain anti-nutritional factors, they can be transformed into unconventional fermented feed
with a high nutritional value after processing via fermentation and other technologies.
After fermentation, such unconventional feed not only improves the nutritional value and
digestibility of conventional feed, but also reduces the oxidative stress of animals [17] and
promotes improvements in livestock and poultry health and production performance [18].
It supports the production of antibiotic-free livestock and poultry products, while expand-
ing feed resources and alleviating raw material shortages. Unconventional fermented
feed maintains intestinal health by producing antioxidants and probiotics, and enhances
immune function with bioactive substances [19], which is of great significance for achiev-
ing antibiotic-free animal husbandry [20], alleviating resource shortage and coping with
oxidative stress. Increasing feed diversity is helpful in improving the overall growth per-
formance of livestock and poultry, reducing environmental pollution, and promoting the
green development of animal husbandry. In addition, the antioxidants in unconventional
fermented feeds can improve the antioxidant capacity of animals and reduce the damage
caused by free radicals, thereby further improving the health and production efficiency
of animals. These antioxidants may include vitamins, enzymes, peptides, or other small
molecule compounds that can neutralize free radicals in the body, reduce oxidative stress,
and protect cells from damage. At present, research into the mechanism of fermented
feed’s impact on oxidative stress in the intestinal tract is not sufficient, and the evaluation
system for such impacts needs to be improved upon. As different fermentation strains,
methods, and conditions will affect the quality of the feed, thereby affecting the growth
performance and meat quality of animals, it is necessary to optimize the fermentation
process and further study its impact on intestinal health, so as to provide scientific support
for the application and development of unconventional fermented feed.
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2. Types and Applications of Unconventional Feed

The sources of unconventional feed are very extensive, including, but not limited
to, grain and oil processing by-products, livestock and poultry processing by-products,
aquatic product processing by-products, and other industrial processing by-products.
Unconventional raw materials are abundant resources, but their application in animal
feeding is limited due to their high amounts of anti-nutritional factors and toxins [21,22].
Therefore, improving the quality of unconventional raw materials and elevating their
utilization rate in animal feeding are important topics of current scientific feed research.
Current commonly used unconventional raw materials such as wheat bran, rice bran, bean
dregs, distiller’s grains, sweet potatoes, straw, and other processing by-products require
physical processing, chemical treatment, or microbial fermentation to decompose crude
fiber and increase their feed value. Anti-nutritional factors and toxins in unconventional
fermented feed can be reduced in a number of ways. During fermentation, microorganisms
and enzymes that digest anti-nutritional factors such as phytic acid and cellulose are
produced [23], while high-temperature treatment helps to destroy the structure of some
toxins. In addition, regulating the pH and microbial metabolism during fermentation
can also reduce the toxin content in feed [24]. Physical treatments such as filtration and
sedimentation can also be used to reduce toxin levels [25]. By combining these methods,
unconventional fermented feed can be safely provided to animals while improving their
nutrient availability and health. Table 1 shows the positive effects of the fermentation of
unconventional feed on animal health, nutrition and performance, and antioxidant aspects.

Table 1. Positive effects of the fermentation of unconventional feed on animal health, nutrition and
performance, and antioxidant aspects.

Unconventional Fermented Feed Feeding

Animal Raw Materials Probiotics Regulated Items Antioxidant
Substance References

Boer goats Pennisetum
giganteum

Bacillus coagulans
preparation

Abundance of
Lactobacillus and

unidentified
Clostridiales ↑

Anaerovibrio and
Methanobrevibacter ↓

CAT, GSH-Px
activities and
glutathione ↑

Qiu et al. [26]

Laying hens
Corn–soybean

meal
wheat bran

Bacillus subtilis and
Saccharomyces

cerevisiae

In relative
Lactobacillus,

Megasphaera, and
Peptococcus
abundance ↑

Campylobacter
abundance ↓

Immunoglobulin
A,

immunoglobulin
M, and

immunoglobulin G
↑

Guo et al. [27]

Broilers

Corn, soybean
meal, corn–gluten

meal, and corn
dried distillers’

grains

Lactobacillus
plantarum, Bacillus

subtilis, and
Saccharomyces

cerevisiae

Abundance of
Ruminococcaceae,

Lactobacillaceae, and
unclassified

Clostridiales ↑
Abundance of
Rikenellaceae,

Lachnospiraceae, and
Bacteroidaceae ↓

Acetic acid,
propionic acid,

butyric acid, and
lactic acid ↑

Zhu et al. [28]

Laying hens Astragalus Lactobacillus
plantarum

CAT, GSH-Px,
superoxide dismutase
and total antioxidant
capacity in serum ↑

CAT ↑ Hong et al. [29]
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Table 1. Cont.

Unconventional Fermented Feed Feeding

Animal Raw Materials Probiotics Regulated Items Antioxidant
Substance References

Cobb male
broilers

Corn–soybean
meal

Lactobacillus
acidophilus

Body weight, ADG,
average daily feed

intake, and jejunum
and ileum V:C ratio at

14 d and 21 d ↑

The mRNA
expression of

inducible nitric
oxide synthase,

interleukin-8, and
interleukin-1β in

the jejunum ↓

Wu et al. [30]

Nursery pig Corn–soybean
meal

Lactobacillus
plantarum and

Pediococcus
acidilactici

ADG and significantly
increased fecal acetate,

butyrate, and total
short-chain fatty acid

concentrations ↑

Short-chain fatty
acid ↑ Yang et al. [31]

Berkshire pigs Rubus coreanus Lactobacillus
plantarum

The mRNA expression
of transcription factors
and cytokines in Th1

and Treg cells ↑
The mRNA expression
of T helper cell 2 and

Th17 transcription
factors and cytokines ↓

The mRNA
expression of
transcription
factors and

cytokines in Th1
and Treg cells ↑

Yu et al. [32]

Cyprinus carpio
Wheat, soybean

meal, corn–gluten
meal, chicken meal

C. somerae XMX-1,
S. cerevisiae
GCC−1, L.

rhamnosus GCC-3,
and B. subtilis

HGcc-1

Health and production
↑

Liver
anti-inflammatory

factors
transforming

growth Factor-β↑

Zhang et al. [33]

Juvenile olive
flounder Garlic husks, Tuna

Bacillus
licheniformis and
Bacillus subtilis

Weight gain, specific
growth rate, and feed

efficiency ↑
Sucrose reductase↑ Fatma et al. [34]

↑ indicates an increase in substance content or enzyme activity; ↓ indicates a decrease in substance content or
enzyme activity. CAT, catalase; GSH-Px, glutathione peroxidase; ADG, average daily gain; Th1, T helper cell 1;
Th17, T helper cell 17.

2.1. By-Products of Grain and Oil Processing

The utilization of grain and oil processing by-products in animal feed is one of the
important links in animal husbandry production. These by-products include rice, wheat,
corn, beans, rapeseed, camellia seeds, and other by-products produced in the process
of grain and oil processing, such as rice husks, wheat bran, corn stalks, bean dregs, etc.
They may be considered unconventional in conventional feed production [35], but they are
actually rich in nutrients [36] and can be used in animal feed production through a series of
processing and utilization steps [37]. First of all, these by-products are properly processed,
such as through milling, crushing, etc., to improve their structure and digestibility and
increase their utilization. They can then be used directly as raw materials for animal feed.
For example, high-fiber by-products such as wheat bran and corn stover can be used as
crude fiber sources [38,39], while protein-rich by-products such as rice bran and okara [40]
can be used as protein sources. In addition, some grain and oil processing by-products
can also be used as feed additives. For example, cellulose-rich by-products such as rice
husks and okara can be used as fiber additives to help improve the digestive health of
animals [40]. Zhen et al. [41] found that the content of sugar and glycoside derivatives such
as crude protein and D-threitol could be significantly increased by fermenting corn stover
with Aspergillus niger, thereby enhancing the antioxidant capacity and nutritional value of
fermented corn stover. Finally, these by-products can be blended with other conventional
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feed ingredients to form a balanced and nutritious feed formulation [42]. Xia et al. [43]
showed that with the gradual increase in the proportion of peanut meal replacing soybean
meal, the egg production of laying ducks increased, while the weight of the eggs and feed
consumption decreased. Valenca et al. [44] found that when peanut meal replaced soybean
meal as the feed, the content of oleic acid, pentadecanoic acid, heptadecanoic acid, and
eicosapentaenoic acid in lamb meat increased, while the content of palmitic acid decreased,
and the total amount of high-cholesterol fatty acids also decreased. These results suggest
that peanut meal can improve the lipid profile of lamb meat. Wang et al. [45] found that
replacing the 600 g/kg portion of soybean meal in the feed with mixed vegetable proteins
(including rapeseed meal, cottonseed meal, and peanut meal) had no adverse effect on the
growth performance of Yellow River carp. Azad et al. [46] showed that when soybean meal
was partially replaced with 5% fermented cassava residue, piglets could increase catalase,
glutathione peroxidase, and hepatic superoxide dismutase levels.

2.2. By-Products of Livestock and Poultry Processing

Livestock and poultry processing by-products refer to the by-products produced
during the slaughtering and processing of livestock and poultry, usually including bones,
internal organs, fur, blood, and feathers [47,48]. These by-products are rich in nutrients and
can be used to make various types of feed, providing comprehensive nutritional support
for the animals. For example, bones are rich in minerals such as calcium and phosphorus,
which can be used as a supplement to minerals in feed to make bone meal or bone pulp [49],
offal is rich in protein and fat, which can be used as raw materials for high-protein feed, and
fur can be processed into high-protein animal fur powder as a protein source for animal
feed [50]. Suryadi et al. [51] used rice-water microbial fermentation technology to transform
snail meat into a new probiotic product that can be used for feed supplementation.

2.3. By-Products of Aquatic Products Processing

Aquatic product processing by-products are the by-products produced during the pro-
cessing of fish, shrimp, shellfish, and other aquatic products [52], including fish bones [53],
fish skins, shrimp shells, etc. [54]. These by-products are rich in nutrients, such as proteins,
fats, minerals, etc., and have high nutritional value. These by-products can be made into
powdered or granular feed ingredients through appropriate processing, such as drying,
crushing, etc. Such feed ingredients can be used as an important source of protein and fat in
animal feed, helping to improve the nutritional level of animals, promote their growth and
development, and improve their health. Zhu et al. [55] found that the shrimp by-product
astaxanthin extract had a positive effect on the antioxidant activity and color difference of
readymade shrimp surimi products, which could be used as a potential multifunctional
additive for the development of shrimp surimi products.

2.4. Other Processing By-Products

Other industrial processing by-products are by-products produced in some other
industrial production processes, such as food processing by-products, wood processing
by-products, etc., including mulberry leaves, moringa, chicory, arbor, seaweed, forestry
by-products, etc. The crude protein content of mulberry leaves is as high as more than 16%,
and mulberry leaves is also rich in a variety of bioactive substances such as flavonoids,
alkaloids, polysaccharides, and polyphenols, which makes mulberry leaves have a high
medicinal value [56]. Jiayu et al. [57] showed that the feed supplemented with 2% mul-
berry leaf powder could modify the serum metabolites of piglets, enhance the antioxidant
capacity, and reduce the content of potential intestinal pathogens. Studies have shown that
chicory can enhance the expression of molecular proteins, folded proteins in proteins, and
antioxidant proteins in the cecum and colon of growing pigs [58], optimize the levels of
odorin and androstenone in boars, and effectively reduce odor in boars [59]. Chen et al. [60]
have shown that feeding piglets xylo-oligosaccharides can reduce malondialdehyde levels
and catalase activity in the serum, thereby reducing oxidative damage to the body.
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3. The Effects and Mechanism of Fermentation on the Improvement of Unconventional
Feed Quality

Unconventional feed comes from a wide range of abundantly produced sources. The
development and utilization of unconventional raw materials can not only alleviate the
problem of food security, but also serve as a way to consolidate the effect of poverty
alleviation. As mentioned above, unconventional raw materials have the advantages
of low environmental requirements, a wide growth range, rich nutritional value, and
high total output. Nowadays, through the use of microbial fermentation technology, anti-
nutritional factors and other substances in unconventional raw materials can be degraded
to improve the materials’ nutritional value. Figure 1 shows the expected characteristics of
unconventional feed after fermentation, which can effectively reduce the amount of anti-
nutritional factors and toxins and increase the flavor substances in raw feed. The antioxidant
application of unconventional fermented feed in animal production is a key measure. This
type of feed protects animal cells from oxidative damage by providing a rich source of
antioxidants [61] such as vitamin C, vitamin E, and polyphenolic compounds that effectively
inhibit the production of free radicals. In addition, the preparation of unconventional
fermented feed may degrade the anti-nutritional factors and toxins in feed, reduce the
load of oxidative stress in animals [62], and further reduce the incidence of oxidative
damage. These antioxidants are also able to enhance the immune function of animals,
making them more resistant and thus reducing the risk of disease. It is worth noting that
unconventional feed has stronger antioxidant activity after fermentation treatment [63],
which can not only maintain the feed’s nutrient integrity and extend its shelf life, but can
also improve its palatability, digestion, and absorption efficiency, ultimately improving
the overall health and production performance of animals. Therefore, the antioxidant
application of unconventional fermented feed in animal production is of great significance
for improving the sustainable development of the aquaculture industry.

3.1. Reductions in Anti-Nutritional Factors and Toxins

Unconventional fermented feed uses a variety of effective measures to reduce anti-
nutritional factors and toxins. Through microbial action [64], enzyme action [65], and acid
base treatment, the microflora and enzymes in the fermentation process can decompose,
transform, and reduce the contents of anti-nutritional factors and toxins. At the same
time, proper heat treatment [66] and the screening of raw materials can further reduce
the presence of these harmful substances. The process of microbial fermentation can
effectively decompose anti-nutritional factors and toxins in feed [67], thereby reducing
their content, and has the advantages of high treatment efficiency, no reagent residue, safe
use, and less nutrient loss, so fermented feed has been widely used in actual livestock
and poultry production. Fermentation improves not only the nutritional value, but also
the safety of feed, making it more suitable for the digestion and absorption of livestock
and poultry. Yeast cell walls can adsorb mycotoxins such as aflatoxin B1, reduce the
absorption of mycotoxins by the digestive tract, and protect animals from the toxic effects
of mycotoxins [68]. Liu et al. [69] found that microbial fermented feed could further
improve the growth performance and immune indexes of offspring mice. Wang et al. [70]
showed that fermented kelp residue can promote the growth of sea cucumbers, enhance
the antioxidant capacity, and maintain the stability of intestinal flora.
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Figure 1. Expected characteristics of unconventional feed after fermentation. After fermentation, the
anti-nutritional factors and toxins present in unconventional feed are greatly reduced, and the flavor
substances of the feed are significantly increased. By eating fermented feed, animals can significantly
improve their growth performance, improve their intestinal health, enhance their immunity, and
reduce environmental pollution in the process of livestock and poultry breeding.

3.2. Increases Feed Flavor and Improves Growth Performance

Fermentation produces a large number of organic acids, small peptides, amino acids,
enzymes, and various metabolites that increase the natural flavor of feed, improve the
palatability of feed, and promote the appetite of animals [71]. For example, lactic acid,
butyric acid, acetic acid, propionic acid, and other organic acids [72] can reduce the pH
value of feed and inhibit the growth of harmful microorganisms; small peptides and amino
acids [73] provide nutrients that help animals grow and develop; and phytase, cellulose,
and other enzymes [74] can help to decompose complex polysaccharides and proteins and
improve the digestion and absorption rate of feed. Taken together, these effects promote
the digestion and absorption of nutrients and improve animal growth performance [75,76].
Yeast produces alcohol and other volatile compounds with a distinctive wine aroma during
fermentation. Lactic acid bacteria produce a large amount of lactic acid, which has a
sour aroma, during fermentation. Both different types of fermented feed can increase
the appetite of animals while also having an increased nutritional value. Studies have
shown that fermented feed can increase the contents of unsaturated fatty acids and amino
acids in the muscles of fattening pigs during the growth period, enhance the antioxidant
capacity, and improve pork quality [77–79]. Liu et al. [80] found that fermented mixed
feed could up-regulate the expression of unsaturated fatty acid synthesis (acetyl-coenzyme
A acyltransferase 1 and fatty acid desaturase 2), enhance the antioxidant capacity, and
improve meat quality in fattening pigs. Zhu et al. [28] found that fermented feed could
improve the growth performance, immune organ development and ability, and intestinal
antioxidant capacity of broiler chickens.
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3.3. Improves Intestinal Health and Strengthens Immunity

Unconventional fermented feed plays an important role in improving gut health and
boosting immunity. First of all, the beneficial microorganisms and metabolites produced by
the fermentation process help to maintain the intestinal microecological balance, inhibit
the growth of harmful bacteria, and reduce the invasion of pathogenic bacteria to the
intestine, thereby improving intestinal health [81]. Secondly, the bioactive substances in
fermented feed, such as organic acids, enzymes, and peptides, can promote the growth
and repair of intestinal mucosal cells, enhance intestinal barrier function, and prevent
the penetration of harmful substances [82]. In addition, the bioactive ingredients rich
in fermented feed can also regulate the function of the immune system, promote the
generation and activity of immune cells, and improve the resistance and immunity of
animals [83]. Beneficial microorganisms in fermented feed can improve the structure of
the intestinal microbial communities of animals [84,85], promote intestinal health, and
improve the digestion and absorption of nutrients. Microbial fermented feed can stimulate
the development of immune organs, improve immune function, and increase the weight
of immune organs, thereby strengthening the immunity of animals [86–88]. Studies have
shown that fermented feed has a positive impact on improving the production efficiency of
laying hens, improving egg quality and gut health [89,90]. Lactation is an important stage
of pig reproduction [91], and Wang et al. [92] found that the addition of 15% Bacillus subtilis
and Enterococcus faecalis to a fermented corn–soybean meal mixture significantly increased
the average daily gain (ADG), litter gain, and individual piglet gain during lactation.
With the addition of Bacillus mesenterica, Enterococcus faecalis, and Clostridium butyricum
to fermented feed, the productivity of sows and offspring was effectively improved. In
addition, Grela et al. [93] showed that the fermented rapeseed had a positive effect on
nutrient digestibility during lactation in sows. Qiang et al. [94] found that the fermentation
of wolfberry through modern fermentation technology can increase the levels of a variety
of nutrients and bioactive components, as well as improve the antioxidant capacity.

3.4. Reduces Pollution from Livestock and Poultry Farming

Unconventional fermented feed plays an important role in reducing pollution from
livestock and poultry farming. First of all, the use of unconventional raw materials as
the main component of fermented feed can effectively use resources such as agricultural
and sideline products and aquatic product by-products, reduce the demand for traditional
raw feed materials, and thus reduce resource consumption and environmental pressure
in the agricultural production process [27]. Secondly, the microorganisms and enzymes
in the fermentation process can degrade organic matter in organic waste, such as straw
and manure, which reduces the emission of organic waste and reduces the pollution of
livestock and poultry breeding to the environment [95]. In addition, the antioxidants and
bioactive components in fermented feed can also improve the digestion and absorption
capacity of animals, reduce the emission of nutrients in manure, and further reduce the
pollution of water and soil by livestock and poultry farming. Pathogens in feces can pollute
the farm environment, including the water and soil, which is harmful to human and animal
health [96]. The main pathogen on farms is Enterobacteriaceae, which leads to impaired
barrier function and malnutrition by colonizing the intestinal mucosa of pigs [97]. The use
of fermented feed in livestock and poultry farming can significantly reduce environmental
impacts. This is mainly due to the fact that fermented feed can reduce the discharge of
manure, eliminate the foul smell of manure, and reduce the number of mosquitoes and flies,
thus effectively reducing environmental pollution. A study by Hăbeanu et al. [98] showed
that when a mixture of puffed flaxseed and walnut powder (50:50) was added to a pig’s diet,
the amount of nitrogen excreted by the pig was significantly reduced. Additionally, feeding
poultry with probiotic fermented feed was shown to reduce nitrogen and phosphorus
emissions in manure.
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4. Unconventional Fermented Feed Improves Oxidative Stress by Regulating Gut Health

The highly intensive development of modern animal husbandry is prone to result in
oxidative stress in animals [99], which can cause damage to intestinal health, including
destroying intestinal mucosal structures and affecting the absorption function of the in-
testine, thus affecting the growth performance of animals. The development of ROS in
the gastrointestinal tract is shown in Figure 2. Preventing oxidative stress in animals is a
significant issue. The use of probiotic fermented feed to feed animals has been recognized
and widely used in animal husbandry production [100]. Many studies have shown that
fermented feed can affect the stability of the gut microbiota and the proper function of
the gut [101,102]. Moreover, dietary fiber in fermented feed plays an important role in
regulating the lipid metabolism and antioxidant stress response, and it has significant
effects in improving cardiovascular and cerebrovascular diseases, adjusting the structure
of intestinal flora, and affecting the energy balance through the gut microbiota gut–brain
axis, thereby having a positive impact on health [103–105]. Fermented feed plays a key
role in antioxidant activity [22,106,107] as it is rich in antioxidants (e.g., vitamin C, vitamin
E, and polyphenols), and some microbial metabolites produced during fermentation also
have an antioxidant capacity, which helps maintain the redox balance in the body [108].
In addition, other significant advantages of fermented feed are that it improves the uti-
lization rate of feed nutrients, effectively improves the nutritional level of animals, and
enhances the ability to resist oxidative stress [109,110]. Indeed, the use of fermented feed
not only provides antioxidants and microbial metabolites, but also promotes the absorption
of nutrients, which is an important breeding strategy that is beneficial to animal health and
physiological balance.

4.1. Gut Health and Oxidative Stress

Gut health is an important foundation for animal health and growth performance, and
the gut is one of the most important sources of oxygen free radicals, which can be produced
in the intestinal lumen and intestinal mucosa [111]. When the intestinal environment
changes, intestinal oxidative stress may be triggered, which may result in changes in the
nutrient content, increases in the number of antigens, the invasion of pathogenic bacilli,
mycotoxin contamination, and heavy metal contamination. These factors can upset the
balance of microbes in the gut, leading to an increase in harmful microflora, which can
trigger intestinal inflammation and damage. In addition, the metabolites and free radicals
produced during autometabolism may also cause damage to intestinal cells, leading to the
occurrence of oxidative stress. Oxidative stress causes an imbalance in the redox balance
within cells, increases the production of free radicals, and leads to the lipid peroxidation of
cell membranes, the oxidation of proteins, and damage to DNA [112,113]. The damage of
ROS to the intestine is affected by a variety of factors, such as the amount of free radicals
and the antioxidant capacity of the body. In general, the ROS produced by the body are
quickly removed by the body’s antioxidant system, which helps to maintain oxidative
homeostasis and avoid oxidative damage to the body. However, if too much ROS are
produced or the antioxidant system is less able to scavenge ROS, the homeostasis between
oxidation and antioxidation will be disrupted. In this case, ROS cannot be removed in time
and will accumulate in large quantities in the body, which may eventually lead to oxidative
stress damage, especially in the intestines [114]. Studies have shown that macromolecular
degradation by-products such as respiratory metabolites, lipids, and proteins, metabolites
produced by macrophages when they engulf viruses, and the cytochrome P450 system
are the main sources of ROS production in the gut [115–117]. When an oxidative response
is triggered, the regenerating digestive tract epithelial cells are particularly sensitive to
free radicals and the unsaturated fatty acids in the cell membrane easily react with these
free radicals, resulting in lipid peroxidation, a decline of microbial diversity in the intesti-
nal flora, a decrease in the number of beneficial bacteria, an increase in the number of
pathogenic bacteria, a reduction in the ability of beneficial bacteria to produce metabolites
such as antioxidant enzymes or short-chain fatty acids (SCFAs), and the change of the free
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radicals in the chemical structure of the tight junction of digestive tract epithelial cells,
which results in the loss of the barrier function; all of these processes are significant hidden
dangers to animals. At this point, an animal can reduce the damage caused by oxidative
stress by ingesting substances with antioxidant activity (Figure 3). Wang et al. [118] found
that spermidine could improve the intestinal health of a Sichuan white goose by improving
its intestinal morphology, increasing the antioxidant capacity, and regulating intestinal
microbiota structures. Liu et al. [119] showed that cysteine could inhibit the intestinal
nuclear factor-κB (NF-κB)/inhibitor of κB kinase/inhibitor of nf-κB signaling pathway and
pro-inflammatory cytokine mRNA levels, as well as increase the diversity and relative
abundance of intestinal microbiota in golden pomfret. Li et al. [120] found that probiotics
inhibited inflammation and oxidative stress by improving intestinal SCFA and inhibiting
the p38 mitogen-activated protein kinase/NF-κB pathway in colon tissue.

Antioxidants 2024, 13, x FOR PEER REVIEW 9 of 26 
 

rate of feed nutrients, effectively improves the nutritional level of animals, and enhances 
the ability to resist oxidative stress [109,110]. Indeed, the use of fermented feed not only 
provides antioxidants and microbial metabolites, but also promotes the absorption of nu-
trients, which is an important breeding strategy that is beneficial to animal health and 
physiological balance. 

 
Figure 2. Development of ROS in the gastrointestinal tract. The orange arrows indicate that ROS can 
be caused by a variety of factors, such as intestinal nutrient stimulation, antigens, pathogenic bacte-
ria, mycotoxin contamination, and heavy metal pollution, as well as autometabolism by-products 
such as peroxidase and oxidative phosphorylation. 

4.1. Gut Health and Oxidative Stress 
Gut health is an important foundation for animal health and growth performance, 

and the gut is one of the most important sources of oxygen free radicals, which can be 
produced in the intestinal lumen and intestinal mucosa [111]. When the intestinal envi-
ronment changes, intestinal oxidative stress may be triggered, which may result in 
changes in the nutrient content, increases in the number of antigens, the invasion of path-
ogenic bacilli, mycotoxin contamination, and heavy metal contamination. These factors 
can upset the balance of microbes in the gut, leading to an increase in harmful microflora, 
which can trigger intestinal inflammation and damage. In addition, the metabolites and 
free radicals produced during autometabolism may also cause damage to intestinal cells, 
leading to the occurrence of oxidative stress. Oxidative stress causes an imbalance in the 
redox balance within cells, increases the production of free radicals, and leads to the lipid 
peroxidation of cell membranes, the oxidation of proteins, and damage to DNA [112,113]. 
The damage of ROS to the intestine is affected by a variety of factors, such as the amount 
of free radicals and the antioxidant capacity of the body. In general, the ROS produced by 
the body are quickly removed by the body’s antioxidant system, which helps to maintain 
oxidative homeostasis and avoid oxidative damage to the body. However, if too much 

Figure 2. Development of ROS in the gastrointestinal tract. The orange arrows indicate that ROS can
be caused by a variety of factors, such as intestinal nutrient stimulation, antigens, pathogenic bacteria,
mycotoxin contamination, and heavy metal pollution, as well as autometabolism by-products such as
peroxidase and oxidative phosphorylation.

4.2. Effects of Unconventional Fermented Feed on the Morphological Structure of Intestinal Mucosa

Changes in intestinal morphology (villi height and crypt depth) are the main causes
of functional alterations and decreased intestinal absorptivity. When stress is generated,
the level of ROS in the gut is elevated and the microbiome balance is disrupted (Figure 4),
which also causes the increased mitosis of intestinal cells and the increased depth of the
intestinal crypts. When the rate of intestinal cell migration to villi increases, so does the rate
of apical intestinal cell shedding, which leads to an increased loss of mature intestinal cells,
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thereby reducing enzyme activity and absorption [111]. This may increase the sensitivity
of the small intestine to pathogenic microorganisms, such as E. coli, further exacerbating
damage to intestinal tissue. Fermented feed can effectively neutralize free radicals in
the intestine through the antioxidants and microbial products it contains, slow down the
production of oxidative stress, improve the length and width of villi, inhibit inflammation,
reduce intestinal permeability [121], and help maintain the stability of the body’s intestinal
environment and intestinal morphology [122].
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Figure 3. Unsaturated fatty acids in membranes of the digestive tract epithelium are prone to
react with free radicals. Beneficial gut bacteria have a reduced ability to produce metabolites
such as antioxidant enzymes or SCFA. The changes of free radicals in the chemical structure
of tight junctions in epithelial cells of the digestive tract lead to the loss of barrier function.
Arrow 1⃝ indicates that feeding animals with unconventional fermented feed can affect the de-
velopment of ROS, inhibiting the impact of ROS on the oxidative–antioxidative balance system.
Arrow 2⃝ indicates that animals not fed with unconventional fermented feed are unable to inhibit
ROS, thus disrupting the oxidative–antioxidative balance. When the oxidative–antioxidative balance
is disrupted, animals experience oxidative stress, which adversely affects digestive tissues, intestinal
microbiota, and intestinal barrier function.
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Figure 4. Oxidative stress in the gut. Pathogenic bacteria enter the internal environment by damaging
the gaps between intestinal epithelial cells, triggering an inflammatory response. Inflammatory
factors activate macrophages to produce ROS during phagocytosis, which strengthens the inhibition
of beneficial bacterial colonization and biological functions. In the case of impaired barrier function,
group 3 innate lymphoid cells (ILC3 cells), CD8aa cells, Th17 cells, and Th1 cells are stimulated,
thereby reducing the secretion of interleukin-22 (IL-22) (↓) and interleukin-10 (IL-10) (↓) and increasing
the secretion of interferon-γ (IFNγ) (↑) and interleukin-17 (IL-17) (↑). Inhibition line 1⃝ indicates the
definite vegetation inhibition of beneficial microorganisms in the intestine. Arrow 2⃝ indicates that
ROS are produced when harmful bacteria invade and macrophages initiate phagocytosis. Arrow 3⃝
indicates that dendritic cells are influenced by oxidative stress, leading to the stimulation of ILC3
cells, CD8aa cells, Th17 cells, and Th1 cells, resulting in the decreased secretion of IL-22 and IL-10
and the increased secretion of IFNγ and IL-17.

The effects of unconventional fermented feed on the intestinal health of animals can
be seen in a number of ways. First, by influencing the gut microbiota, unconventional
fermented feed is able to regulate the structure and composition of the gut microbiota of
animals at different stages of growth and to improve the digestibility and overall gastroin-
testinal function of animals, thereby reducing the risk of diarrhea, helping to maintain
a healthy state, and improving the growth performance and antioxidant capacity [26].
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Secondly, unconventional feed grows rich in beneficial microorganisms and nutrients after
fermentation, which can improve the morphological structure of the intestinal mucosa,
increase the height and area of intestinal villi, and further maintain the self-stability of the
intestine [123]. The ratio of villi height to crypt depth (V/C) is directly proportional to the
body’s ability to absorb nutrients [124]. Dietary supplementation with Bacillus subtilis has
been shown to promote the development of small intestinal villi [125]. Sugiharto et al. [126]
found that supplementing a basic diet with 10~15% fermented banana peel and the same
amount of corn could significantly increase the ileal villi height of Roman broilers. Liu
et al. [127] found that feeding layers with fermented mixed feed significantly reduced the
depth of crypts in the duodenum and jejunum and increased the ratio of villus height
to crypt depth. Wu et al. [128] showed that the duodenal villi height/crypt depth ratio
increased after broilers were fed fermented soybean meal (FSBM). Yu et al. [129] found
that a level of 6.73~20.18% fermented cottonseed meal in a meat goose diet significantly
increased the villi height of the jejunum. Feeding Bacillus subtilis was shown to increase the
length of intestinal villi in Nile tilapia [130]. Feeding Nile tilapia with a bacillus-rich diet
resulted in an increase in the number of goblet cells [131].

4.3. Effects of Unconventional Fermented Feed on Intestinal Barrier and Absorption Function

The bioactive ingredients and beneficial microorganisms in fermented feed help to
enhance the integrity and tightness of the intestinal mucosa, prevent the penetration of
harmful substances, reduce the invasion of pathogenic microorganisms, and protect the
intestines from damage [81]. Enzymes and metabolites in fermented feed can promote the
decomposition and release of nutrients, improve nutrient availability, and thus enhance
the ability of animals to digest and absorb nutrients. In addition, fermented feed is rich in
antioxidants, which can scavenge free radicals, reduce the impact of oxidative stress on
the intestinal barrier and absorption function, protect the health of intestinal mucosal cells
and tissues, and maintain normal cell and tissue function [132]. The intestinal mucosa, as
the largest interface between the body and the external environment, is easily disturbed
by factors such as pathogenic microorganisms, pro-inflammatory factors, and antigens.
The mechanical barrier of the intestinal mucosa can prevent damage to the small intestine
caused by foreign substances and reduce the permeability of the intestinal mucosa, thereby
maintaining the health of the intestine. ROS ultimately damage the intestinal biological bar-
rier by affecting the adhesion and colonization of microorganisms and intestinal epithelial
cells and the digestion and metabolism of nutrients between microorganisms and hosts in
the gut. The various digestive enzymes produced by probiotics in fermented feed during
the fermentation process can decompose macromolecular substances in raw feed materials,
such as starch, protein, and cellulose, into small molecule substances for better digestion by
animals [133]. These digestive enzymes can also be used as a supplement to the digestive
enzymes of animals’ digestive tracts to further break down nutrients, thereby improving
the digestion and absorption of nutrients [134–136] and improving the growth perfor-
mance [137]. When piglets are weaned separately from sows, physiological, environmental,
and social stresses can lead to multiple stress responses. These stressors include oxidative
stress, barrier dysfunction, and disturbances in the gut microbiota. In addition, weaned
piglets are susceptible to immune stimulation due to imperfect digestive systems, low
digestive enzyme activity, low immunity, etc., resulting in immune imbalance, oxidative
stress, diarrhea, and even death. These stress responses may disrupt the development of the
intestinal immune system of piglets, inhibiting their growth and development [138]. Xin
et al. [139] showed that liquid fermented feed could significantly increase the daily weight
gain of weaned piglets, as well as the abundance of lactic acid bacteria in cecal chyme and
the level of acetic acid in colonic chyme. Wang et al. [140] reported that fermented feed
improved the hematologic profile and serum concentrations of the total protein, albumin,
and globulin in weaned piglets. Wang et al. [141] showed that FSBM could alleviate diar-
rhea symptoms in weaned piglets by modulating the cecal microbiota composition. Guo
et al. [142] found that when 6% compound probiotic fermented feed was added to the basal
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diet of laying hens, the relative mRNA expression level of Occludin in the jejunal mucosa
could be significantly increased, and the physical barrier function of the gut of laying hens
could be improved. Wang et al. [143] treated piglets with the Lactobacillus plantarum strain
ZLP 001 and found that the density of Clostridium spp_1 cells associated with epithelial
inflammation in the experimental group was reduced, and the expression and secretion of
pro-inflammatory cytokines IL-6 and TNF-α were down-regulated, which strengthened
the intestinal barrier function and antioxidant capacity of piglets.

4.4. Effects of Unconventional Fermented Feed on Gut Microbiota

The effect of unconventional fermented feed on intestinal microbiota is significant. Its
functions are mainly reflected in regulating the structure and composition of microflora,
increasing the number of beneficial microorganisms, promoting the diversity of microflora,
and improving the metabolic function of microflora [132]. Through these effects, fermented
feed can maintain the balance and stability of the intestinal flora, promote the growth
and reproduction of beneficial bacteria, and inhibit the reproduction of harmful bacteria,
thereby improving the intestinal health of animals. This combined effect helps to improve
the digestion and absorption capacity of animals, enhance immunity, and reduce the oc-
currence of intestinal diseases such as diarrhea [144]. Fermented feed is rich in organic
acids, amino acids, and small peptides after decomposition; these components have a role
in regulating dysbiosis [145,146]. Under normal circumstances, the intestinal tract is in a
state of microecological balance, and beneficial bacteria such as lactic acid bacteria and
bifidobacteria in the intestine adhere to the intestinal epithelial cells to produce bacteriocins,
organic acids, and other bacteriostatic substances to inhibit the adhesion, colonization and
invasion of pathogenic bacteria. Intestinal microbiota are in a state of reciprocal symbio-
sis with their host. For example, the transplantation of fecal bacteria has been used to
clinically treat diseases caused by intestinal homeostasis imbalance [147,148]. Probiotic
supplementation can help alleviate intestinal diseases (such as intestinal inflammation and
intestinal cancer diseases), enhance intestinal function, and improve antioxidant capac-
ity [149]. Studies have shown that mice can be supplemented with Lactobacillus gasseri to
produce SCFAs [150,151] and inhibit the development of intestinal inflammation-related
cancers [152]. These microorganisms can effectively improve the structure of intestinal
microbial communities, increase the number of beneficial bacteria in the intestine, reduce
the number of harmful bacteria, and improve intestinal health through fermented feed [153].
Xin et al. [139] fed fattening pigs with fermentation broth, and the results showed that the
final body weight and ADG of the fattening pigs significantly increased, the total volatile
fatty acid content showed an upward trend, and the total intestinal digestibility increased.
O’Meara et al. [154] found that the liquid feeding of fermented cereals to fattening pigs
could increase the abundance of lactic acid bacteria, reduce the abundance of Enterobac-
teriaceae bacteria, and improve the composition of intestinal microbiota. Guo et al. [142]
showed that adding 6% compound probiotic fermented feed to a diet could regulate the
microbial structure of the cecum and improve the intestinal health of laying hens.

4.5. Effects of Unconventional Fermented Feed on Immune Function

Immunomodulatory effects can promote the production and activation of immune
cells, enhance the body’s immune response, and reduce the risk of animal disease [132].
Secondly, the anti-inflammatory components in fermented feed can inhibit the occurrence
of inflammatory reactions, reduce the burden on the immune system, and protect the
body’s tissues from damage. In addition, fermented feed can also promote the devel-
opment and function of immune organs, as well as enhance the overall function of the
immune system. Most importantly, it is rich in antioxidants, which can scavenge free
radicals, reduce oxidative stress damage to the immune system, and improve the stability
and activity of the immune system [106]. The use of unconventional fermented feed not
only increases the contents of immunoactive substances such as cytokines, antibodies,
and lysozymes, but also improves the immune capacity of animals by stimulating the
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development of immune organs, improving immune function, and increasing the weight
of immune organs [155], as well as ameliorating the damage of oxidative stress to the
intestine [86–88]. There are many different microbes in the gut that are involved in dif-
ferent immune defense mechanisms and influence the body’s immune response. Under
intestinal oxidative stress, the contents of immunoglobulin A, immunoglobulin G, and
immunoglobulin M in the intestine decrease, the number of T cells decreases, and cellular
immunity is abnormal. The use of unconventional fermented feed can effectively alle-
viate the occurrence of this situation. The SCFAs produced during the fermentation of
unconventional feed are involved in the regulation of the intestinal mechanical barrier of
livestock and poultry, improving the activity of immune substances [156] and reducing the
content of harmful bacteria. Studies have shown that the number and activity of immune
cells are significantly enhanced when animals ingest microbial fermented feed [157,158].
According to Taranu et al. [159], feeding fermented cassava residue can increase the serum
immunoglobulin content in pigs, improving humoral immune activity, and thus enhanc-
ing disease resistance. Wu et al. [128] found that the addition of FSBM to broiler diets
significantly increased the weight of the bursa and thymus and reduced serum alanine
aminotransferase levels. The addition of fermented full-price feed significantly increased
the serum levels of interleukin-1β, IL-6, and TNF-a in laying hens [160]. Feeding fermented
full-price feed significantly increased the content of insulin-like growth factor-1 (IGF-1) in
the sera of finishing pigs [161], promoted the expression of the IGF-1 protein in the liver,
and improved growth performance [162]. Cheng et al. [163] showed that fermented feed
inhibited the growth of harmful microflora such as E. coli and enterococci, while increasing
the number of beneficial microflora such as Bifidobacteria, Lactobacillus, and Ackermansi. As
shown in Figure 5, lactic acid bacteria decompose the proteins in feed through the lactic acid
bacteria proteases secreted by themselves, so the proteins are converted into small molecule
peptides and amino acids and the digestion and absorption of feed by livestock and poultry
are improved. The bacteriocins secreted by lactic acid bacteria have the miraculous effect of
inhibiting the growth of pathogenic microorganisms present in the intestines after entering
the intestines of livestock and poultry. With the colonization of lactic acid bacteria in the
intestine, macrophages can be activated to a certain extent, promoting the immune response
of immune cells in the intestine, and improving the resistance of livestock and poultry to
diseases [4]. Azad et al. [46] showed that when soybean meal was partially replaced with
5% fermented cassava residue, piglets could increase their CAT, GSH-Px, and HSOD levels,
as well as enhance their antioxidant capacity.

4.6. Effects of Unconventional Fermented Feed on Antioxidant Capacity

Unconventional fermented feed has significant effects on the antioxidant capacity of
animals as it is rich in antioxidant substances, such as vitamins, polyphenolic compounds,
and organic acids, that can effectively remove free radicals in the body, regulate redox
balance, enhance antioxidant enzyme activity, and improve the antioxidant capacity of
animals [164]. These antioxidants not only protect cells and tissues from oxidative damage,
but also improve animal immunity, reduce the risk of disease, and promote the healthy
growth and performance of animals [165]. The beneficial microbial metabolites and active
substances in unconventional fermented feed have the effects of promoting the activity of
antioxidant enzymes, directly or indirectly affecting the activity of antioxidant enzymes,
and slowing down the occurrence of oxidative stress [166,167]. Superoxide dismutase (SOD)
scavenges ROS in the cytoplasm by catalyzing the disproportionation of two superoxide
radicals to H2O2 and oxygen. GSH-Px and CAT [159] convert ROS to water and oxygen.
MDA is one of the end products of lipid peroxidative damage by free radicals, and it can
be used as a direct indicator of tissue damage caused by oxygen free radicals [168]; the
higher the content, the higher the degree of cell damage and the weaker the antioxidant
capacity [169]. The level of the total antioxidant capacity can directly reflect the level
of antioxidant capacity in animals [170]. Lactic acid bacteria are partially lysed in the
intestinal tract and release intracellular substances such as SOD and GSH-Px to reduce
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the cell damage caused by oxygen free radicals. Dong et al. [171] found that Lactobacillus
plantarum KLDS 1.0386 has the ability to scavenge hydroxyl radicals and lipid antioxidants
through in vitro tests. Hao et al. [172] found that the use of fermented mixtures was able to
increase the activities of SOD and GSH-Px in the sera and longissimus dorsi muscles of
fattening pigs. Chen et al. [173] showed that microbial fermentation can alter the structural
characteristics of wheat bran polysaccharides and increase their antioxidant activity. FSBM
can increase SOD and CAT activities and vitamin C levels in piglet tissues [174]. As
the main raw material for the industrial production of natural astaxanthin, astaxanthin
can significantly reduce the levels of ROS and MDA in the sera of pigs [175]. Studies
have shown that yeast extracts are able to increase the antioxidant capacity of aquatic
animals [176]. Long et al. [177] showed that dietary supplementation with Saccharomyces
cerevisiae increased serum SOD activity and reduced MDA levels in weaned piglets.
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Figure 5. Lactic acid bacteria promote digestion, inhibit microorganisms, and activate the body’s im-
mune response mechanism. Arrow 1⃝ indicates that lactic acid bacteria secrete lactobacillus proteases
to break down proteins into peptides; arrow 2⃝ indicates that lactic acid bacteria secrete bacteriocin,
inhibiting the growth of pathogenic microorganisms, reducing the expression of inflammatory factors,
and activating the phagocytic function of macrophages; arrow 3⃝ indicates that lactic acid bacteria
secrete macrophage activators, activating the phagocytic function of macrophages and generating
immune responses.
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In conclusion, unconventional fermented feed can regulate the structure of the gut and
the composition of intestinal microbiota, which can effectively improve the digestibility
and overall gastrointestinal function of animals, reduce the risk of oxidative stress, and
help maintain a healthy state and improve growth performance [146,178,179].

5. Prospects

The use of unconventional fermented feed has a positive impact on sustainable and
environmentally friendly livestock practices in many ways. First of all, this kind of feed uses
diversified raw materials such as agricultural and sideline products, aquatic by-products,
and industrial by-products, which effectively use resources and reduce resource waste.
Secondly, compared with traditional feed production, the production of unconventional
fermented feed produces less environmental pollution [59] and greenhouse gas emissions,
which helps to reduce the environmental load [180]. In addition, unconventional fermented
feed may contain richer nutrients and bioactives than traditional feed, which can improve
the growth, development rate [181], immunity, and disease resistance of animals, thereby
improving breeding efficiency. Most importantly, the use of unconventional fermented feed
promotes the practice of the circular economy, and the goals of waste reduction, resource
conservation, and ecological environmental protection can be achieved through waste
resource utilization and resource reuse, which is conducive to building a more sustainable
and environmentally friendly livestock system.

The rapid development of unconventional fermented feed is important for the livestock
industry, but the challenges and limitations require targeted solutions and further research.

(1) Diversified sources of raw materials: Exploring a greater variety of unconventional
raw materials, such as agricultural by-products, aquatic by-products, and industrial
by-products, can reduce supply instability through inter-regional and inter-seasonal
diversification. The introduction of diversified sources of raw materials can not only
reduce excessive dependence on a specific raw material, but can also help to improve
the diversity and nutritional balance of feed.

(2) Optimization of the fermentation process: By studying and optimizing the fermen-
tation process, such as by controlling parameters such as temperature, humidity,
and PH, the stability and efficiency of the fermentation process can be improved.
The introduction of automation technology and intelligent monitoring systems can
be used to help reduce human error, improve production efficiency, and improve
product quality.

(3) Anti-nutritional factor processing technology: The development of efficient treatment
technologies, such as enzymatic hydrolysis, heat treatment, and acid–base treatment,
can effectively reduce the content of antinutritional factors in raw materials. Further
research into the mechanisms of different antinutritional factors in animal digestion
and absorption is needed to optimize treatment techniques and ensure the nutritional
value of feed.

(4) Economic benefit evaluation: A comprehensive economic benefit evaluation study
should be conducted to consider production costs, animal growth performance, feed
utilization efficiency, and other factors to provide a more concrete and reliable eco-
nomic decision-making basis for farmers and breeders. Tailored economic assessments
should be conducted for different farming scales and regional characteristics to ensure
the practical feasibility and sustainability of solutions.

(5) An in-depth study of animal health and oxidative stress mechanisms: researchers
should investigate the mechanism of fermented feed on the intestinal microecological
balance, and explore its specific effects on animal immunity and disease resistance in
order to further understand the regulatory effects of active ingredients in fermented
feed on oxidative stress in animals, as well as the mechanism of their effects on the
overall growth performance and meat quality.
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Through in-depth research and the continuous improvement of these aspects, the chal-
lenges faced by unconventional fermented feed can be better met and its wide application
and development in animal husbandry can be promoted.

6. Conclusions

Oxidative stress means that the oxidative substances in animals exceed the scavenging
capacity of their antioxidant systems, which may have negative effects on animal health,
including affecting the intestinal barrier function and inducing an inflammatory response.
As a potential feed alternative to improve animal health, unconventional fermented feed
may help reduce the levels of oxidative stress in animals by being rich in antioxidants,
maintaining the intestinal microbiota balance, and providing nutrient support. However,
they need to be carefully selected and managed to ensure that their effects on animals are
positive, and they should be monitored and adjusted on a case-by-case basis.

Therefore, the exploration of the use of unconventional fermented feed to maintain
the intestinal health of animals is promising. In future research, it is crucial to further
improve the quality of fermented feed and optimize the technological process of fermented
feed. At the same time, by studying the mechanism of fermented feed in regulating gut
health and the antioxidative capacity, we can provide strong support for the development
of more scientific feeding strategies, thereby promoting the overall health and performance
of animals. This systematic research will help to continuously improve the application of
unconventional fermented feed and promote the development of animal husbandry in a
more sustainable and efficient direction.
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