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Abstract: Heat stress represents a pervasive global concern with far-reaching implications for the
reproductive efficiency of both animal and human populations. An extensive body of published re-
search on heat stress effects utilizes controlled experimental environments to expose cells and tissues
to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic
traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall compe-
tence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised
oocyte development, and even infertility across diverse species. One of the primary mechanisms
underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS)
levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative
stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts
its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate
the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and
synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive
cells possess inherent self-protective mechanisms that come into play during episodes of heat stress,
aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress
on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning
oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Ad-
ditionally, we provide a succinct overview of potential antioxidant interventions and highlight the
genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively of-
fering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis
and oxidative stress.

Keywords: heat stress; oxidative stress; apoptosis; antioxidants; mammalian reproductive cells; fertility

1. Introduction

Heat stress refers to physiological responses occurring due to prolonged exposures
to high temperatures, often combined with elevated humidity, that cause body heat gain
to exceed one’s ability to dissipate the heat [1]. It arises when the body is unable to
thermoregulate properly, leading to an abnormal rise in core body temperature [2]. The fun-
damental origin of escalating heat stress is global warming stemming from anthropogenic
climate change—the accumulation of greenhouse gases like carbon dioxide, methane, and
nitrous oxides due to human activities including burning fossil fuels, deforestation, and
agriculture [3]. One key mechanism is through the impairment of evaporative cooling
from sweating and respiration [4]. High humidity in particular hampers heat loss via
sweating and skin evaporation by reducing the vapor pressure gradient from the skin to
the environment [5]. Studies show that humid heatwaves have become more frequent
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worldwide [6], causing instances of near-fatal and fatal hyperthermia and heat stroke by
blocking the primary heat loss avenue in humans [7]. The multifaceted effects of escalating
heat stress can be detrimental with widespread repercussions for health, economies, ecosys-
tems, and more. Some major anticipated impacts include dramatic rises in heat-related
compromised reproductive efficiency [8]. The deleterious effects of heat stress (HS) on
reproductive function encompass a comprehensive spectrum of repercussions affecting
both male and female reproductive components, spanning from the intricate mechanisms of
fertilization to the critical stages of early and late embryo–fetal development. Consistently,
extensive investigations have collectively unveiled the multifaceted impacts of HS on the
reproductive landscape [9–13].

Within the sphere of male reproductive physiology, HS emerges as a pivotal factor
intricately linked to male infertility, exerting a discernible influence on testicular func-
tionality [13,14]. Notably, empirical evidence drawn from diverse studies underscores
the detrimental ramifications of HS on male fertility and semen quality [15–22]. Further-
more, HS casts a shadow over the ensuing fertilization processes, as elucidated by recent
investigations [23–25]. Recent scientific inquiries have accentuated the detrimental in-
fluence of HS on sperm quality across a spectrum of mammalian species, encompassing
dogs [17], bulls [20], buffaloes [26], stallions [27–29], rabbits [30], pigs [31], goats [32], and
human males [33,34]. Remarkably, a recurring theme in these studies underscores the
adverse impact of HS-induced oxidative stress and apoptosis on the viability of Sertoli cells,
spermatogonial stem cells, Leyding cells, spermatogenesis, and sperm quality [15,35–42].
Furthermore, recent publications have elucidated a compelling association between sperm
quality and environmental temperature in men, underscoring the pervasive implications
of environmental factors on male reproductive health [43–46]. These findings collectively
reinforce the imperative need for comprehensive research into mitigating the detrimen-
tal effects of HS on reproductive function across species, as well as the exploration of
potential interventions to safeguard male fertility and sperm quality under challenging
environmental conditions.

In the United States, cattle reproduction and milk production rates experience a
pronounced decline during the hot season due to HS, resulting in approximately USD
900 million in annual losses within the dairy industry [47,48]. Besides the metabolic stress
associated with high milk production in dairy cows, seasonal impacts on fertility have
been extensively documented [49,50]. Notably, a substantial reduction in cattle fertil-
ity during the summer months has been attributed to the thermoregulatory challenges
posed by HS, leading to elevated body temperatures [51–53]. Furthermore, HS exerts
detrimental effects on follicle quality and hormonal equilibrium, contributing to a decline
in estrus [54–58]. Specifically, granulosa cells responsible for estradiol production are
adversely affected by HS, resulting in decreased estradiol production and subsequent dis-
ruption of the estrous cycle in cattle [59–61]. HS has also been shown to influence corticoid
levels, luteinizing hormone (LH), and plasma progesterone in cattle, with alterations in
hypothalamus and pituitary gland function leading to changes in the secretion of reproduc-
tive hormones [9,62–66]. Moreover, HS negatively impacts oocyte quality due to its effects
on the hypothalamus and pituitary gland, specifically the LH [67–69]. Additionally, Khan
et al. [47] reported that HS significantly compromises granulosa cells, leading to suboptimal
oocyte development. This is further supported by studies that found HS compromises the
mRNA expression levels of Moloney sarcoma oncogene (MOS), growth factor 9 (GDF9),
and POU domain, class 5, transcription factor 1 (POUF51), which are crucial for oocyte
development and competence, ultimately resulting in poor-quality oocytes and impaired
embryonic development [60,61,70–72]. Figure 1 demonstrates the adverse impact of heat
stress on phenotypic traits related to mammalian reproductive traits.
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Figure 1. Effect of antioxidant supplementation on mammalian reproductive cells under heat stress:
pre- and post-supplementation comparison.

In response to these challenges, numerous researchers have advocated for exogenous
supplementation with antioxidants to mitigate the elevated levels of reactive oxygen species
(ROS) induced by HS and enhance the antioxidant capacity of mammalian reproductive
cells [30,31,47,73–76]. Consistently, positive outcomes have been observed for supplemen-
tation with antioxidants, whether in the form of herbal medicines or feed additives, in
improving the efficiency of mammalian reproductive cells such as granulosa cells, Leydig
cells, and Sertoli cells by alleviating oxidative stress [77–85]. The beneficial impact of
antioxidant supplementation in mitigating the adverse effects of heat stress on phenotypic
traits related to mammalian reproduction has been succinctly illustrated in Figure 1. Thus,
our study aims to comprehensively investigate heat-stress-induced oxidative stress and
apoptosis in mammalian reproductive cells, elucidating their manifestations. Additionally,
we delve into the genetic resistance mechanisms employed by these cells to counteract heat
stress, elucidating the activation of adaptive pathways aimed at ameliorating oxidative
stress and preventing apoptosis. In accordance with published data, we elucidated the
progression and comprehension of critical genetic biomarkers linked to the mitigation
of oxidative stress and apoptosis triggered by heat stress in mammalian reproductive
cells. Finally, we explore potential remedial approaches, such as exogenous antioxidant
supplementation through feed additives and herbal medicines, as strategies to mitigate the
detrimental effects of heat-stress-induced oxidative stress and apoptosis.

2. Literature Search and Selection Criteria

In the course of preparing this review article, our approach to sourcing and selecting
literature was meticulously designed to meet stringent criteria. Our primary objective
was to incorporate the most pertinent and up-to-date scholarly contributions, while also
preserving the essential context for a comprehensive understanding. To assess the impact
of heat stress on mammalian reproductive cells, we primarily focused on articles published
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within the last three years. However, for the exploration of genetic markers and potential
antioxidants that may mitigate the detrimental effects of heat stress on reproductive cells,
we extended our search to articles published between 2013 and 2023. In cases where
additional supportive information was required, we even consulted articles dating back
to 2000. Our selection of keywords for our search strategy was carefully thought out,
encompassing the multifaceted aspects of the subject matter. These keywords included
“heat stress”, “mammalian reproductive cells”, “apoptosis”, “genetic biomarkers”, “ROS”
(reactive oxygen species), and “antioxidant”.

To maintain a rigorous standard, we deliberately excluded articles published in non-
SCI (Science Citation Index) journals and those not written in the English language. This
deliberate choice was made to ensure that the articles included in our review underwent a
thorough peer-review process and were accessible to a broad academic audience. Addition-
ally, it is important to note that we excluded book chapters and unpublished data from our
discussion. Nevertheless, we incorporated fundamental insights from previously published
review articles that specifically addressed topics related to the impact of heat-stress-induced
oxidative stress and apoptosis on mammalian reproductive cells.

3. Impact of Heat-Stress-Induced Oxidative Stress and Apoptosis on Mammalian
Reproductive Cell Functionality

It is well established that heat stress induces ROS production primarily through
mitochondrial dysfunction, where the electron transport chain is compromised, leading
to electron leakage and the formation of superoxide radicals (O−2) [86,87]. Additionally,
another crucial source of ROS induction during heat stress is the activation of NADPH
oxidases (NOXs), particularly NOX2 and NOX4. These enzymes are responsible for gener-
ating superoxide ions in response to various stressors, including heat. The activation of
NOX enzymes can occur through heat-induced signaling pathways, such as the activation
of protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs). The NADPH
oxidases also contribute to the production of superoxide radicals during heat stress [88].
Moreover, these superoxide radicals can be further converted into other types of ROS,
such as hydrogen peroxide (H2O2) and hydroxyl radicals (OH), through various reactions,
including those catalyzed by superoxide dismutase (SOD) [89,90]. Consequently, heat-
stress-induced ROS can also trigger lipid peroxidation, leading to the formation of lipid
peroxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE).
These products are known to be cytotoxic and can disrupt cellular membranes [90,91].
These molecules, while playing roles in signaling under normal physiological conditions,
can cause significant damage to cellular structures and DNA when present in excess due to
heat stress [90–92].

Oxidative damage and cell apoptosis represent pivotal consequences affecting mam-
malian reproductive cells, primarily initiated by the excessive generation of ROS [93–95].
The accrual of ROS disrupts male reproductive functions and exerts detrimental effects
on semen quality [96,97]. These detrimental effects manifest in two main modes: firstly,
the overabundance of ROS depletes the cell’s scavenging capacity, impairs antioxidant
enzymes, escalates lipid peroxidation, and triggers DNA damage, ultimately compromising
the cell’s defense against oxidative harm. Secondly, the surplus ROS mediate molecular
signaling in the mitochondria-dependent apoptotic pathway, encompassing events such
as the opening of mitochondrial permeability transition pores, mitochondrial membrane
depolarization, and the release of mitochondrial substances, including cytochrome C (cyto-
c). This, in turn, culminates in caspase-3 activation and subsequent cell apoptosis. Recent
research by Li H et al. [98] further reported that heat stress upregulated caspase-3 and
caspase-9, leading to enhanced apoptosis in endometrial epithelial and glandular epithelial
cells, along with alterations in HO-1 mRNA/protein and Keap1 mRNA/protein expression,
and an elevated malondialdehyde (MDA) level in mouse uterine tissue.

In the context of male reproductive cells, recent investigations have extensively ex-
plored the impact of heat stress on testis morphology, antioxidant status, and testicular
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biosynthesis [34,99–101]. Sertoli cells, known for providing structural and nutritional sup-
port for developing germ cells, have been a focus of scrutiny, with studies comprehensively
examining the repercussions of heat stress on male reproductive cells, including Sertoli
cells, spermatogonial stem cells, and Leydig cells [102]. Wang C et al. [103] reported that
HS induces oxidative stress and apoptosis in Sertoli cells, disrupting the normal spermato-
genesis process. Furthermore, boar Sertoli cells exposed to elevated temperatures exhibited
increased oxidative stress and apoptosis, an inhibited pentose phosphate pathway, and
decreased ATP content. Molecular changes observed in boar Sertoli cells under heat stress
involved the downregulation of the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear
factor erythroid 2-related factor 2 (Nrf2) signaling pathway (associated with enhanced
antioxidants) and low levels of heat shock protein 90 (HSP90) due to the suppression of
melatonin receptor 1B (MTNR1B), resulting in abnormal regulation of stabilizing hypoxia-
inducible factor-1α (HIF-1α) [104]. Another study by Xue H et al. [105] found that HS
primarily enhanced the lipid oxidation, oxidative stress, and apoptosis in Sertoli cells
through the activation of arachidonate 15-lipoxygenase type B (ALOX15B) and the pro-
duction of 8-hydroxyeicosatetraenoic acid (8-HETE) and 15-hydroxyeicosatetraenoic acid
(15-HETE), with involvement of the P53-p38 pathway [105]. The disruption of arachi-
donic acid (AA) metabolism, a precursor to 20-carbon polyunsaturated fats, has been
reported to be associated with poor spermatogenesis outcomes, as excessive AA levels
altered cytomembrane structure and function and increased permeability and brittleness,
potentially leading to mitochondrial changes, apoptosis, or necrosis. HS was found to
significantly elevate AA levels, disrupting the function of tight junctions (TJs) essential for
spermatogenesis development [106]. Additionally, AA increased MDA levels, activated
p38 mitogen-activated protein kinases (P38 MAPKs), and reduced mitochondrial DNA
(mtDNA). Furthermore, another study noted that heat stress induced oxidative stress in Ser-
toli cells by suppressing the level of nuclear factor erythroid 2-related factor 2 (Nrf2) [107].
In addition, the effects of oxidative stress on Leydig cells have been briefly reviewed in
recent studies [102,108]. Heat stress treatment inhibited cell viability, induced apoptosis,
increased the activity of caspase 3 and the pro-apoptotic protein Bax, and decreased the
expression of anti-apoptotic protein B-cell leukemia/lymphoma-2 (Bcl-2), concurrently
activating endoplasmic reticulum (ER) stress markers such as glucose-regulated protein
78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) [109].

The impact of heat-stress-induced oxidative stress and apoptosis on mammalian fe-
male reproductive cells has also been extensively documented in recent research [110]. In
alignment with these findings, it has been observed that heat-stress-induced oxidative
stress and apoptosis in bovine granulosa cells disrupt the normal secretion of estrogen,
leading to disturbances in the ovarian microenvironment and subsequent interference
with ovarian function [111]. Consistently, a study documented abnormal folliculogenesis
including impaired ovulation, fertilization, and early embryo development [112]. Addi-
tionally, a study has reported elevated levels of ROS production in response to heat stress,
resulting in increased apoptosis and even embryo death, coupled with reductions in both
mitochondrial activity and membrane potential [113]. Consistently, Sammad et al. [114]
have reported elevated levels of ROS and apoptosis in bovine granulosa cells under heat
stress conditions. They also noted the negative regulation of several candidate genes,
including heme oxygenase 1 (HMOX1), nitric oxide synthase 2 (NOS2), catalase (CAT),
superoxide dismutase (SOD), B-cell lymphoma 2-like 1 (BCL2L1), glutathione peroxidase
4 (GPX4), Nrf2, aspartoacylase 3 (ASP3), peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PPARGCIA), solute carrier family 16 member 3 (SLC16A3), sterol
regulatory element-binding protein 1 (SERBP1), sirtuin 1 (SIRT1), AMP-activated protein
kinase (AMPK), Caspase 8 (CASP8), CASP9, insulin-like growth factor 2 (IGF2), peroxi-
some proliferator-activated receptor alpha (PPARA), and solute carrier family 27 member
3 (SLC27A3), which are associated with apoptosis, cell proliferation, and oxidative activity
of granulosa cells [114]. Furthermore, their research indicated that heat stress significantly
downregulated the key anti-apoptotic and antioxidant-associated signaling pathways, in-
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cluding the AMP and Nrf2 signaling pathways [114]. Similarly, another study reported
a significant decrease in the number of primordial follicles, an increase in the number of
degenerated follicles, and a decrease in granulosa cell proliferation in response to heat
stress [115]. The molecular mechanisms associated with heat-stress-induced oxidative
stress and apoptosis effects on mammalian reproductive cells are summarized in Figure 2
and Table 1.
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Table 1. Effect of heat stress on mammalian reproductive cells.

Heat Stress Biological Effect Cells Reference

✧ Enhanced accumulation of ROS, suppressed SOD, CAT, and
proliferating cell nuclear antigen (PCNA) protein
expression levels

Sertoli cells [116]

✧ Elevates the level of arachidonic acid which disrupts TJs
and enhances oxidative stress and apoptosis

✧ Disrupts the normal process of spermatogenesis
Sertoli cells [106]

✧ Elevated the transforming growth factor beta 1
(TGFβ1)/SMAD family member (Smad2)/Smad3 pathway
protein expression, causing cell apoptosis, testicular tissue
organic lesions, and testicular damage and affecting
testicular secretion function.

Testis [117]
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Table 1. Cont.

Heat Stress Biological Effect Cells Reference

✧ Increased the process of apoptosis by enhancing the level of
Bcl-2-associated X protein (BAX) and Caspase-3

✧ Suppressed cell proliferation by downregulating PCNA
and CyclinB1

✧ Enhanced ROS and oxidative stress by suppressing the
level of SOD

✧ Disrupted the synthesis of progesterone and estrogen by
downregulation of the expression of steroidogenic acute
regulatory protein (STAR), Cyp11A1

Ovarian granulosa cells [95]

✧ Induced apoptosis via endoplasmic reticulum
stress signaling

✧ Upregulates the expression of apoptotic linked genes
(caspase-3, BAX, glucose-regulated protein 78 (GRP78)
and CHOP) and downregulates BCL2 gene expression

Mouse granulosa cells [118]

4. Advancement and Understanding of Genetic Biomarkers Associated with Heat
Stress Resistance and Reduced Apoptosis and Oxidative Stress in Mammalian
Reproductive Cells

It is well established that heat resistance in mammalian reproductive cells is mediated
by a network of genes and their signaling pathways to counteract the damaging effects
of heat stress. Based on published data, several genes and pathways, including HSP
family genes; anti-apoptotic genes; genes encoding antioxidant enzymes; and the AMPK,
ERK1/2, and Nrf2/Keap1 signaling pathways, have been found to be involved in protective
mechanisms against heat-stress-induced apoptosis and oxidative stress in mammalian
reproductive cells. Detailed information regarding the protective role of the aforementioned
genes and pathways against heat stress in mammalian reproductive cells is provided below.

4.1. Role of Heat Shock Protein (HSP) Genes in Mitigating Heat-Stress-Induced Oxidative Stress
and Apoptosis in Mammalian Reproductive Cells

The heat shock protein-72 (Hsp72) gene, a prominent member of the heat shock
protein (HSP) family, serves as the primary inducible heat shock protein. Its baseline
expression in healthy cells is minimal, but it becomes markedly upregulated in response to
heat stress. Notably, HSP72 has demonstrated its ability to counteract heat-stress-induced
ROS in bovine Sertoli cells when exposed to puerarin, a traditional Chinese medicinal
compound [13]. In this context, HSP72 functions as both an antioxidant and an anti-
apoptotic factor within Sertoli cells. It achieves this by reducing ROS production and
safeguarding Sertoli cells against oxidative harm and apoptotic processes. Consistently,
a study reported the protecting and self-recovering role of HSP70 in bovine oocytes after
exposure to severe heat stress [119]. Furthermore, it revealed that HSP70 prevents apoptosis,
supports signal transduction, increases the antioxidant protection of the embryo, as well
as protecting heat-stressed maturing bovine oocytes and restoring their developmental
competence. Consistently, Ho et al. [59] observed that Asparagus officinalis stem (EAS)
elicited an upregulation of HSP70 and heat shock factor 1 (HSF1) expression, resulting in an
augmented concentration of progesterone within heat-treated bovine cumulus–granulosa
cells. Additionally, EAS demonstrated the capacity to heighten glutathione (GSH) levels,
improve mitochondrial function, and mitigate ROS levels in heat-stressed bovine cumulus–
granulosa cells. Notably, when HSP70 was inhibited by Ho et al., a subsequent decrease
was noted in the levels of progesterone, GSH, HSF1, Nrf2, and Kelch-like ECH-associated
protein 1 (Keap1). These findings collectively underscore the pivotal role of HSP70 as the
principal regulator orchestrating antioxidant activity, thereby safeguarding granulosa cells
against the deleterious effects of heat stress [59].
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Heme oxygenase 1 (HO-1), alternatively known as heat shock protein-32 (Hsp32), is a
stress-responsive enzyme with pivotal roles in maintaining iron homeostasis, fortifying an-
tioxidant defenses, and averting apoptosis [120–122]. Interestingly, studies have disclosed
an association between low serum levels of HO-1 and an elevated risk of polycystic ovarian
syndrome [123]. Furthermore, investigations have substantiated that HO-1 attenuates
heat-stress-induced apoptosis in bovine granulosa cells by curbing ROS production and
activating antioxidant responses [124]. Remarkably, HO-1 modulation influences apoptotic
processes, with its downregulation intensifying apoptosis and its upregulation mitigating
apoptosis through the regulation of Bax/Bcl-2 expression and cleaved caspase-3 levels [111].
Additionally, HO-1 plays a cytoprotective role by influencing estrogen levels and catalyzing
the breakdown of heme to generate biologically active carbon monoxide (CO). Significantly,
CO elevation coincides with heightened HO-1 levels, diminished Bax/Bcl-2 ratios, and
inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway
(Figure 2) [111]. Studies have shown that reducing antioxidant gene levels in heat-stressed
(40 ◦C) HO-1-knockdown bovine granulosa cells leads to increased cellular apoptosis [124].
Moreover, research has elucidated that heat stress triggers the activation of Nrf2, which safe-
guards bovine granulosa cells from heat-stress-induced apoptosis by regulating HO-1. This,
in turn, modulates ROS levels, reducing their production and subsequently suppressing
oxidative stress and apoptosis [124].

4.2. Protective Role of SOD Genes against Heat-Stress-Induced Oxidative Stress and Apoptosis in
Mammalian Reproductive Cells

The SOD genes’ protective role against heat stress has been established in mammalian
reproductive cells [95,125]. Khan et al. conducted experimental studies demonstrating
that the silencing of the SOD1 gene in heat-treated granulosa cells resulted in increased
apoptosis, reduced cell proliferation, and decreased biosynthesis of estrogen and proges-
terone hormones, as depicted in the accompanying Figure 3 [95]. In addition, Faheem
et al. conducted a study where they observed that under conditions of heat stress, buffalo
granulosa cells demonstrated elevated expression levels of SOD2 and an enhancement
in total antioxidant activity [126]. Furthermore, Faheem et al. highlighted the enhanced
antioxidant capacity and cholesterol levels in granulosa cells, which likely contribute signifi-
cantly to their biological function in preventing heat-stress-induced apoptosis and oxidative
stress [125]. These findings suggest that SOD1 plays a key role in regulating other genes
while protecting buffalo granulosa cells from the adverse effects of heat stress.

4.3. ERK1/2 Signaling Pathway Protects Mammalian Reproductive Cells from
Heat-Stress-Induced Apoptosis

The ERK1/2 kinases are highly conserved serine–threonine kinases with widespread
distribution, playing a pivotal role in cellular signaling regulation, both in normal phys-
iological conditions and pathological states, by phosphorylating various substrates. In
response to heat stress, ERK1/2 initiates a series of cascading reactions that modulate the
balance between cellular survival and apoptosis molecules, thereby safeguarding a portion
of male germ cells and somatic cells within the testis from destruction. Research indicates
that a brief 30 min exposure to heat stress triggers an increase in phosphorylated ERK1/2
(pERK1/2) levels in immature boar Sertoli cells. This, in turn, elevates HSP70 levels and
subsequently enhances the production of lactate, a primary ATP substrate crucial for the
development of germ cells, by accelerating glucose metabolism [127]. Furthermore, ERK
signaling exerts protective effects on pachytene spermatocytes subjected to transient heat
stress by upregulating metastasis-associated 1, which counteracts the pro-apoptotic effects
of p53 [128]. Conversely, inhibiting the ERK1/2 signaling pathway during heat stress
significantly reduces the expression of genes such as c-fos, AP-1, and ERK2, as well as
the phosphorylation of ERK1/2 and c-Fos. This inhibition is accompanied by a marked
increase in c-Jun mRNA expression within Sertoli cells. Notably, the adverse effects of
heat stress on the ERK1/2 signaling pathway can be ameliorated through treatment with
baicalin [113]. Consistently, Wang et al. have reported that heme oxygenase 1 (HO-1)
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utilizes the ERK1/2 signaling pathway to suppress the expression of apoptotic genes,
specifically Bax/Bcl-2, thereby restoring the normal functionality of bovine granulosa
cells [111]. This interplay between ERK1/2 signaling and HO-1 underscores their pivotal
roles in modulating cellular responses to heat stress, ultimately influencing cell survival
and apoptosis in reproductive cells.

Antioxidants 2024, 13, x FOR PEER REVIEW 9 of 33

Figure 3. Silencing of SOD1 genes may lead to elevated levels of ROS followed by disruption of 
steroidogenesis, compromised cell proliferation, and increased cell apoptosis. The “→“ shows direct 
correlation/effect, while “ “ indicates the effect has been suppressed。

4.3. ERK1/2 Signaling Pathway Protects Mammalian Reproductive Cells from Heat-Stress-
Induced Apoptosis 

The ERK1/2 kinases are highly conserved serine–threonine kinases with widespread 
distribution, playing a pivotal role in cellular signaling regulation, both in normal physi-
ological conditions and pathological states, by phosphorylating various substrates. In re-
sponse to heat stress, ERK1/2 initiates a series of cascading reactions that modulate the 
balance between cellular survival and apoptosis molecules, thereby safeguarding a por-
tion of male germ cells and somatic cells within the testis from destruction. Research in-
dicates that a brief 30 min exposure to heat stress triggers an increase in phosphorylated 
ERK1/2 (pERK1/2) levels in immature boar Sertoli cells. This, in turn, elevates HSP70 lev-
els and subsequently enhances the production of lactate, a primary ATP substrate crucial 
for the development of germ cells, by accelerating glucose metabolism [127]. Furthermore, 
ERK signaling exerts protective effects on pachytene spermatocytes subjected to transient 
heat stress by upregulating metastasis-associated 1, which counteracts the pro-apoptotic 
effects of p53 [128]. Conversely, inhibiting the ERK1/2 signaling pathway during heat 
stress significantly reduces the expression of genes such as c-fos, AP-1, and ERK2, as well 
as the phosphorylation of ERK1/2 and c-Fos. This inhibition is accompanied by a marked 
increase in c-Jun mRNA expression within Sertoli cells. Notably, the adverse effects of 
heat stress on the ERK1/2 signaling pathway can be ameliorated through treatment with 
baicalin [113]. Consistently, Wang et al. have reported that heme oxygenase 1 (HO-1) uti-
lizes the ERK1/2 signaling pathway to suppress the expression of apoptotic genes, specif-
ically Bax/Bcl-2, thereby restoring the normal functionality of bovine granulosa cells [111]. 
This interplay between ERK1/2 signaling and HO-1 underscores their pivotal roles in 

Figure 3. Silencing of SOD1 genes may lead to elevated levels of ROS followed by disruption of
steroidogenesis, compromised cell proliferation, and increased cell apoptosis. The “→” shows direct
correlation/effect, while “

Antioxidants 2024, 13, x FOR PEER REVIEW 7 of 33 
 

 
Figure 2. Cellular and molecular responses to heat-stress-induced oxidative stress and cell apoptosis 
in mammalian reproductive cells. The “→“ shows direct correlation/effect, while “  “ indicates the 
effect has been suppressed. 

4. Advancement and Understanding of Genetic Biomarkers Associated with Heat 
Stress Resistance and Reduced Apoptosis and Oxidative Stress in Mammalian  
Reproductive Cells 

It is well established that heat resistance in mammalian reproductive cells is medi-
ated by a network of genes and their signaling pathways to counteract the damaging ef-
fects of heat stress. Based on published data, several genes and pathways, including HSP 
family genes; anti-apoptotic genes; genes encoding antioxidant enzymes; and the AMPK, 
ERK1/2, and Nrf2/Keap1 signaling pathways, have been found to be involved in protec-
tive mechanisms against heat-stress-induced apoptosis and oxidative stress in mamma-
lian reproductive cells. Detailed information regarding the protective role of the afore-
mentioned genes and pathways against heat stress in mammalian reproductive cells is 
provided below. 

4.1. Role of Heat Shock Protein (HSP) Genes in Mitigating Heat-Stress-Induced Oxidative 
Stress and Apoptosis in Mammalian Reproductive Cells 

The heat shock protein-72 (Hsp72) gene, a prominent member of the heat shock pro-
tein (HSP) family, serves as the primary inducible heat shock protein. Its baseline expres-
sion in healthy cells is minimal, but it becomes markedly upregulated in response to heat 
stress. Notably, HSP72 has demonstrated its ability to counteract heat-stress-induced ROS 
in bovine Sertoli cells when exposed to puerarin, a traditional Chinese medicinal com-
pound [13]. In this context, HSP72 functions as both an antioxidant and an anti-apoptotic 
factor within Sertoli cells. It achieves this by reducing ROS production and safeguarding 
Sertoli cells against oxidative harm and apoptotic processes. Consistently, a study re-
ported the protecting and self-recovering role of HSP70 in bovine oocytes after exposure 
to severe heat stress [119]. Furthermore, it revealed that HSP70 prevents apoptosis, 

” indicates the effect has been suppressed.

4.4. Protective Role of Nrf2 in Protection of Mammalian Cells against Heat-Stress-Induced
Oxidative Stress and Apoptosis

Nrf2 is an inducible transcription factor crucial for maintaining redox signaling in-
tegrity in the face of oxidative stress [107]. Nrf2, a member of the Cap’n’Collar basic
leucine zipper transcription factor family, plays a pivotal role in orchestrating antioxidant
and detoxification responses through the upregulation of its downstream genes [129]. In
unstressed cells, the Nrf2 is primarily located within the cellular cytoplasm and forms a
complex with its inhibitory partner, Kelch-like ECH-associated protein 1 (Keap1). However,
when the cellular environment encounters an elevated presence of ROS, the Keap1-Nrf2
complex undergoes dissociation, leading to the translocation of Nrf2 from the cytoplasm
into the cellular nucleus [130,131]. Furthermore, the activated Nrf2 binds to the antiox-
idant response element (ARE) sequence, thereby stimulating the transcription of genes
involved in antioxidant defenses and neutralizing ROS-induced damage [115]. Recent
findings indicate that p62 can competitively interact with Keap1 at the Nrf2 binding site,
altering the association, releasing ubiquitinated Nrf2, and ultimately activating the Nrf2
antioxidant systems [132–134].

Heat-stress-induced apoptosis triggers antioxidant responses, including autophagy
and Nrf2 activation [135]. It has been observed that changes in autophagy dynamics
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are pivotal regulators of the Nrf2 signaling pathway’s protective role in the testis. This
protection is achieved by suppressing MDA levels and promoting an antioxidant status
that shields the testis from the adverse consequences of heat stress [136–139]. Notably,
inhibiting Nrf2 in cells results in reduced cell viability, elevated MDA levels, and Sertoli
cell death [107].

Nrf2 is known to regulate several crucial antioxidant genes, including catalase (CAT),
heme oxygenase 1 (HMOX1), peroxiredoxin 1 (PRDX1), SOD1, and thioredoxin 1 (TXN1).
These genes collectively enhance antioxidant activity, mitigating oxidative stress in mouse
testis cells and protecting germ cells and Leydig cells from oxidative damage [56,139].
Furthermore, recent research has shown that heat-stress-induced ROS overproduction
suppresses the expression of antioxidant genes (SOD, CAT, NQO1, and GSH-Px) in uterine
tissue [98]. In Sertoli cells, elevated ROS levels due to heat stress increase MDA levels
and decrease antioxidant enzyme levels [140]. Additionally, heat stress has been found to
increase the expression of apoptotic markers such as Fas, FasL, caspase 3, and caspase 9
in mouse Sertoli cells [140]. Consequently, the Keap1/Nrf2 signaling pathway has been
significantly associated with the protective effects observed in mouse uterine tissue, marked
by increased levels of antioxidant genes [98].

Moreover, oxidative stress influences various important signaling pathways, including
the nuclear factor erythroid 2-related factor 2 (Nrf2)/Keap1 signaling axis in the testis [141].
A recent study highlights Nrf2’s protective role in safeguarding mouse Sertoli cells from
heat-induced oxidative stress through the Nrf2/Keap1 signaling pathway [107]. Similarly,
another investigation revealed that Nrf2 significantly reduces caspase 3 levels, subsequently
reducing cell death induced by heat stress treatment in Sertoli cells [137]. Under conditions
of severe heat stress, the heightened expression of Keap1 and NFE2L2 facilitates the
regulation of genes associated with antioxidants by forming complexes with the ARE,
thus establishing a defensive mechanism against heat stress within bovine endometrial
epithelial cells [142]. These findings collectively underscore the critical role of Nrf2 in
mitigating oxidative stress and apoptosis in various cellular contexts, particularly under
heat stress conditions.

4.5. Role of Adenosine 5′-Monophosphate-Activated Protein Kinase (AMPK) in Self-Recovery from
Heat-Stress-Induced Oxidative Stress and Apoptosis

It is well established that AMPK signaling plays a key role in the tight junctions (TJs)
and cell proliferation of testis Sertoli cells [143–148]. In addition, Ni et al. [147] highlighted
that Sertoli cells play a key role in lactate supply, maintenance of cell junctions, and support
for germ cells’ mitosis and meiosis. The AMPK signaling pathway regulates the dynamics
of tight junctions and adherens junctions; the proliferation and meiosis of germ cells; and
the energy metabolism, proliferation, and lactate production of Sertoli cells [149]. Once this
balance is disrupted, the microenvironment of the testis and the quality of sperm will be
affected. When α1AMPK was conditionally knocked out in mouse SCs, the mutant mice still
showed an abnormal phenotype, including thin-head spermatozoa, reduced expression
of junctional proteins (β-catenin, vimentin, occludin, and ZO-1), and deregulation of
energy homeostasis [143,145,147,148]. Consistently, a study has documented that curcumin
(natural antioxidant and anti-inflammatory compound) supplementation rescues porcine
Sertoli cell impairment and TJs by inhibiting the NOD-like receptor family pyrin domain-
containing 3 (NLRP3) inflammasome through the AMPK/SIRT3/SOD2/mtROS signaling
pathway [150]. Heat stress can cause dysfunction of TJs in porcine testis reversibly via
Ca2+/calmodulin-dependent protein kinase kinase B (CaMKKB)-induced inhibition of the
AMPK signaling pathway. Consistently, Yang et al. [148] treated SCs from 3-week-old
piglets at 43 ◦C for 0.5 h, and this hyperthermia treatment inhibited the AMPK signaling
pathway, inhibiting the expression of CLDN11, JAMA, occludin, and especially ZO-1 in
porcine SCs [148]. In addition, it was observed that normal Sertoli cell function was restored
after 48 h due to AMP signaling [145].
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5. Role of Exogenous Antioxidant Supplementation in Relieving Heat-Stress-Induced
Oxidative Stress and Apoptosis in Mammalian Reproductive Cells

Numerous research studies have provided substantial evidence supporting the ad-
vantageous effects of supplementation with both natural and medicinal antioxidants in
mitigating heat-induced apoptosis and oxidative stress within mammalian reproductive
cells, as well as improving reproductive phenotypic traits (Table 2) [22,30,151,152]. Antioxi-
dant treatment has been shown to significantly reduce oxidative stress by lowering ROS
levels in oocytes, consequently enhancing embryo quantity and quality [84]. Furthermore,
dietary supplementation with antioxidants has been found to improve antioxidant status by
elevating the activity of SOD and CAT, leading to enhanced reproductive performance. This
includes reduced MDA concentration in seminal plasma, increased total antioxidant capac-
ity (TAC) concentration in seminal plasma, elevated total functional sperm counts, higher
percentages of integrated sperm membranes, improved sperm motility, and enhanced
viability [30]. Recent studies have highlighted several natural and synthetic antioxidants,
including sulforaphane, periplaneta americana peptide, resveratrol, astaxanthin, growth
hormones, melatonin, and celastrol, that can effectively prevent the apoptosis of granulosa
cells and enhance their antioxidant activity, ensuring their normal functionality [153,154].
An overview of the impact of various antioxidant supplementation strategies on safeguard-
ing mammalian reproductive cells from the adverse effects of heat-stress-induced oxidative
stress and apoptosis is summarized in Table 2.

Baicalin, a flavonoid derived from the dried root of Scutellaria baicalensis Georgi,
a traditional Chinese herbal medicine, possesses pharmacological properties, including
antioxidative activity [155,156]. A study demonstrated that baicalin treatment significantly
increased antioxidant enzyme activities (SOD, CAT, and GSH-Px); Nrf2 protein levels; and
Nrf2, NAD(P)H quinone dehydrogenase 1 (NQO1), and glutamate-cysteine ligase catalytic
subunit (GCLC) mRNA expression levels in a heat-treated group [98]. Additionally, baicalin
reduced uterine epithelial cell apoptosis, MDA content, caspase-3 and caspase-9 levels,
and Keap1 protein expression and enhanced HO-1 mRNA expression in heat-treated mice.
This collectively suggests that acute heat stress induces oxidative damage and apoptosis in
mouse uterine tissue, while baicalin protects the uterine tissue from these injuries, possibly
through the Keap1/Nrf2 signaling pathway [98]. In line with the aforementioned study,
another investigation reported a significant increase in antioxidant enzyme activities (SOD,
CAT, and GSH-Px) and a decrease in MDA content in heat-treated mice supplemented with
baicalin [140]. Moreover, it documented that heat stress induces macroscopic and apoptotic
changes in testicular tissue, which are alleviated by baicalin through the enhancement of
antioxidative enzyme activities. This may lead to an improved spermatogenesis process
through the inhibition of the Fas/FasL pathway. Similarly, it has been reported that baicalin
ameliorates heat-stress-induced cell apoptosis by modulating cell survival rates through
the activation of the Fas/FasL pathway and the upregulation of Hsp72 expression in bovine
Sertoli cells. In summary, protein levels of Hsp72 increased, while cell apoptotic rates
and the expression of Fas, FasL, and caspases 8 and 3 decreased in Sertoli cells pretreated
with various concentrations (0.1, 1, 10, 20 µg/mL) of baicalin [157]. Furthermore, another
experiment found that baicalin treatment (1 and 10 µg/mL) significantly enhanced calf
Sertoli cell survival rates, consequently increasing the expression of glial cell line-derived
neurotrophic factor (GDNF) and stem cell factor (SCF) [157]. The blood–testis barrier (BTB)
formed by Sertoli cells is a critical biological barrier that maintains spermatogenesis and
provides a favorable microenvironment for this process, and heat stress has been shown to
damage the integrity of this barrier [158].

Anthocyanins are a group of natural flavonoids widely distributed in various plant
sources, including fruits, vegetables, grains, and other botanicals [159]. Multiple research
studies have elucidated the antioxidative properties of anthocyanins and their correla-
tion with enhancements in spermatogenesis processes [160–164]. Notably, cyanidin-3-O-
glucoside (C3G) and protocatechuic acid (PCA) have emerged as prominent anthocyanins
found in dietary sources, recognized for their robust antioxidant capabilities in supporting
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male reproductive health [159,162,165] and uterine epithelial cells [166]. In harmony with
these findings, Cai et al. [99] reported that the administration of C3G (100 mg with heat
stress) and PCA (100 mg with heat stress) effectively restored the external diameter and
thickness of seminiferous tubules, alleviating atrophy and vacuolation caused by heat
stress (43 ◦C for 30 min) in mice. Moreover, C3G and PCA displayed a capacity to enhance
testicular heat stress tolerance by mitigating excessive eIF2α phosphorylation and stress
granule formation. These compounds also exhibited the ability to enhance the testicular
antioxidant system and regulate the IRE1α-XBP1 pathway, ultimately contributing to the
amelioration of spermatogenesis dysfunction and testicular damage [99]. Consequently, an-
thocyanins have demonstrated the capacity to modulate ROS generation, mitigate damage
to mitochondrial membrane potential, and exert an influence on testosterone levels [160].
Furthermore, among the various anthocyanin compounds evaluated, Cy-3,5-diglu with
diglycoside emerged as a standout performer in terms of its antioxidative prowess. This
compound exhibited notable efficacy in ameliorating cellular dysfunction and, significantly,
in upregulating the expression of the steroidogenic acute regulatory protein (StAR). A direct
binding interaction between anthocyanins and StAR underscores the potential mechanistic
basis for the observed outcomes.

Puerarin, a bioactive isoflavone glucoside derived from radix Puerariae, a traditional
Chinese herbal medicine, has garnered attention for its protective effects on reproductive
cells, specifically bovine Sertoli cells, against heat-induced stress due to its antioxidative
properties [13]. Furthermore, it was revealed that puerarin effectively attenuated heat-
stress-induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing
reactive oxygen species production and upregulating the expression of Hsp72 [13]. Puer-
arin alleviates oxidative stress by enhancing the level of Wnt/β-catenin signaling pathway
activity and SOD, CAT, Nrf2, and GPx activities and reducing the Bcl-2/Bax ratio. Fur-
thermore, puerarin treatment significantly reduced the level of NOX4 and H2O2-derived
oxidative stress by enhancing the MAPK signaling pathway.

Curcumin, a well-researched compound, is recognized for its innate antioxidant and
anti-inflammatory properties [167]. Its versatility has led to investigations into its potential
therapeutic applications, including those related to male reproductive health [168,169].
Notably, studies have indicated that curcumin-loaded iron particles have a substantial
impact on enhancing testicular parameters, including testis volume, seminiferous tubule
length, and various sperm characteristics [170]. This improvement extends to critical stere-
ological parameters such as spermatogonia, primary spermatocytes, round spermatids,
and Leydig cells, ultimately resulting in elevated serum testosterone levels. Importantly,
these benefits persist even in the presence of testicular heat stress conditions, including
temperatures as high as 43 ◦C. Furthermore, curcumin treatment has been associated
with enhanced gene expression of c-kit, stimulated by retinoic acid gene 8 (STRA8), and
PCNA in spermatogonia cells, further corroborating its favorable effects [170]. Recent
research has also documented curcumin’s protective impact on porcine Sertoli cells un-
der heat stress conditions [170]. Additionally, it was found that curcumin safeguards the
tight junctions (TJs) of Sertoli cells by inhibiting the NLRP3 inflammasome through the
AMPK/SIRT3/SOD2/mtROS signaling pathway [170]. In alignment with these findings,
Pakesh et al. reported that curcumin prevented germ cell apoptosis in mouse testes by in-
hibiting the expression of the Bcl-2 gene while increasing the expression of Bax, miRNA-21,
and circRNA0001518 [151]. Furthermore, research has indicated that curcumin positively
influences sperm parameters, including sperm concentration, mass motility, sperm motility,
sperm viability, cell membrane integrity, and plasma testosterone concentration. This is
coupled with an improvement in the antioxidant response, marked by enhancements in
total antioxidant capacity and glutathione peroxidase levels in goat males exposed to heat
stress conditions [152,171]. Additionally, a study highlighted the protective effects of cur-
cumin, administered intraperitoneally at a dosage of 50 mg/kg, in preserving reproductive
cells in rats by modulating the Nrf2/ARE signaling pathway and elevating the levels of
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GSH-Px and SOD while suppressing the concentration of MDA [172]. Moreover, curcumin
has demonstrated protective effects in testes [173] and human sperm preservation [174].

Betaine, known for its antioxidant properties [175], has shown positive effects on repro-
ductive outcomes in various animal studies under heat stress, including in mice [176,177],
sheep [178], cattle [179], and boars [180,181]. Betaine supplementation was found to be
associated with improvement in the quality of epididymal spermatozoa in mice deficient in
methylenetetrahydrofolate reductase (MTHFR) [182]. The metabolism of betaine through
betaine homocysteine methyltransferase (BHMT) leads to the production of S-adenosyl
methionine (SAM), a crucial component for creatine synthesis, essential for sperm motility
and function, as well as DNA, RNA, and histone methylation [182,183]. A study conducted
on rats subjected to a 42 ◦C treatment for 30 min, with betaine administration (250 mg/kg
per day), revealed a significant upregulation of betaine-dependent metabolic pathways
in the testes, including creatinine biosynthesis. This resulted in improvements in both
the quantity and quality of epididymal spermatozoa and the repair of germinal epithe-
lium [177]. The study highlighted betaine’s beneficial effects on improving epididymal
spermatozoa in intact mice and its potential to mitigate heat-stress-induced complications
in spermatogenesis [177]. Consistently, a recent study demonstrated that treatment with
5 mM of betaine for 24 h can prevent oxidative stress induced by high glucose levels in
mouse Leydig cells [184]. Furthermore, it was found that betaine significantly upregulated
the expression of key genes involved in steroidogenesis, such as 3β-HSD, StAR, P450scc,
and LH receptor, which had been downregulated by heat stress treatment. Additionally,
betaine downregulated the expression of ER-stress-related genes, including GRP78, CHOP,
ATF6, and inositol-requiring enzyme 1 (IRE1), ultimately enhancing cell viability, atten-
uating endoplasmic reticulum stress, restoring testosterone production, and facilitating
steroidogenesis in Leydig cells [184]. Another study observed that betaine supplementa-
tion effectively counteracted the negative effects of heat stress, including increased cell
apoptosis; elevated activity of caspase-3 (an apoptosis-related modulator); reduced activ-
ity levels of antioxidant enzymes like SOD, CAT, and GSH-Px; and an increase in MDA
levels [185]. Additionally, Xiong et al. reported that betaine inhibited the protein levels
of critical ER stress markers such as CHOP and GRP78 in mouse Leydig cells exposed
to heat stress. The treatment with betaine significantly restored diminished testosterone
production in response to heat stress and increased serum testosterone concentration in
mouse Leydig cells [185].

Ginseng, specifically Panax ginseng Meyer, known as Korean red ginseng (KRG),
holds a prominent place in traditional herbal medicine due to its reputed ability to enhance
libido and improve male fertility [96]. A noteworthy study conducted on rats revealed that
the administration of extracts from KRG, particularly ginsenoside Rg3, during prolonged
exposure to heat stress resulted in a significant upregulation of protein and mRNA levels
of crucial antioxidant enzymes within the testes. These enzymes, such as glutathione
peroxidase 4, glutathione S-transferase mu 5 and peroxiredoxin 4, were restored to levels
close to normal. Furthermore, the daily administration of KRG at a dosage of 100 mg/kg
effectively counteracted the adverse changes induced by heat stress on the antioxidant
index in the testes. This intervention enhanced the resistance of the testes to heat-induced
oxidative stress, ultimately improving testicular physiological function and, by extension,
creating a more favorable environment for sperm production [186]. Consequently, KRG
emerges as a promising therapeutic agent for addressing male infertility associated with
hyperthermia. In a parallel study, heat stress was observed to reduce the expression levels
of vital components related to antioxidant defense (GSTM5 and GPX4), spermatogenesis
(CREB1 and INHA), and sex hormone receptors (androgen receptor, luteinizing hormone
receptor, and follicle-stimulating hormone receptor). However, treatment with pectinase-
treated Panax ginseng effectively mitigated these detrimental changes in the testes of
mice [187]. The intragastric administration of Panax ginseng leaves at dosages of 150
and 300 mg/kg for a duration of 14 days yielded substantial protective effects against
apoptosis, notably through the modulation of Bcl-2 and caspase protease family members.
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Additionally, it suppressed the hypoxia-inducible factor-1α (HIF-1α) and mitogen-activated
protein kinase (MAPK) signaling pathways, thereby safeguarding against testicular damage
caused by heat stress in mice [188]. Another study highlighted the protective potential
of Ginsenoside Re (GRe), a primary bioactive component of ginseng, in preserving the
in vitro maturation of porcine oocytes under heat stress conditions. The administration of
Ginsenoside Re was associated with a reduction in the expression of apoptotic-associated
genes and an enhancement of antioxidant activity, mediated through the regulation of Nrf2
in porcine oocytes [189,190].

Fisetin, recognized as an antioxidant compound, exhibits promise in mitigating the
effects of testicular hyperthermia. A study by Pirani et al. [191] revealed that fisetin
supplementation, initiated just before heat exposure and continued for 15 consecutive
days afterward, led to notable improvements in various testicular parameters. These
improvements included testicular volume, spermatogonia density, primary spermatocyte
density, and round spermatid density, as well as the density of Sertoli and Leydig cells.
Furthermore, fisetin positively influenced sperm parameters and the biochemical properties
of testicular tissue. These beneficial effects were accompanied by a significant increase in the
expression of the c-kit gene and a concurrent decrease in the expression levels of HSP72 and
NF-kβ genes, Caspase3 protein, and DNA fragmentation index (DFI) in sperm cells [191].

Wuzi Yanzong Pills (WYPs), a traditional Chinese medicine formula, have exhibited
promise in safeguarding the BTB against the detrimental effects of heat stress [192]. Treat-
ment with WYPs notably increased the viability and proliferation of Sertoli cells, along with
the proliferation marker Ki67. Additionally, WYPs promoted the maturation of Sertoli cells,
as evidenced by increased androgen receptor (AR) expression and decreased cytokeratin
18 (CK-18) levels. Importantly, WYPs demonstrated their effectiveness in preserving Sertoli
cell viability and proliferation while ameliorating dedifferentiation and the damage to
BTB proteins, including zonula occludens 1 (ZO-1) and occludin, induced by heat stress
via the Akt signaling pathway. These findings lend theoretical support to the potential
role of WYPs in managing dyszoospermia and male infertility [192]. Moreover, a research
investigation underscored the advantageous impacts of supplementation with red grape
(Vitis vinifera) juice in alleviating oxidative stress and apoptosis induced by heat stress
within the testicular tissue [193]. This supplementation enhanced the expression of key an-
tioxidant genes, including catalase (CAT), SOD, and GPX, while suppressing the apoptotic
enzyme caspase-3. Additionally, red grape juice contributed to the prevention of sperm
degeneration and an improvement in sperm count [193].

The edible herb Angelica keiskei, commonly known as Ashitaba, boasts two major
functional polyphenolic compounds, xanthoangelol and 4-hydroxyderricin, known for
their antioxidant activity [194,195]. Correspondingly, research demonstrated that Angelica
keiskei powder (at a dosage of 57.5 mg/kg) and its functional component, xanthoangelol
(at a dosage of 3 mg/kg), significantly prevented heat-stress-induced impairment in sperm
parameters, including the densities of motile sperm and progressive sperm (>25 µm/sec), as
well as the amplitude of lateral head displacement. Furthermore, the expression of widely
expressed heat shock proteins (HSPs) such as Hspa1a, Hspa2, and Hsp40, along with the
antioxidant enzyme glutathione synthase, was elevated in the testes of mice, ultimately
improving male fertility [194]. These findings collectively underscore the potential of
various natural compounds, including ginseng, fisetin, Wuzi Yanzong Pills, red grape
juice, and Angelica keiskei, in safeguarding testicular health and mitigating the adverse
effects of heat stress, thereby offering promising avenues for addressing male infertility
and related conditions.

Selenium, a vital element, plays a pivotal role in maintaining reproductive health
by acting as a constituent of key proteins, such as glutathione peroxidase, and partici-
pating in various structural and functional processes within the testis, epididymis, and
sperm [196–198]. Notably, glutathione peroxidases GPx1 and GPx3 are expressed in the
epididymal epithelia and sperm, acting as crucial defenders against oxidative stress. They
protect the epididymal parenchyma and mature sperm from oxidative damage. In contrast,
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GPx4 serves as a guardian for developing sperm, shielding them from DNA damage due
to oxidative stress. Additionally, it contributes to the structural integrity of the middle
mitochondrial sheath of sperm, a key factor for sperm stability and motility [199].

Empirical evidence suggests that dietary supplementation with 0.3 mg of organic
selenium per kilogram of dry matter in the basal diet for rabbits can enhance heat tolerance
and overall physiological well-being. This supplementation leads to improved semen
quality and fertility outcomes [200]. Similarly, in heat-stressed roosters, incorporating
organic selenium into their diets increases sperm count and vitality, reduces sperm mor-
tality rates, and enhances the antioxidant status of seminal plasma, ultimately improving
seminal fluid quality [201]. Selenium has also been shown to alleviate heat-induced apop-
tosis in granulosa cells in murine models [202]. Heat exposure upregulates the expression
of apoptosis-related genes and markers of ER stress in granulosa cells. However, sele-
nium treatment mitigates heat-induced apoptosis, improves estradiol levels, and acts as
a guardian, protecting granulosa cells from apoptosis induced by heat stress through the
inhibition of the ER stress pathway [202]. Consistent with these findings, selenium supple-
mentation enhances the reproductive efficiency of male rabbits under natural heat stress
conditions. This supplementation results in elevated blood serum concentrations of total
protein, albumin, glucose, and glutathione peroxidase, along with improved semen quality
characteristics and reproductive performance [200,203,204]. A recent study by El-Ratel
et al. [80] highlighted the impact of selenium nanoparticle (SeNP) supplementation on vari-
ous aspects of reproductive biology. SeNP supplementation leads to improved litter size,
viability rates, hemoglobin levels, hormonal profiles, antioxidant capacity, and immuno-
logical parameters. It also enhances sexual receptivity, pregnancy rates, embryo quality,
and overall reproductive capacity in female rabbits. SeNPs act as potent antioxidants,
enhancing heat regulation and reproductive function through multiple mechanisms [80].
In summary, selenium plays a crucial role in preserving reproductive health by protecting
against oxidative stress, enhancing semen quality, and improving fertility outcomes, es-
pecially under heat stress conditions. Its supplementation, either as organic selenium or
selenium nanoparticles, offers promising avenues for maintaining reproductive function
and overall well-being in various animal models.

Recent studies have highlighted the beneficial effects of dietary L-arginine (L-Arg)
supplementation on boar semen quality and libido [205,206]. Notably, a combination of
heat treatment and 2 mg kg−1 L-Arg treatment for 18 days significantly improved serum
testosterone levels, catalase activity, total superoxide dismutase activity, and glutathione
peroxidase activity. It also upregulated the expression of steroidogenesis-related genes
such as steroidogenic acute regulatory protein (Star), steroidogenic factor-1 (Sf1), 17β-
hydroxysteroid dehydrogenase 3 (Hsd17b3), and 17α-hydroxylase/17,20-lyase (Cyp17a1)
in the testes, thereby enhancing the antioxidant system and testosterone-synthesis-related
genes [205]. Similarly, intramuscular administration of 5 mg/kg L-arginine dissolved in
2 mL of normal saline significantly improved antioxidant responses and increased plasma
testosterone concentrations in heat-stressed rams [207].

Alpha-lipoic acid (ALA) has emerged as a potent antioxidant that scavenges ROS
and provides reduced GSH, thus inhibiting the formation of free radicals to maintain
cellular redox homeostasis. Recent research has demonstrated ALA’s ability to prevent
heat-induced apoptosis in porcine oocytes by regulating heat shock factors (HSFs) and
mitigating oxidative and endoplasmic reticulum stresses [208]. In addition, it was found
that ALA significantly upregulated the level of Bcl-2 and glutathione (GSH) and reduced
the expression of caspase 3. Similar findings have been reported in cows [209,210], high-
lighting ALA’s potential to improve embryo quality and enhance cryotolerance by reducing
ROS production in the face of heat stress. Consequently, ALA markedly enhances the
protective response against heat-induced histomorphological alterations in the testes and
attenuates the reduction in testosterone synthesis by augmenting the function of antioxida-
tive enzymes (CAT, SOD, and GPx), mitigating endoplasmic reticulum stress-associated
apoptotic signaling (Caspase 3, Bcl-2, and Bax), and promoting the expression of steroido-
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genic genes including steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid
dehydrogenase (3β-HSD) in chickens [211].

Recent research by Tripathi et al. [84] demonstrated that supplementation with an-
tioxidants such as alpha-tocopherol, sodium selenite, melatonin, and ascorbic acid during
in vitro maturation (IVM) reduced oxidative stress by decreasing ROS levels in oocytes.
This supplementation improved embryo quantity and quality while also regulating the ex-
pression of stress-related genes (SOD-1 increased and MDA reduced), growth-related genes
(GDF-9 and BMP-15 increased), and apoptosis-related genes (BCL-2 and BAX decreased).
Moreover, the combination of dietary vitamin E and organic selenium demonstrates a
synergistic effect in attenuating lipid peroxidation and enhancing the antioxidant envi-
ronment in poultry seminal plasma. This results in increased sperm count and vitality
and reduced sperm mortality under heat stress conditions [212]. Furthermore, vitamin
C treatment has been observed to counteract the detrimental effects of heat on Sertoli
cells in rats. It inhibits apoptosis, lipid peroxidation, and lactate dehydrogenase (LDH)
activity, while enhancing the expression of protective factors such as CryAB, Hsp27, Hsp70,
and Hsp110 [213]. Selenium (0.5 ppm selenium/kg diet) and vitamin E (200 mg alpha-
tocopherol/kg diet) supplementation have also shown promise in inhibiting apoptosis,
improving antioxidant status, and enhancing spermatogenesis in mice testes following
scrotal hyperthermia (42 ◦C, 30 min), along with elevated expression of GPX [214].

Melatonin exhibits dual antioxidant mechanisms, directly scavenging ROS and acti-
vating the cellular antioxidant defense systems [215]. Studies conducted on heat-stressed
mouse testes have demonstrated melatonin’s ability to mitigate heat-induced oxidative
stress and preserve the structural integrity of Sertoli cell tight junctions [216]. Notably,
some studies reported the concentration range of melatonin in porcine seminal plasma
to be 2.75–35.61 pg/mL, while researchers have identified melatonin membrane receptors
in the testes of various species, including sheep, pigs, mice, and humans, underscoring
melatonin’s role in regulating spermatogenesis [215,217]. In line with these observations, a
recent study by Deng C et al. [104] has elucidated that melatonin treatment effectively alle-
viates heat-stress-induced oxidative stress and apoptosis. This protective effect is mediated
through the activation of the Kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related
factor 2 signaling pathway, thereby enhancing the antioxidant capacity. Furthermore, mela-
tonin amplifies the expression of heat-shock protein 90 (HSP90) by acting through melatonin
receptor 1B (MTNR1B), resulting in the stabilization of hypoxia-inducible factor-1α (HIF-
1α). This activation of the HIF-1α signaling pathway facilitates glycolysis, promotes the
pentose phosphate pathway, and enhances cell viability. Importantly, melatonin has been
shown to reprogram glucose metabolism in Sertoli cells through the MTNR1B–HSP90–HIF-
1α axis, offering a theoretical framework for preventing heat-induced testicular injury [104].
Consistently, research has corroborated the protective function of melatonin against thermal
stress [218]. It was found that melatonin upregulates the expression of antioxidant genes
and suppresses apoptosis by inhibiting the expression of apoptotic genes in sheep granulosa
cells. Additionally, Guo et al. [219] reported that long-term treatment with 50 mg/kg of
melatonin confers protective effects against stress-induced DNA damage and apoptosis in
germ cells. This treatment leads to spermatogenic cell regeneration, restoration of testicular
weight, and the reestablishment of gap junctions and tight junctions after heat stress. It
further promotes hollow seminiferous tubule filling through engulfment and the activation
of the cell motility 1 (Elmo1)/RAC1 pathway. In a relevant context, it has been documented
that heat stress at 42 ◦C induces testicular cell apoptosis in mice through the activation of
the activated transcription factor 6 (ATF6) and protein kinase R-like endoplasmic reticulum
kinase (PERK) signaling pathways [220]. Notably, melatonin administration (20 mg/kg
melatonin for 7 consecutive days before heat treatment) significantly inhibits ATF6/PERK
signaling, thereby preventing testicular cell apoptosis [220]. Furthermore, it has been
demonstrated that a high level of ROS induces oxidative damage to human spermatozoa,
leading to reduced sperm motility and viability [221]. However, pretreatment of human
spermatozoa with melatonin mitigates this damage by suppressing sperm mitochondrial
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ROS generation, increasing mitochondrial membrane potential, reducing the formation of
the lipid peroxidation product 4-HNE, and minimizing sperm DNA damage and apop-
tosis. In summary, the cumulative evidence suggests that melatonin holds promise as
a potential therapeutic option for addressing male infertility attributed to heat-induced
oxidative stress [222].

Table 2. Summary of studies associated with strategies for prevention of heat-stress-induced oxidative
stress and apoptosis in mammalian reproductive cells.

Treatment Biological Effect Species Reference

Curcumin-loaded iron particle
(240 µL) + scrotal
hyperthermia treatment
(43 ◦C) for 20 days)

✧ Significantly increased testis volume, seminiferous
tubule length, sperm parameters, and stereological
parameters (spermatogonia, primary spermatocytes,
round spermatids, and Leydig cells), resulting in
elevated serum testosterone levels.

✧ Upregulated the expression of c-kit, STRA8, and
PCNA genes, leading to enhanced antioxidative
capacity within the testes.

Mouse testis [170]

Puerarin treatment

✧ Successfully suppressed the production of reactive
oxygen species and reduced oxidative damage in
bSCs exposed to heat stress.

✧ Demonstrated enhanced activities of superoxide
dismutase, catalase, and glutathione peroxidase, while
concurrently inhibiting malondialdehyde content.

✧ Effectively inhibited the initiation of the
mitochondria-dependent apoptotic pathway, as
evidenced by alterations in the Bax-to-Bcl-2 ratio,
mitochondrial membrane potential, cytochrome C
release, caspase-3 activation, and apoptotic rate.

✧ Showed an increase in Hsp72 expression.

Bovine Sertoli cells [13]

Heat treatment at 43 ◦C for
14 days was followed by oral
supplementation with fisetin
(10 mg/kg/day)

✧ Fisetin treatment significantly increased testicular
volume, the density of spermatogonia, primary
spermatocytes, round spermatids, and Sertoli and
Leydig cells, as well as sperm parameters. It also
positively influenced the biochemical properties of
testis tissue.

✧ Elevated the expression of the c-kit gene.
✧ Reduced the expression of HSP72 and NF-kβ genes,

Caspase3 protein, and DNA fragmentation index
(DFI) in sperm cells.

Mouse Sertoli cells [191]

43 ◦C heat
treatment/30 min/day for
14 days followed by M.
roxburghianus (400 mg/kg) for
14 d

✧ Suppressed lipid peroxidation, restored antioxidant
enzyme levels and testosterone levels, promoted
spermatogenesis, and increased cell
proliferation activity.

Mouse Sertoli cells [223]

Vitamin C treatment
✧ Pretreatment with Vitamin C protected Sertoli cells

against heat stress by reducing oxidative stress and
inducing heat shock protein expression.

Mouse Sertoli cells [213]

Selenium supplementation
(0.3 mg OSe/kg DM diet)

✧ Enhanced the reproductive efficiency of males,
significantly increasing blood serum concentrations of
total protein, albumin, glucose, and glutathione
peroxidase in natural heat stress conditions in rabbits.

✧ Selenium-fed rabbits exhibited lower reaction times,
higher total functional sperm counts, and higher
percentages of integrated sperm membranes.

Rabbit Sertoli cells [200]
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Table 2. Cont.

Treatment Biological Effect Species Reference

Baicalin treatment

✧ Ameliorated cell apoptosis induced by heat stress
through modulation of the cell survival rate via the
Fas/FasL pathway.

✧ Activation and upregulation of Hsp72 expression
in bSCs.

BSCs [157]

Baicalin treatment

✧ Protection of testicular tissue from damage caused by
heat stress.

✧ Promotion of the process of spermatogenesis, which
was impaired by heat stress.

✧ Enhanced the antioxidant response of the testis by
elevating the levels of SOD, CAT, and GSH-Px
enzymes and lowering MDA levels.

✧ Prevention of testis cell apoptosis caused by heat
stress by blocking the Fas/FasL pathway.

Mouse testis [140]

Baicalin treatment
✧ Decreased the expression of ALOX15B, followed by

prevention of oxidative stress and apoptosis in
porcine Sertoli cells.

Porcine Sertoli cells [105]

Baicalin treatment
(10 µM Baicalein)

✧ Prevention of tight junction degradation, restoration
of mitochondrial function, and reduction in apoptosis
caused by heat stress via arachidonic acid in
Sertoli cells.

Boar Sertoli cells [38]

Wuzi Yanzong Pills

✧ Significant enhancement of Sertoli cell (SC)
maturation, viability, and proliferation and
improved spermatogenesis.

✧ Prevention of BTB protein damage and infertility.

Rat Sertoli cells [192]

Red grape (Vitis vinifera) juice
(0.8 mL/rat/day)

✧ Significant enhancement of serum testosterone,
testicular SOD, CAT, and testicular glutathione levels.

✧ Suppressed levels of serum corticosteroid, testicular
lipid peroxidase, and the apoptotic enzyme caspase-3
in the testis, along with a substantial decrease in
testicular Hsp72 and Hsf-1 and an increase in
17β-HSD3 noted in heat-stressed rats.

✧ Prevention of germ cell degeneration and tubular
deformations, along with restoration of the normal
number of sperm, caused by heat stress.

Rat Sertoli cells [224]

Ginseng (heat-stressed plus
KGC04P-200 mg/kg)

✧ Restored sperm kinetics; facilitated spermatogenesis;
reduced the level of inflammatory cytokines; and
enhanced the concentration of antioxidant-linked
enzymes SOD, CAT, GPX, and GST.

✧ Prevented testicular damage.

Rat testis [186,225]

Angelica keiskei (Ashitaba)
powder (57.5 mg/kg) and its
functional component,
xanthoangelol (3 mg/kg)

✧ Enhanced sperm parameters, including densities of
motile sperm, progressive sperm, and amplitude of
lateral head displacement.

✧ Suppressed expression of apoptotic regulatory genes
and enhanced the level of the antioxidant
enzyme GPX.

Mouse testis [194]
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Table 2. Cont.

Treatment Biological Effect Species Reference

Saponins derived from the
stems and leaves of Panax
ginseng (150, 300 mg/kg) were
administered intragastrically
to mice for 14 days

✧ Reduced the expression of apoptosis-related genes,
such as those in the Bcl-2 family and caspase
protease family.

✧ Regulated the MAPK signaling pathway to
prevent apoptosis.

✧ Enhanced antioxidative capacity.
✧ Improved the process of spermatogenesis in

heat-stressed mouse testes.

Mouse testis [188]

Platycodon grandiflorum
saponin (PGS) (15, 30 mg/kg)
administration intragastrically
for 14 days

✧ Regulated the MAPK signaling pathway to
prevent apoptosis.

✧ Enhanced antioxidative capacity.
✧ Improved the process of spermatogenesis in

heat-stressed mouse testes.

Mouse testis [190]

Curcumin supplementation
(450 and 900 mg/per sheep
daily) for 14 days

✧ Enhanced antioxidant activity (increased GPX levels
in plasma).

✧ Increased testicular weight in Hu sheep.
✧ Regulated immunity (increasing the concentrations of

IgA, IgM, and IgG in plasma).
✧ Prevented apoptosis by increasing testicular bcl-2

mRNA expression and decreasing caspase-3 mRNA
gene expression.

✧ Elevated the concentration of testosterone in plasma.

Hu sheep testis [226]

Quercetin and kaempferol

✧ Protected Sertoli cells from injury caused by
heat stress.

✧ Inhibited the levels of HSP70, ROS, p-NF-κB-p65, and
p-IκB in heat-treated Sertoli cells.

✧ Upregulated the expression of SOD, occludin,
vimentin, and F-actin.

✧ Alleviated heat-induced oxidative stress by enhancing
the antioxidant activity of SOD in Sertoli cells.

Sertoli cells [227]

Betaine
(16 mM administration)

✧ Restored testosterone production, prevented
apoptosis (reduced caspase-3 activity), enhanced
antioxidant activity (increased the levels of SOD, CAT,
GSH-Px), and rescued the reduced serum testosterone
concentration in heat-treated mouse Leydig cells.

Mouse Leydig cells [185]

Tert-butylhydroquinone

✧ Regulated the expression of NFR2.
✧ Decreased the levels of malondialdehyde (MDA).
✧ Enhanced cellular antioxidant ability.
✧ Reduced oxidative stress.
✧ Protected against heat-induced testis damage in mice.

Mouse testis [137]

Tanshinone IIA (TSA)

✧ Inhibited the expression of TGFβ1/Smad2/Smad3
pathway proteins, preventing cell apoptosis, testicular
cell apoptosis, and damage, while enhancing
antioxidant activity.

Mouse testis [117]

Zinc sulfate
✧ Prevented heat-stress-induced apoptosis and

cell injury.
✧ Improved testosterone synthesis and semen quality.

Ledying cells [109,228]
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Table 2. Cont.

Treatment Biological Effect Species Reference

Melatonin ✧ Enhanced the expression of genes associated with
apoptosis (SIRT1, SIRT6, and SIRT7).

Human granulosa
lutein cells [229]

Selenium nanoparticle (SeNP)
supplementation (0.3, 0.4, and
0.5 mg/kg)

✧ Enhanced live litter size at birth and weaning,
alongside a heightened viability rate at birth.

✧ Improved hemoglobin levels, red blood cell counts,
plasma concentrations of thyroid hormones (T3 and
T4), insulin, total proteins, and albumin.

✧ Enhanced plasma levels of estradiol 17-β,
progesterone, and prolactin.

✧ Improved white blood cell counts, cortisol levels, lipid
profiles, and hepatic and renal functions.

✧ Enhanced immunoglobulin levels, amplified
antioxidant capacity, elevated superoxide dismutase
levels, and suppressed MDA levels.

✧ Positively impacted sexual receptivity, pregnancy
rates, viability rates at weaning, ovulation rates, and
embryo quality.

Rabbit GCs [80]

Selenium treatment

✧ Reduced the levels of apoptosis induced by heat stress
by suppressing apoptosis-linked genes in mouse
granulosa cells.

✧ The treatment also ameliorated the level of estradiol.

Mouse GCs [202]

Baicalin treatment

✧ Decreased MDA content and increased the activities
of antioxidant enzymes including SOD, CAT, and
GSH-Px of the uterine tissue.

✧ Regulated Keap1/Nrf2 signaling pathway.
✧ Nrf2 protein and Nrf2, NQO1, and GCLC mRNA

expression levels were significantly increased in the
H + Bai group.

✧ Uterine epithelial cell apoptosis; caspase-3, caspase-9,
and Keap1 protein expression levels; and HO-1
mRNA expression levels were decreased in the
H + Bai group.

Mouse uterine cells [98]

Baicalin treatment

✧ Elevated the ERK1/2 signaling pathway.
✧ Improved mitochondrial integrity.
✧ Alleviated apoptosis and oxidative stress.
✧ Prevented embryo death.

Mouse embryos
(blastocyst stage) [113]

Baicalin treatment

✧ Reduced the ROS levels and apoptosis and enhanced
the mitochondrial membrane potential (∆Ψm) and
ATP level.

✧ Improved the developmental capacity of pig embryos.
✧ Regulated sonic hedgehog (SHH) signaling which

promotes cell proliferation and differentiation in
multiple tissues and organs via paracrine signaling.

Pig embryo [230]

Baicalin treatment

✧ Significantly increased 2- and 4-cell cleavage rates,
morula developmental rate, blastocyst developmental
rate and cell number of in vitro-cultured
mouse embryos.

✧ Cell apoptosis was decreased by suppressing the
expression of HSP70, CASP3, and BAX.

Mouse embryo [231]
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Table 2. Cont.

Treatment Biological Effect Species Reference

Baicalin treatment

✧ Upregulated the expression of Bax and Caspase 3.
✧ Downregulated the expression of BCL2.
✧ Suppressed apoptosis of granulosa cells and the ovary.
✧ Upregulated PI3K/AKT/mTOR signaling.

Mouse GCs and
ovary [232]

Chlorogenic acid

✧ Improved antioxidant status (inhibited the
accumulation of ROS, increased PCNA protein
expression and SOD and CAT activities, and reduced
MDA level).

✧ Prevented Sertoli cell apoptosis by downregulating
the expression of CASP3 protein and the BAX/BCL-2
protein ratio.

✧ Mitochondrial membrane potential was enhanced.

Sertoli cells [116]

Selenium treatment
✧ Improved the viability of cumulus cells and oocytes.
✧ Enhanced nfr2 expression which is associated with

enhancement of antioxidant response.

Bovine
cumulus–oocyte
complexes

[90]

Boron

✧ Blocked heat-stress-induced endoplasmic
reticulum stress.

✧ Suppress the expression of apoptotic-induced genes
(caspase-3, GRP78, and CHOP)

✧ Restored the levels of serum estradiol in vivo.

Mouse granulosa
cells [118]

6. Future Research Directions

Future research directions should aim to elucidate the specific mechanisms by which
heat-stress-induced oxidative stress and apoptosis impact various mammalian reproductive
cells, such as granulosa, Sertoli, and Leydig cells and oocytes. Investigating the molecular
pathways responsible for reactive oxygen species (ROS) generation, lipid peroxidation, and
apoptotic pathway activation in response to thermal stress is imperative. There is also a
pressing need for extensive comparative studies on the effects of heat stress on male and
female reproductive cells across diverse mammalian species, including humans, cattle, and
other livestock. Unveiling the conserved and distinct cellular responses to heat stress can
inform targeted intervention and management approaches.

Additionally, the identification of specific biomarkers indicative of heat stress re-
silience and diminished apoptosis and oxidative stress is vital. Research should consider
the protective roles of molecular chaperones such as heat shock proteins; antioxidative
enzymes like SOD and CAT; and signaling pathways including ERK1/2, Nrf2, and AMPK
in reproductive cell defense mechanisms. Moreover, evaluating the efficacy of exogenous
antioxidants in ameliorating heat-stress-induced cellular damage warrants further inves-
tigation, particularly concerning the therapeutic potential of natural and pharmaceutical
compounds such as baicalin, anthocyanins, puerarin, and curcumin.

To date, the majority of findings stem from in vitro experiments conducted in con-
trolled settings, which necessitate validation in practical breeding scenarios across mam-
mals. A holistic approach to future studies is essential for developing a comprehensive
understanding of heat-stress-induced reproductive cell damage and for devising effec-
tive protective strategies to maintain reproductive health in the face of environmental
challenges. While current review articles comprehensively elucidate the roles of various
antioxidants and biomarkers in conferring heat resistance to mammalian reproductive cells,
it is evident that future investigations aiming for a more profound understanding of the
molecular mechanisms underpinning these antioxidants and biomarkers are imperative.
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Such endeavors promise to contribute significantly to our knowledge base and may lead to
the development of more effective mitigation strategies against heat-induced stress.

7. Conclusions

Heat stress has been demonstrated to have a significant impact on the functionality of
mammalian reproductive cells, as supported by existing research. It is a key factor affecting
fertility in both humans and animals. Heat stress leads to increased levels of ROS, which
disrupt the normal antioxidant defense mechanisms and trigger apoptosis in mammalian
reproductive cells. Molecular investigations have revealed that heat stress upregulates the
activity of caspase 3 and the pro-apoptotic protein Bax, while simultaneously reducing
the expression of the anti-apoptotic protein Bcl-2. Furthermore, this stressor negatively
affects signaling pathways such as AMP, NRF2, and ERK1/2, while upregulating MAPK
and NF-Kappa B signaling. These molecular alterations contribute to oxidative stress and
apoptosis, ultimately suppressing the immune response. Interestingly, supplementation
with specific herbal and synthetic antioxidants in the form of medicine or feed additives
has shown promise in mitigating the detrimental effects of heat-induced oxidative stress
and apoptosis, thereby restoring the normal functioning of reproductive cells. However, it
is important to note that while these findings are encouraging, the available data remain in
a relatively preliminary stage and require further extensive validation through rigorous
research and experimentation.
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Abbreviations

HMOX1 Heme oxygenase 1
NOS2 Nitric oxide synthase 2 (inducible)
CAT Catalase
SOD Superoxide dismutase
BCL2L1 B-cell lymphoma 2-like 1 (BCL-xL)
GPX4 Glutathione peroxidase 4
Nrf2 Nuclear factor erythroid 2-related factor 2
ASP3 Aspartoacylase (also known as ASPA)
PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
SLC16A3 Solute carrier family 16 member 3
SERBP1—SREBP1 Sterol regulatory element-binding protein 1
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SIRT1 Sirtuin 1
AMPK AMP-activated protein kinase
CASP8 Caspase 8
CASP9 Caspase 9
IGF2 Insulin-like growth factor 2
PPARA Peroxisome proliferator-activated receptor alpha
SLC27A3 Solute carrier family 27 member 3 (also known as FATP3)
NLRP3 NOD-like receptor family pyrin domain-containing 3
STAR Steroidogenic acute regulatory protein
IRE1 Inositol-requiring enzyme 1
Cyp11A1 Cytochrome P450 family 11 subfamily A member 1
CNA Calcineurin
CyclinB1 Cyclin B1
Bax Bcl-2-associated X protein
PCNA Proliferating cell nuclear antigen
SOD2 Superoxide dismutase 2
ATP5F1A ATP synthase subunit alpha, mitochondrial
NFE2L2 Nuclear factor erythroid 2-like 2 (also known as Nrf2)
CPT2 Carnitine palmitoyltransferase 2
NQO1 NAD(P)H quinone dehydrogenase 1
TGFβ1 Transforming growth factor beta 1
Smad2 SMAD family member 2
Smad3 SMAD family member 3
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23. Wrzecińska, M.; Kowalczyk, A.; Kordan, W.; Cwynar, P.; Czerniawska-Piątkowska, E. Disorder of Biological Quality and
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