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Abstract: Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate
cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In
addition, PTEN plays an essential role in other physiological events associated with cell growth
demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently,
PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing
evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2),
are produced and required for the signaling in many important cellular processes under such
physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active
site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight
the role of the oxidative inhibition of PTEN in physiological processes.

Keywords: PTEN; redox regulation; oxidative inhibition; ROS; cell signaling

1. Introduction

Phosphatase and tensin homolog (PTEN) belongs to the protein tyrosine phosphatase
(PTP) family and was initially identified as a tumor suppressor with a specific role in regulat-
ing cell growth. The structure of human PTEN consists of an N-terminal-phosphatidylinositol
(4,5)-bisphosphate (PIP2)-binding/phosphatase catalytic domain followed by a C2-lipid-
binding domain, which enables its membrane-associated function, a C-terminal tail domain,
and a PDZ-binding domain. The distinctive phosphatase function feature of PTEN, in com-
parison with other PTPs, is counteracting the activity of class I phosphoinositide 3-kinases
(PI3Ks) through the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate (PIP3)
to PIP2 [1–4]. Via this mechanism, PTEN acts as a suppressor of the phosphoinositide
3-kinases/protein kinase B (PI3K/AKT) pathway. Since the PI3K/AKT signaling pathway
promotes protein synthesis, cell survival, proliferation, and migration [5,6], PTEN dys-
function can contribute to the development of certain hereditary tumorigenesis disorders
such as Cowden syndrome, Proteus syndrome, Bannayan–Riley–Ruvalcaba syndrome, and
Lhermitte–Duclos disease [7], as well as various cancers including breast [8], thyroid [9],
endometrium [10], prostate [11], brain [12], and skin cancer [13].

PTEN expression can be regulated via genetic, epigenetic, post-transcriptional, and
post-translational mechanisms that influence the PTEN gene, mRNA, and protein [14].
Epigenetic PTEN silencing involves gene promoter methylation and histone modification.
At the post-transcriptional level, microRNAs have been well studied for their capacity
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to inhibit PTEN expression, especially in cancers. Kinases such as glycogen synthase
kinase GSK3, casein kinase CK2, and serine–threonine kinase STK11 can inactivate PTEN
by phosphorylating serine and threonine residues in the C-terminal tail region [14,15].
Since an elevated PI3K/AKT signaling pathway has been demonstrated to be beneficial in
physiological processes that require cell regeneration, inhibiting PTEN, a negative regulator
of this pathway, has been considered a prospective therapy for neurodegenerative diseases,
ischemia, infection, and insulin-resistant metabolic disorders [14]. In studies about the
therapeutic modalities for those circumstances, biperoxovanadium compounds have been
extensively used as specific PTEN inhibitors [5]. Additionally, the interplay between
miRNAs and PTEN is also implicated in the oxidative-stress-induced pathogenesis of
those non-malignant diseases; thus, utilizing miRNAs as PTEN regulators, such as miR302-
367 [16], miR-217 [17], miR-29a [18], and miR-22 [19], can yield a therapeutic approach [20].

Like other members of the PTP family that contain a cysteine residue in their active site,
PTEN can undergo oxidative inactivation by reactive oxygen species (ROS) [21]. ROS are
generated via endogenous sources such as NADPH oxidase (NOX), nitric oxide synthase
(NOS), xanthine oxidase, aldehyde oxidase, cyclo-oxygenase, cytochrome P450 2E1, and
electron leakage from mitochondria, as well as exogenous sources such as smoke, ultraviolet
light, radiation, and drugs [22,23]. Superoxide (O2

•−) can react with nitric oxide (NO)
to form peroxynitrite (ONOO−) or be transformed into hydrogen peroxide (H2O2) by
superoxide dismutase (SOD), vitamin E, or vitamin C. Oxidative inactivation of PTEN,
which can serve as a physiological regulatory mechanism, is executed by ROS not only via
oxidative stress but also via cellular signaling transductions, for example, growth-factor-
stimulation-derived NOXs [24]. A growing body of evidence has indicated that ROS are
produced and utilized in physiological circumstances to function as significant signaling
messengers, facilitating the coordination of various fundamental processes, including
inflammation, survival, proliferation, differentiation, apoptosis, signal transduction, and
other critical events [25–29]. Oxidative stress can occur during chronic low-grade systemic
inflammation, in which pro-inflammation cytokines secreted from senescent cells induce
the production of ROS, consequently leading to the oxidation of cellular components [30].

The ROS that have such cellular physiological functions are predominantly generated
in the cell’s plasma membrane and endomembrane via the activity of NOXs [31]. H2O2
is the major ROS responsible for initiating redox-dependent signaling within the cell’s
cytosol [32], and the source of this physiological H2O2 is also related to the activities of
membrane-associated NOX complex and specialized cells such as phagocytes [33,34]. Lee
et al. were the first to demonstrate the reversible inactivation of PTEN by H2O2. During
this process, the Cys124 catalytic residue in the active site of PTEN is oxidized and forms a
disulfide bond with Cys71, thus being inactivated. This inactivation is reversible because
oxidized PTEN is persistently reduced back to its active form by the redox homeostasis
systems, particularly the thioredoxin (Trx) system, which is ubiquitous in the cellular
environment [35,36]. In mammalian cells, there are abundant antioxidants, such as Trxs,
glutathione (GSH), glutaredoxins (Grx), and peroxiredoxins (Prx). The Trx system, which is
composed of thioredoxin reductase (TrxR) and NADPH, can act as an electron donor to a
variety of enzymes, including PTEN, and catalyze the reduction of disulfide bonds [37].
The Prx, GSH, and Grx systems also engage in the reduction of oxidized PTEN, thereby
contributing to the redox regulation of PTEN [38–40]. Prx can scavenge H2O2 at a fast speed.
Under mild oxidative stress conditions, Prx I not only protects PTEN from oxidation but
also enhances its activity via direct interaction [41,42]. Notably, the oxidative inhibition of
PTEN by H2O2 has been experimentally demonstrated to increase the PI3K/AKT signaling
pathway [43].

Peroxynitrite (ONOO−) can also oxidize cysteine residues within PTPs, leading to
oxidative inhibition. This process might be considerably faster and more effective in inacti-
vating PTPs at lower concentrations than H2O2. This suggests that peroxynitrite may be
the primary biological mediator responsible for PTPs’ inactivation, consequently enhancing
tyrosine phosphorylation in situations related to oxidative stress [44]. However, the impact
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of peroxynitrite on phosphotyrosine-dependent signaling can manifest as either activation
or inhibition. The upregulation of this signaling could arise from PTPs’ inactivation by a
low concentration of peroxynitrite, and this feature has typical characteristics of cell signal-
ing, being transient and reversible. Nevertheless, how peroxynitrite affects the PI3K/AKT
pathway is still controversial [45].

The oxidative inactivation of PTEN leads to an increase in PI3K/AKT downstream
signaling, which subsequently induces its physiological effects [43,46,47]. Recently, bicar-
bonate/carbon dioxide (HCO3

−/CO2) has emerged as a pivotal factor in promoting the
oxidative reactivity of H2O2 by creating a higher reactive form called peroxymonocarbonate
(HCO4

−) [48–50]. Since there are several meticulous and comprehensive reviews about
the regulators of PTEN and their impacts on the PI3K/AKT signaling pathway, as well
as their implications in physiology and diseases, we focus on the role of the oxidative
inhibition of PTEN in physiological processes. In addition, we also mention the role of
bicarbonate/carbon dioxide in the oxidation of PTPs by H2O2.

2. Oxidative Inhibition of PTEN by ROS in Physiological Processes
2.1. Cardiovascular Remodeling

Studies indicate the involvement of the serine/threonine kinase AKT as a media-
tor in the process of ischemic preconditioning, a short transient period of sustenance
during ischemia-reperfusion injury [51–54]. In ischemic preconditioning, AKT signal-
ing is upregulated and prevents cardiomyocytes from undergoing apoptosis [53–56].
The PI3K/AKT/mTOR pathway plays a significant role in protecting against ischemia-
reperfusion injury, particularly in the context of ischemic preconditioning in cardiac tissue.
Accordingly, reversible PTEN downregulation has been suggested as a viable therapeutic
approach to mitigate ischemia-reperfusion-related cardiac damage [57]. A study revealed
that PTEN plays a pivotal role in the post-myocardial infarction remodeling process: Partial
PTEN inactivation, by regulating the AKT signaling pathway, can increase interleukin
IL-10 and consequently decrease tumor necrosis factor TNFα and matrix metalloproteinase
MMP2 expression in the heart. However, the authors were not able to determine the exact
source of generated IL-10, apart from immune cells. It probably comes from endothelial
cells and fibroblasts [58]. Several research studies demonstrate that IL-10 can eventually
attenuate apoptosis and facilitate cardiac remodeling after myocardial infarction [59–62].
Hence, PTEN inhibition could be an effective approach for improving cardiac conservation
after ischemia [63,64].

During acute myocardial infarction, the heart suffers from oxidative stress with in-
creased ROS levels [23]. In the acute and chronic cellular response to this event, NOX2
is overexpressed in human cardiomyocytes, which may not interfere with the activity of
macrophages [65–67]. Since PTEN oxidation is likely to occur near the site of ROS formation
and both PIP3 and the NOX complex are located in the plasma membrane, H2O2 generated
from NOXs is the primary candidate for inhibiting the PI3K/AKT pathway via PTEN
oxidation. There is substantial supporting evidence indicating that elevated PIP3 signaling
contributes to the activation of the NOX complex in both phagocytic and non-phagocytic
cells. The increase in PIP3 levels is proposed to be a key factor in initiating the activation of
the NOX complex [41,43]. This may create a circular impact, where ROS generated from
NOXs can inhibit PTEN and enhance the PI3K/AKT pathway, which, in turn, promotes
NOX activity.

Cai and Semenza were the first to describe the modulation of PTEN during ischemia-
reperfusion injury. During the first 15 min of ischemia, PTEN undergoes dephosphorylation
and proteasomal degradation. However, the kinetics reveal that not all PTEN activity
is impaired during this initial phase and AKT phosphorylation increases without any
significant changes. This indicates that the dephosphorylation and degradation of PTEN
do not greatly hinder its function. However, in the subsequent initial phase of reperfusion,
there is a notable increase in oxidized PTEN and, consequently, phosphorylated AKT. Their
findings clarify that the surge in AKT phosphorylation during this short reperfusion period
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is caused by the oxidative inhibition of the remaining PTEN [68]. Simultaneously, elevated
levels of ROS have been observed in both injured cardiomyocytes and intact hearts during
ischemia-reperfusion events [68,69]. Therefore, the oxidation of PTEN during the initial
reperfusion period is related to the concurrent rise in ROS levels. (Figure 1).
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Figure 1. Oxidation of PTEN in cardiovascular remodeling and myogenic constriction. Ischemia
or elevated blood pressure conditions induce the production of ROS. These ROS deactivate PTEN,
leading to an increase in the AKT signaling pathway. The activation of the AKT pathway enhances cell
survival, proliferation, and differentiation. Furthermore, PTEN-mediated AKT activation upregulates
IL-10 expression, promoting cardiac remodeling and preventing apoptosis. It also elevates VEGF
expression, facilitating angiogenesis. This mechanism also involves L-type calcium channel activity
and the formation of IP3, which stimulates Ca2+ secretion, thus increasing intracellular Ca2+ levels
and promoting myogenic constriction.

One vital mechanism of injured tissue in cases of blood supply shortage, due to is-
chemia or infarction events, is angiogenesis. Angiogenesis is defined as the formation
of new blood vessels [70]. Vascular endothelial growth factor (VEGF) is associated with
promoting angiogenesis. Upregulation of VEGF can be a potential treatment approach to
induce axonal outgrowth and following angiogenesis after cerebral ischemia [71], as well
as to restore blood flow in ischemic tissues after myocardial infarction [72]. Experimental
data reported by Connor et al. indicate that the overexpression of manganese superoxide
dismutase (SOD2) increases the production of mitochondrial H2O2, which triggers angio-
genic activity. In this process, mitochondrial H2O2 can oxidize PTEN and upregulate the
PI3K/AKT signaling axis, subsequently activating VEGF production [73] (Figure 1).

2.2. Vascular Constriction

Accumulating evidence highlights the significant role of PI3K/AKT-dependent signal-
ing pathways in various fundamental cellular functions within the cardiovascular system.
These functions include processes such as the maturation and growth, mechanotransduc-
tion, contractility, and proliferation and migration of both cardiac and vascular smooth
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muscle cells [74–78]. Dysfunction of this signaling pathway plays an essential role in
cardiovascular pathophysiological conditions, such as heart failure, atherosclerosis, and
hypertension [79–82]. Wu et al. observed that in the rostral ventrolateral medulla of sponta-
neously hypertensive rats, ROS originating from NOXs and mitochondrial oxidative stress
reduced the catalytic ability of PTEN via oxidation. Consequently, the ensuing activation
of the PI3K/AKT signaling pathway may lead to neurogenic hypertension [82].

Maintaining a consistent cerebral blood flow distribution through myogenic tone
development is vital for neurons, which lack glucose storage and rely solely on a continuous
blood supply of glucose and oxygen for normal metabolic function and under conditions of
increased demands [83]. The role of PI3K in mediating the impact of physical forces, such
as pressure, shearing, and stretching, on vascular smooth muscle cells and various other
cell types, is well recognized [84]. Gebremedhin et al. found that elevated intraluminal
pressure in cerebral arteries leads to an increase in ROS generation, leading to the oxidative
inactivation of PTEN. This, in turn, results in the upregulation of PI3K/AKT activity and the
release of IP3. The activation of AKT can induce the inhibition of arterial calcium-activated
potassium channels, membrane depolarization, and L-type calcium channels. In addition,
the formation of inositol (3,4,5)-triphosphate (IP3) stimulates the sarcoplasmic reticulum
to release Ca2+, resulting in an increase in intracellular Ca2+ levels and the initiation of
pressure-dependent myogenic constriction in cerebral arteries [83] (Figure 1).

2.3. Neuro-Regeneration and Neuro-Survival

PTEN activity has been shown to substantially limit cell survival in the challenging
context of cerebral ischemia [64–85]. Numerous studies have demonstrated that inhibit-
ing PTEN to activate the PI3K/AKT pathway provides protection to the brain during
stroke [86–91]. The reduction in the PI3K/AKT/GSK-3β/mTOR signaling pathway by
neuronal PTEN impairs axon growth and nerve regeneration in both the peripheral and
central nervous systems, post-neuronal injuries, and ischemic conditions. Strong evidence
consistently supports PTEN’s inhibitory role in critical neurological processes in pathologi-
cal contexts [92–98]. Enhancing the activity of the PI3K/AKT pathway has been shown to
increase axon growth [99]. Therefore, it is clear that PTEN, an intrinsic inhibitor of the PI3K
pathway, plays a significant role in regulating the growth of central axons. PTEN’s activity
also impedes nerve regeneration following neuronal injury, which is crucial for neural func-
tion recovery [96]. Hence, deliberately inhibiting PTEN activity emerges as a strategically
advantageous approach with pronounced benefits for facilitating neuronal regeneration
following injury. Empirical evidence shows that deleting PTEN in the spinal cord or optic
nerve significantly enhances nerve regeneration after injury [100]. Targeted application of
local pharmacological agents to suppress PTEN or the precise utilization of siRNA-based
techniques to specifically downregulate PTEN expression at injury sites serves as a potent
and effective strategy for accelerating the intricate axon outgrowth process and expediting
the overall neuronal recovery [101]. Even in genetic diseases, such as spinal muscular
atrophy, managing protein synthesis in motor neurons via PTEN depletion could be a
therapeutic strategy [102,103]. Experimental data demonstrate that ROS signaling plays
an essential role in promoting the self-renewal, proliferation, and differentiation of neural
stem cells and neural progenitor cells via a regulatory mechanism in which the oxidation
of PTEN by ROS upregulates the PI3K/AKT signaling pathway [104].

After neuronal injury, the injured axons are exposed to a highly oxidative and
inflammation-driven environment. Under these conditions, growth cones, which are
crucial for axon extension, initially collapse and retract. This process involves the oxida-
tion of actin and produces ROS [105]. In a study, two experimental models were used to
investigate the role of ROS generation in neuronal death and the involvement of PTEN in
neurodegenerative diseases. Oxygen–glucose deprivation and the neurotoxin 1-methyl-4-
phenylpyridinium iodide were applied to neural cells to simulate cerebral ischemia and
Parkinson’s disease. However, it was found that ROS generated under these conditions
did not cause oxidative inactivation to all cellular PTEN, allowing PTEN to maintain its
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functional activity. The suggested explanation is that the deactivation of PTEN phosphatase
by ROS requires suitable intracellular co-localization with the site where these ROS are
actively produced [106].

Hervera et al. have shown that non-mitochondrial sources of ROS are essential and
sufficient for promoting axonal outgrowth and regenerating sensory axons. ROS signaling
plays a crucial role in driving the regeneration of both peripheral and central nervous
system axons in response to sciatic nerve injury. Importantly, NOX signaling emerges as a
key regulatory mechanism in response to injury, particularly in ROS-dependent neuron
regeneration. Membrane-bound NOX enzymes generate O2

•−, which is subsequently
converted to H2O2 by SOD. Interestingly, NOX2 can originate from extracellular vesicles
released by cytokine-recruited inflammatory macrophages. These NOX2-containing exo-
somes are then transported retrogradely in axonal endosomes post-injury and produce ROS
for cellular signaling. In other words, macrophages release NOX2-containing exosomes
that subsequently enter the neurons and produce ROS, serving as a regeneration signal.
These pathways involve key regulatory proteins whose activity can be modulated via the
oxidation of cysteine residues. PTEN, notably, emerges as the most oxidized protein in such
neurons following sciatic nerve injury. The downregulation of PTEN, mediated by NOX2
activity in association with nerve injury, leads to increased activation of the PI3K/AKT path-
way, promoting neuron outgrowth. The PTEN oxidative inactivation following nerve injury
plays an important role in regulating nerve regeneration and is, therefore, a prospective
mechanism in the study of neuronal pathology [107].

In Alzheimer’s disease (AD), the accumulation of misfolded, hyperphosphorylated
tau proteins is closely associated with the loss of neurons and cognitive dysfunction [108].
Tau normally plays a crucial role in assembling and maintaining microtubules in neuronal
axons [109]. Abnormal hyperphosphorylation of tau alters its shape and impairs its ability
to bind to microtubules, resulting in the destabilization of microtubules and the formation
of neurofibrillary tangles, which contribute to neuronal dysfunction and cell death [110].
GSK-3β, a downstream kinase of the PI3K/AKT signaling pathway, is known for its role in
phosphorylating tau in AD pathogenesis [111]. The impaired PI3K/AKT pathway leads to
GSK-3β hyperactivity and excessive tau phosphorylation, which is linked to the progression
of AD [112]. Treatment with insulin or curcumin can improve memory and cognitive
ability in AD patients, possibly through the regulation of the PI3K/AKT pathway [113].
Stimulation with growth factors such as epidermal growth factor, platelet-derived growth
factor, or insulin, leads to the formation of H2O2 as a result of the activation of NOXs and the
oxidation of PTEN, which increases the PI3K/AKT signaling pathway [114]. These findings
indicate that the oxidative inhibition of PTEN can be a possible method for improving AD
patients’ condition.

Experimental data demonstrate that the presence of peroxynitrite can prevent
etoposide-induced apoptotic cell death in primary cortical neurons. This effect is pri-
marily due to the oxidation of PTEN and the subsequent upregulation of the PI3K/AKT
signaling pathway. Although the anti-apoptotic implication of peroxynitrite is subject to
dispute, these data concurrently strengthen the potential of PTEN oxidation in promoting
neuroprotection [115] (Figure 2).
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Figure 2. Oxidative inactivation of PTEN in nerve survival and regeneration. During neuronal
injury, the NOX2-derived ROS concentration increases due to receptor kinase stimulation or extra-
cellular vesicles released by macrophages. These ROS oxidize PTEN, leading to the activation of
the PIP3/AKT signaling pathway, which promotes nerve regeneration. This mechanism can also
promote self-renewal, proliferation, and differentiation in neuronal stem and progenitor cells. In the
context of Alzheimer’s disease, the activation of the AKT pathway can downregulate GSK3β activity
and the subsequent phosphorylation of the tau protein, providing neuroprotection.

2.4. Immune Responsiveness

Granulopoiesis is an emergency response to acute infection or inflammation, in which
neutrophils are rapidly and massively produced and deployed from the bone marrow.
Cytokines such as IL-6 and granulocyte colony-stimulating factor (G-CSF) are usually
elevated during acute inflammation and may play a role in emergency granulopoiesis
by inducing granulocyte differentiation [116,117]. In acute myocardial infarction, the
myocardium also releases IL-6 and TNFα, and plasma levels of these cytokines increase after
a brief episode of coronary artery blockage [118–120]. Kwak et al. demonstrated that an
increase in ROS levels in the bone marrow alone is sufficient to trigger granulopoiesis. The
elevated ROS concentration is important in promoting the proliferation and differentiation
of myeloid progenitor cells via upregulated AKT signal transduction, which occurs due to
the oxidative inhibition of PTEN’s phosphatase activity. During emergency granulopoiesis,
these ROS are mainly produced by myeloid cells via phagocytic NOX2 activity, which
can be induced by the cytokines G-CSF and TNFα. Therefore, the oxidative inactivation
of PTEN by NADPH-oxidase-dependent ROS is an essential mechanism for prompting
emergency granulopoiesis [121]. PI3K/AKT activity has also been shown to be a robust
pivotal factor in the development of ROS-producing macrophages [122] (Figure 3).
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can lead to elevated plasma cytokines, which stimulate myeloid cells to produce NOX2-derived
ROS. These ROS mediate the AKT signaling pathway by inhibiting PTEN and trigger granulopoiesis,
promoting the proliferation and differentiation of immune cells. These cells engage in immune
reactions while also contributing to anti-apoptosis and remodeling processes.

2.5. Insulin-Related Metabolism

Insulin resistance, which is characterized by a reduced sensitivity to insulin in regu-
lating blood glucose levels, is the primary pathological feature of type 2 diabetes mellitus.
The role of ROS in insulin sensitivity is complex, with a dual effect: promoting insulin
sensitivity in the early stages of disease, and contributing to insulin resistance as hyper-
glycemia progresses. The transient and controlled ROS production by NOXs in response to
insulin is likely to be beneficial, while the chronic ROS generation by mitochondria during
the context of prolonged nutrient overload in the later stages of the disease might be detri-
mental to insulin responsiveness [123,124]. Insulin stimulation can lead to this temporary
increase in ROS levels by activating NOX and subsequently triggering insulin-mediated
AKT activation. PIP3 and NOXs are located in the cell’s plasma membrane, suggesting that
upon insulin stimulation, PTEN is oxidatively inactivated in close proximity to NOXs, and
recruited PI3K can elevate PIP3 levels [125]. PIP3, in turn, triggers the PDK/AKT pathway,
which subsequently phosphorylates various targets such as AS160, performing the anabolic
effects of insulin stimulation [126,127]. The activated AKT pathway can enhance glucose
absorption in adipocytes by facilitating the translocation of glucose transporter GLUT4
to the plasma membrane, as well as elevating GLUT1 expression. This aligns with the
proposition that AKT signaling potentially participates in mediating insulin-stimulated
responses [128]. Hence, as a negative regulator of the AKT pathway, the knockout of
PTEN was experimentally shown to incrementally affect the level of GLUT4 expression
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in skeletal muscle and white adipose tissue, which consequently increases glucose up-
take [129,130]. Additionally, in some studies, inhibiting PTEN’s PIP3-phosphatase activity
has been proposed as a potential therapeutic approach for type 2 diabetes [131–133]. Loh
et al. demonstrated that a slight increase in physiological ROS levels in muscle cells can
induce PTEN oxidation and eventually enhance insulin-induced glucose uptake via the
PI3K/AKT pathway [124]. Therefore, the redox regulation of PTEN holds promise as a
method for managing type 2 diabetes mellitus (Figure 4).
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Stimulation of growth factor receptors induces NOX2 activity and the production of ROS, which can
oxidize PTEN and upregulate the PI3K/AKT signaling pathway. As a result, glucose uptake and
insulin sensitivity are increased. During muscle differentiation, mitochondria-derived ROS can also
oxidize PTEN and promote mTOR-induced myogenic autophagy.

2.6. Myogenic Autophagy in Muscle Differentiation

Autophagy is a crucial intracellular recycling process that eliminates old and dysfunc-
tional cellular proteins and organelles. This process involves the formation of autophago-
somes, which envelop parts of the cell’s cytoplasm that contain unnecessary components.
As a result, autophagy functions as a dynamic mechanism for maintaining cellular health
and resource efficiency [134,135]. Kim et al. demonstrated that the PI3K/AKT/mTOR sig-
naling pathway is upregulated by mitochondrial ROS-derived H2O2, which subsequently
implicates myogenesis-specific autophagy during muscle differentiation. In this scenario,
PTEN is inactivated via oxidation [136] (Figure 4).

3. Role of Bicarbonate in the Oxidation of PTPs by H2O2

H2O2 serves as a signaling molecule that participates in cellular responses triggered by
various factors such as growth factors, hormones, and cytokines, including platelet-derived
growth factor, epidermal growth factor, VEGF, insulin, TNFα, and interleukin-1β. During
signal transduction, PTPs are key targets of growth-factor-mediated H2O2. These PTPs
play a significant role in regulating multiple critical signaling pathways in mammalian cells
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by catalyzing the removal of phosphate groups from specific tyrosine residues on target
proteins [32,137–139]. PTEN, which belongs to the PTP family and possesses the ability to
dephosphorylate PIP3, can also be inactivated by physiological H2O2 [35].

The activation of receptor tyrosine kinases is a crucial event in the transmission of
phosphorylation signals in response to growth factor stimulation, and it holds significant
physiological importance [138]. When receptor tyrosine kinases are activated, they trigger
the transient production of H2O2 by membrane NOXs [34]. This H2O2, in turn, leads to the
reversible oxidative inhibition of PTPs [140]. However, the process by which PTPs undergo
oxidation within the cellular environment has raised questions, particularly because other
thiol proteins from the peroxiredoxin family are more significantly reactive and likely to
interact with intracellular H2O2. In addition, oxidized PTPs, including PTEN, and perox-
iredoxin can be converted back to their active reduced forms by the Trx/TrxR/NADPH
systems, which are abundantly expressed in cells.

H2O2 can react with bicarbonate/CO2 to form peroxymonocarbonate (HCO4
−), a

highly reactive oxidant that has a much higher reactivity than H2O2 when reacting with
low-molecular-weight thiols [141,142]. Zhou et al. demonstrated that the presence of
bicarbonate augments the oxidative inactivation of PTPs, particularly PTP1B and SHP-2,
caused by H2O2, probably by generating HCO4

− [140]. Growth factor receptor stimulation
also upregulates the activity of sodium bicarbonate cotransporters (NBCs) and carbonic
anhydrase (CA) to increase the cellular concentration of bicarbonate. CA IX, a transmem-
brane enzyme with an extracellular active domain, can catalyze the following reaction:
CO2 + H2O⇋HCO3

− [143]. NBCs uptake bicarbonate into the cell [144]. Via this mech-
anism, Dagnell et al. provide an explanation for the growth-factor-receptor-stimulation-
mediated oxidation of PTP1B: with the increased level of bicarbonate, more HCO4

− is
formed from H2O2, boosting the oxidative reaction rate [48]. Since PTEN’s molecular
structure contains a cysteine residue in its active site, like other PTPs, the H2O2-mediated
oxidative inhibition of PTEN can be affected by bicarbonate. In the future, further exper-
iments should be conducted to fortify the role of bicarbonate in the redox regulation of
PTEN by H2O2.

4. Conclusions and Perspectives

In conclusion, PTEN oxidative inactivation by ROS, particularly NOX-derived H2O2,
has been shown to be essential in various physiological processes, such as cardiovascular
remodeling, vascular constriction, neuro-regeneration, immune responsiveness, insulin-
related metabolism, and myogenesis-specific autophagy. This PTEN inactivation increases
the activity of the PI3K/AKT signaling pathway and subsequently prevents apoptosis and
promotes the proliferation of cardiomyocytes following ischemia, as well as increasing
vascular angiogenesis and constriction. In the neuro-regeneration process, the ROS that ox-
idize PTEN could originate from the extracellular NOX2 delivery vesicles of macrophages.
During acute ischemia or inflammation, ROS derived from NOX2 in myeloid cells can
inhibit PTEN and induce granulopoiesis. The elevated PI3K/AKT downstream signaling
via the redox regulation of PTEN could also mitigate insulin resistance. ROS also initiate
cellular autophagic rebuilding in the process of muscle differentiation via PTEN-mediated
mTOR augmentation. Moreover, bicarbonate can react with H2O2 to form HCO4

− and
therefore accelerate the oxidation of PTPs. Further studies would substantiate the im-
portance of HCO4

− in facilitating H2O2-mediated PTEN redox regulation and its role in
physiological processes (Figure 5).
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