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Abstract: This study aimed to assess the impact of α-lipoic acid on the growth performance, antioxi-
dant capacity and immunity in hybrid groupers (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus) fed
with a high-lipid diet. Groupers (8.97 ± 0.01 g) were fed six different diets, with α-lipoic acid content
in diets being 0, 400, 800, 1200, 1600, and 2000 mg/kg, named S1, S2, S3, S4, S5, and S6, respectively.
The results show that the addition of 2000 mg/kg α-lipoic acid in the diet inhibited the growth, weight
gain rate (WGR), and specific growth rate (SGR), which were significantly lower than other groups.
In serum, catalase (CAT) and superoxide dismutase (SOD) were significantly higher in the S5 group
than in the S1 group. In the liver, CAT, SOD and total antioxidative capacity (T-AOC) levels were
significantly increased in α-lipoic acid supplemented groups. α-lipoic acid significantly upregulated
liver antioxidant genes sod and cat, anti-inflammatory factor interleukin 10 (il10) and transforming
growth factor β (tgfβ) mRNA levels. Conclusion: the addition of 2000 mg/kg of α-lipoic acid inhibits
the growth of hybrid groupers. In addition, 400–800 mg/kg α-lipoic acid contents improve the
antioxidant capacity of groupers and have a protective effect against high-lipid-diet-induced liver
oxidative damage.

Keywords: high-lipid diet; hybrid grouper; antioxidant; immunity; α-lipoic acid

1. Introduction

The world’s population has been increasing in recent years, leading to an increased
demand for aquatic products [1]. To meet this demand, high-density intensive aquaculture
has been widely promoted [2]. In intensive aquaculture, there is a growing preference for a
high-lipid diet [3]. Lipids, along with other essential nutrients such as protein, carbohy-
drates and trace elements, are key components of aquatic animal feed [3]. Lipids are crucial
components of fish tissue cells, and they can also be broken down to provide energy for
the body’s self-repair [4]. Simultaneously, lipids serve as carriers for fat-soluble vitamins,
promoting their absorption and positively impacting the body [5,6]. Against the backdrop
of declining fishery resources nationwide [7], resulting in a consistent year-on-year decrease
in fishmeal production and a rise in prices, the increase in raw material prices inevitably
leads to a hike in feed prices. These consequences are severe: escalating farming costs
for aquaculture practitioners, raising the aquaculture industry’s threshold and causing
widespread unemployment, adversely affecting the global economy’s development. As
researchers, we are constantly exploring methods to reduce aquaculture costs without
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compromising the health of marine organisms. Current research in this area is focused
on fishmeal substitution, such as using soybean meal instead of fishmeal [8]. However, a
high-lipid diet can reduce overall feed costs [9]. As an energy feedstuff, lipids can promote
fish growth and conserve protein, making a high-lipid diet favored by the aquaculture
industry [3,10]. The base feed for this experiment is a high-lipid diet, aligning with the
contemporary theme of aquatic feed industry development.

Despite the advantages of a high-lipid diet in promoting growth and increasing protein
efficiency, their disadvantages should not be overlooked [11]. Suo et al. demonstrated
that a high-lipid diet (with a lipid level of 16.42%) could indeed promote growth and
development [10]. However, they also observed a reduction in the lipid metabolic capacity
of the liver, an increase in the fat content of fish muscle and the presence of fatty liver
indicators in liver oil-red sections [10]. Therefore, there is an urgent need to find a suitable
additive to address the shortcomings of high-lipid diets, which is currently a prominent
research topic.

α-lipoic acid is an antioxidant and plays a role in the formation of various types of
dehydrogenases involved in energy metabolism [12]. Its ability to regenerate allows it to
provide continuous protection to organisms [13]. Adding α-lipoic acid to the diets of Nile
tilapia (Oreochromis niloticus) and crucian carp (Carassius auratus) can enhance their weight
gain rate and specific growth rate [14,15]. However, excessive amounts may adversely
affect palatability [14]. Meanwhile, the antioxidant properties of α-lipoic acid have been
demonstrated in various species, including wrinkled disc abalone [16,17].

The hybrid grouper (Epinephelus fuscoguttatus ♀× E. lanceolatus ♂), a cross between the
brown-spotted grouper and the saddle-banded grouper, is a carnivorous fish known for its
unique meaty flavor [18]. It is popular among consumers and favored by farmers due to its
superior growth rate, disease resistance and higher return on farm investment [19]. Positive
feedback from both farmers and consumers has contributed to the production of pearl
gentian grouper in China’s aquaculture, reaching up to 205,816 tonnes in 2022, making it
one of the top three fish species in marine fish farming production [20]. Therefore, this study
combines a high-lipid diet with an antioxidant (alpha-lipoic acid) to assess the advantages
and disadvantages of the feed in terms of growth performance, liver antioxidation and
intestinal health. This aims to provide reference data for the high-density aquaculture of
hybrid groupers and enrich the nutritional experimental database for groupers.

2. Materials and Methods
2.1. Experiment Diets

According to the nutritional requirements of hybrid groupers, using fish meal, wheat
gluten and casein as the main protein sources, and fish oil, corn oil and lecithin as the
main oil sources, six iso-protein and iso-lipid diets with α-lipoic acid at the levels of 0, 0.04,
0.08, 0.12, 0.16 and 0.20% were made, named S1, S2, S3, S4, S5 and S6, respectively. We
obtained the feed ingredients from Zhanjiang Yuehai Feed Co. (Zhanjiang, China). The
ingredients were initially crushed and then sieved manually through a 60-mesh sieve. Fol-
lowing the feed formula (Table 1), precise calculations were performed, and the necessary
components were carefully weighed and blended. We utilized a step-by-step expansion
method for mixing the raw materials, starting with the lesser proportion of raw materials
and eventually incorporating them using a V-mixer [21]. Subsequently, fish oil, corn oil
and lecithin were introduced, thoroughly mixed, and filtered through a 40-mesh sieve. The
oiled ingredients were then combined with water during mixing (at a ratio of 30% per
kilogram of diet) and extruded in a twin-screw extruder (F–26, South China University of
Technology, Guangzhou, Guangdong, China) before being air-dried naturally. Finally, the
air-dried feed was packaged in plastic sealing bags and stored in a freezer at −20 ◦C.
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Table 1. Ingredient composition and nutrient content of the test diets (% dry matter).

Ingredient S1 S2 S3 S4 S5 S6

Fish meal 43 43 43 43 43 43
Wheat gluten 10 10 10 10 10 10
Casein 12 12 12 12 12 12
Wheat flour 17 17 17 17 17 17
Soybean lecithin 1.5 1.5 1.5 1.5 1.5 1.5
Fish oil 5 5 5 5 5 5
Corn oil 7 7 7 7 7 7
Gelatinized starch 0.7 0.66 0.62 0.58 0.54 0.5
Compound premix a 1 1 1 1 1 1
Vitamin C 0.05 0.05 0.05 0.05 0.05 0.05
Choline chloride 0.5 0.5 0.5 0.5 0.5 0.5
Ca(H2PO4)2 1.5 1.5 1.5 1.5 1.5 1.5
Antioxidant b 0.1 0.1 0.1 0.1 0.1 0.1
Attractant c 0.15 0.15 0.15 0.15 0.15 0.15
CMC d 0.5 0.5 0.5 0.5 0.5 0.5
α-lipoic acid 0 0.04 0.08 0.12 0.16 0.2
Total 100 100 100 100 100 100
Proximate composition e

Moisture 9.23 10.09 10.95 9.8 9.38 10.44
Crude protein 50.62 51.18 51.55 50.94 50.84 50.06
Crude lipid 16.38 15.72 16.14 15.75 16.16 16.2
Ash 12.74 12.15 12.09 12.86 12.45 12.79

a Compound premix was obtained from Qingdao Master Biotechnology Co, Ltd. (Qingdao, China). b Antioxi-
dant: ethoxyquin. c Attractant composition:taurine:glycine:betaine = 1:3:3. d Carboxymethylcellulose sodium.
e Measured value.

2.2. Fish and Feeding Trial

The fish were procured from a farm in Zhanjiang (Guangdong Province, China) and
then transported to the experimental aquaculture base of Guangdong Ocean University
on Donghai Island (Zhanjiang, China). Groupers were temporarily housed in concrete
ponds (5 m × 4 m × 1.8 m) to acclimate to their new environment and were fed commercial
feed (50% protein level, 10% lipid level, Haida Aquatic Diet Co., Ltd., Zhanjiang, China)
two times daily for one week. By the onset of the trial, the tanks underwent sterilization,
and 540 fish, each weighing 8.97 ± 0.01 g, were randomly distributed within the tanks as
soon as the culture facilities were prepared. The experimental setup included 6 groups, with
3 replicates in each group, totaling 18 tanks. Feeding took place at 8:00 a.m. and 4:00 p.m.
Satiation feeding was implemented, and daily feed intake was meticulously recorded. After
one hour of feeding, check each tank, remove residual feed in time, dry and record the
weight. Any feces that may have accumulated at the tank bottoms were promptly removed
at 2 h after feeding. Furthermore, 70% of the water in each tank was replaced daily. The
daily water temperature, salinity and dissolved oxygen levels were measured, maintaining
the following parameters: 27–31 ◦C, 26–28, and >7 mg/L, respectively, using a PTF-001B
multi-parameter water quality detector (WBD Biotechnology Co., Ltd., Shanghai, China).

2.3. Sample Collection

After eight weeks of feeding experiments, we proceeded with sample collection. Feed-
ing was halted the day before sampling. Fish were carefully removed from the tanks,
weighed, and counted to assess growth performance, among other indexes. The experi-
mental fish were then transferred to a sampling workstation located on ice to maintain
optimal conditions. Blood samples were collected from six fish by gently inserting a 2.5 mL
syringe into the caudal fin and transferring the blood to 1.5 mL centrifuge tubes. Four fish
were delicately dissected to isolate the visceral mass, intestines and livers. A portion of the
liver was transferred to a 2 mL cryotube for enzyme activity testing, while another portion
was cut into small samples resembling soybeans and placed in RNA later for preservation.
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Finally, three fish underwent similar dissection procedures; a minor incision was made with
a scalpel, and the liver samples were removed and preserved in formaldehyde solution for
liver histology.

2.4. Methods of Analyses
2.4.1. Growth Performance Formula

Weight gain rate (WGR, %) = 100 × [final body weight (FBW) − initial body weight
(IBW)]/IBW; Specific growth rate (SGR, %/d) = 100 × [ln (FBW) − ln (IBW)]/days of the ex-
periment. Survival rate (SR, %) = 100% × (total number of fish at termination/total number
of fish stocked) Feed conversion ratio (FCR) = total dry feed intake/total weight gain.

The diets were analyzed according to the method of the Association of Official Analyt-
ical Chemists (AOAC) [22]. The moisture content was measured by drying at 105 ◦C to a
constant weight, and ash content was determined by combustion at 550 ◦C for 6 h. The
crude protein content was determined by the Kjeldahl method. The crude lipid content was
determined by the Soxhlet extraction method [9].

2.4.2. Measurement of Enzyme Activities

The activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase
(GSH-Px), alkaline phosphatase (AKP), acid phosphatase (ACP), lysozyme (LYS), aspartate
transaminase (AST), alanine transaminase (ALT) and the content of malondialdehyde
(MDA), reactive oxygen species (ROS), and immunoglobulin M (IgM) were analyzed using
commercial ELISA kits (Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China)
Total antioxidant capacity (T-AOC) in the serum and liver checked by the kit (DPPH method,
Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China). Liver samples were
weighed and homogenized on ice with saline (1:9) (EasyWell series JY98-IIIN model cell
crusher) after homogenization (TGL16 M Benchtop High-Speed Freezing Centrifuge by
Shanghai Lu Xiang Yi Centrifuge Instruments Co., Shanghai, China.) at 3500 rpm for
15 min, extract the supernatant. All biochemical parameters were determined by Rayto,
RT-6100 enzyme-linked immunosorbent assay. All index measures were carried out in
strict accordance with the kit instructions, following a previously described method by
Liu et al. [21].

2.4.3. Hepatic Histological Structures

Specific production steps of sectioning included ethanol dehydration, embedding,
sectioning, dewaxing and staining (85% ethanol for 5 min; 95% ethanol for 5 min; finally,
stain sections with Eosin dye for min), rinsing with pure water and sealing with neutral
resin. Liver sections were observed and measured by an inverted fluorescence microscope
(Nikon Eclipse Ti-E).

2.4.4. Analysis of Antioxidant and Immune-Related Gene Expression in Liver

One milliliter of Tranzol UP (TransGen Biotech, Beijing, China) was added to the
samples, and total RNA was extracted according to the manufacturer’s protocol, and the
quantity and quality of the isolated RNA was determined by a NanoDrop 2000 spectropho-
tometer (Gene Company Limited, Guangzhou, China) and 1% agarose gel electrophoresis
at 260 nm and 280 nm, respectively. The first strand of cDNA was extracted using Evo
M-MLV Kit AG11728 (Changsha, Hunan, China) and synthesized according to the manu-
facturer’s instructions. cDNA was stored at −20 ◦C for real-time quantitative polymerase
chain reaction (RT-qPCR). RT-qPCR assays were performed using SYBR® Green Pro Taq
HS qPCR (AG11702) and Roche Fluorescence quantification machines (Light Cycler 480II,
Rotkreuz, Switzerland). The PCR conditions were set using a thermal programmer at 95 ◦C
for 30 s, 40 cycles of 95 ◦C for 5 s and 60 ◦C for 34 s. Each sample was run in triplicate.
RT-qPCR primers (Table 2) were designed based on published grouper sequences, and
relative expression was calculated using the 2−∆∆Ct method [23].
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Table 2. Primers of RT-Qpcr.

Genes 5=/3 = Forward Primer 5=/3 = Reverse Primer Amplicon E-Value % Genbank No.

β-actin ACTGCTGCCTCCTCTTCATC ACCGCAAGACTCCATACCAA 135 93.71 KU746361.1
sod TGGAAACACCTTTCCCCCAC CTGACAGGGTAAAGCATGGC 120 91.41 AY735008.1
cat CGCGGGAAGCAAAGATTCAG CCGCAGTTTCCAGTGTGTTG 194 104.32 KT884509.1
il6 AGGAAGTCTGGCTGTCAGGA GCCCTGAGGCCTTCAAGATT 250 95.06 JN806222.1

tgf β CGATGTCACTGACGCCCTGC AGCCGCGGTCATCACTTATC 107 90.00 GQ205390.1
il1β CGACATGGTGCGGTTTC TCTGTAGCGGCTGGTGG 151 91.95 EF582837.1
il10 ACACAGCGCTGCTAGACGAG GGGCAGCACCGTGTTCAGAT 104 91.86 KJ741852.1

hsp70 CTTGCAAGAAGTGGCCAACA AAAGCCATCTTCCTGCCTTGT 131 94.03 EU816600.1

Notes: sod, superoxide dismutase; cat, catalase; il6, interleukin 6; tgfβ, transforming growth factor β; il-1β,
interleukin 1β; il10, interleukin 10; hsp70, heat shock protein 70.

2.5. Statistical Analysis

Results are presented as “means ± standard error (SEM)”. Before performing a
one-way analysis of variance (ANOVA), all data were tested for normality distribution
(Kolmogorov–Smirnov test) and homogeneity of variances (Levene’s test), followed by
Duncan’s multiple range tests. A p-value < 0.05 was considered significant. All statistical
analyses were performed using SPSS version 20.0 ((SPSS Inc., Michigan Avenue, Chicago,
IL, USA)) for Windows.

3. Results
3.1. Growth Performance

The growth performance data are presented in Figure 1, providing insights into the
differences among various groups. Notably, the FBW and WGR of the S6 group were
significantly lower compared to the other groups (p < 0.05), while the S2 group exhibited
the highest FBW, WGR and SGR values. However, these values did not significantly differ
from those of the S1 group (p > 0.05). Furthermore, the FCR values for the S3, S5 and S6
groups were notably higher than those for the S1 and S2 groups, with the S6 group having
the highest FCR value (p < 0.05). It is worth mentioning that the dietary levels of α-lipoic
acid had no significant impact on SR (p > 0.05).

3.2. Serum Antioxidant Indexes

As depicted in Table 3, α-lipoic acid significantly enhanced the activities of antioxidant
enzymes, including serum CAT, SOD, and GSH-Px in hybrid grouper. These enhancements
were most pronounced in the S5 group, with all three enzymes reaching their maximum
levels (p < 0.05). Notably, no significant change was observed in T-AOC.

3.3. Liver Antioxidant and Immune Indexes

As shown in Table 4, α-lipoic acid resulted in a significant reduction of ROS and MDA
levels in the liver of hybrid groupers. In addition, liver CAT, SOD enzymes activities and
T-AOC content showed a significant increase with increasing α-lipoic acid levels, reaching
their peak values in the S5 group (p < 0.05). Furthermore, the enzyme activities of GSH-Px
and AKP were significantly higher in all groups except the S3 group than in the S1 group
(p < 0.05). Conversely, liver AST, ALT, ACP enzyme activities and IgM content remained
largely unchanged despite variations in α-lipoic acid concentration (p > 0.05).

3.4. Liver Histology

The results of HE staining of the liver are shown in Figure 2. The hepatocytes of the
S2 and S3 groups had complete hepatic lobules and clear cell outlines. In group S1, we
observed karyopyknosis and fat vacuolization. In group S4, hepatocellular vacuolation
was observed. Hepatocytes in the S5 group show punctate necrosis. In group S6, there was
karyopyknosis, punctate necrosis and inflammation.
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Figure 1. Effect of α-lipoic acid levels on growth performance of hybrid grouper. WGR, weight gain
rate; FBW, final body weight; SGR, specific growth rate; FCR, feed conversion ratio; SR, survival rate.
S1, control group. S2, 0.04% α-lipoic acid supplement group; S3, 0.08% α-lipoic acid supplement
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Table 3. Effect of α-lipoic acid levels on serum antioxidant parameters.

Group CAT (U/mL) T-AOC (U/mL) SOD (U/mL) GSH-Px (U/L)

S1 25.21 ± 2.06 a 13.13 ± 0.96 62.06 ± 3.33 a 62.89 ± 3.53 a

S2 29.02 ± 2.01 ab 12.47 ± 0.34 83.4 ± 2.94 b 73.79 ± 8.01 ab

S3 30.07 ± 1.91 ab 13.01 ± 0.54 87.88 ± 4.63 b 75.53 ± 4.56 abc

S4 34.51 ± 3.41 b 14.21 ± 1.67 97.16 ± 6.16 b 92.41 ± 4.99 cd

S5 44.51 ± 2.95 c 15.61 ± 1.26 117.03 ± 7.68 c 102.04 ± 5.53 d

S6 36.51 ± 1.53 b 14.46 ± 1.04 90.71 ± 4.41 b 82.18 ± 6.25 bc

Notes: Values in the table are means ± SEM (n = 3); Values in the same column with the same superscript letter
or absence of superscripts are not significantly different (p > 0.05). S1, control group. S2, 0.04% α-lipoic acid
supplement group; S3, 0.08% α-lipoic acid supplement group; S4, 0.12% α-lipoic acid supplement group; S5, 0.16%
α-lipoic acid supplement group; S6, 0.2% α-lipoic acid supplement group.

Table 4. Effects of α-lipoic acid levels on liver antioxidant and immunity parameters.

Group S1 S2 S3 S4 S5 S6

ROS
(U/mg.pro) 352.65 ± 4.44 c 370.31 ± 9.79 c 292.77 ± 27.48 b 225.17 ± 13.39 a 253.06 ± 10.86 ab 269.87 ± 5.34 ab

MDA
(nmol/mg.pro) 15.98 ± 0.81 c 16.03 ± 1.34 c 13.29 ± 0.82 b 9.65 ± 0.68 a 7.84 ± 0.26 a 8.93 ± 0.4 a

CAT
(U/mg.pro) 38.44 ± 5.69 a 60.74 ± 6.29 b 52.33 ± 4.51 ab 62.3 ± 3.32 b 79.08 ± 3.28 c 56.45 ± 4.45 b

T-AOC
(U/mg.pro) 9.55 ± 0.61 a 15.98 ± 1.19 b 15.55 ± 1.62 b 15.67 ± 1.17 b 21.28 ± 1.01 c 16.19 ± 0.67 b
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Table 4. Cont.

Group S1 S2 S3 S4 S5 S6

SOD
(U/mg.pro) 118.27 ± 2.52 a 174.78 ± 1.01 b 168.09 ± 22.81 b 166.15 ± 10.66 b 179.57 ± 2.41 b 163.09 ± 16.62 b

GSH-Px
(mU/mg.pro) 125.57 ± 11.45 a 178.02 ± 18.18 b 150.48 ± 6.5 ab 165.11 ± 15.59 b 178 ± 8.01 b 168.58 ± 4.94 b

AKP
(mIU/mg.pro) 11.89 ± 1.95 a 20.32 ± 2.2 b 16.14 ± 0.8 ab 21.02 ± 0.27 b 17.88 ± 1.45 b 19.13 ± 1.19 b

ACP
(mU/mg.pro) 14.80 ± 1.22 12.65 ± 1.28 12.6 ± 1.61 14.75 ± 0.17 14.18 ± 1.39 11.9 ± 1.05

AST
(mU/mg.pro) 20.11 ± 1.28 17.18 ± 1.57 17.53 ± 2.54 17.84 ± 0.24 15.03 ± 2.62 16.31 ± 1.07

ALT
(mU/mg.pro) 9.54 ± 0.6 10.86 ± 1.45 9.24 ± 1.49 8.85 ± 1.46 7.72 ± 1.01 9.04 ± 0.47

IgM
(ug/mg.pro) 49.58 ± 3.52 54.84 ± 4.36 51.17 ± 1.85 52.17 ± 4.7 56.94 ± 5.24 51.14 ± 2.31

LYZ
(mU/mg.pro) 6.49 ± 0.62 a 9.87 ± 0.34 c 8.12 ± 0.53 b 9.00 ± 0.56 bc 9.51 ± 0.56 bc 9.24 ± 0.23 bc

Notes: Values in the table are means ± SEM (n = 3); Values in the same column with the same superscript letter
or absence of superscripts are not significantly different (p > 0.05). S1, control group. S2, 0.04% α-lipoic acid
supplement group; S3, 0.08% α-lipoic acid supplement group; S4, 0.12% α-lipoic acid supplement group; S5, 0.16%
α-lipoic acid supplement group; S6, 0.2% α-lipoic acid supplement group.
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Figure 2. Effect of α-lipoic acid levels on the histological structure of liver (HE 400×). Notes: A, kary-
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S1, control group. S2, 0.04% α-lipoic acid supplement group; S3, 0.08% α-lipoic acid supplement
group; S4, 0.12% α-lipoic acid supplement group; S5, 0.16% α-lipoic acid supplement group; S6, 0.2%
α-lipoic acid supplement group.
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3.5. Antioxidant and Immune-Related Gene Expression in Liver

As shown in Figure 3, the expression of antioxidant genes superoxide dismutase (sod)
and catalase (cat) (p < 0.05) was significantly upregulated in the liver except for the S6
group, and the expression of pro-inflammatory cytokine interleukin 1β (il1β) gene was
significantly inhibited in the S2 group (p < 0.05), while the expression levels of interleukin 6
(il6) gene mRNA were significantly upregulated in the S5 and S6 groups (p < 0.05). The
expression of the anti-inflammatory factors interleukin 10 (il10) and transforming growth
factor β (tgfβ) showed a significant upward and then downward trend, and the expression
level of il10 in all groups was significantly higher than that in the control group S1, except
for the S2 and S6 groups, while the expression of tgfβ in all groups was significantly higher
than that in the S1 group (p < 0.05). The expression level of the heat shock protein 70
(hsp70) was the lowest in the S2 group, but there was no significant difference between the
treatment groups and the S1 group (p > 0.05).
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immune-related in hybrid grouper. Values are means ± SE (n = 3). S1, control group. S2, 0.04%
α-lipoic acid supplement group; S3, 0.08% α-lipoic acid supplement group; S4, 0.12% α-lipoic acid
supplement group; S5, 0.16% α-lipoic acid supplement group; S6, 0.2% α-lipoic acid supplement
group. Notes: Different letters assigned to the bars represent significant differences (p < 0.05).

4. Discussion

In our study, the parameters FBW (final body weight), WGR (weight gain rate) and
SGR (specific growth rate) exhibited an increasing trend followed by a decrease with
escalating levels of dietary α-lipoic acid supplementation. WGR reached their peak in
group S2, showing no significant difference from the control group. However, FBW, WGR
and SGR were significantly reduced at 2000 mg/kg alpha lipoic acid levels in the S6 group
compared to the control group. Additionally, FCR (feed conversion ratio) in the S3, S5
and S6 groups significantly increased with higher α-lipoic acid levels. This phenomenon
could be attributed to the reduced appetite and feeding behavior in fish due to the high
concentration of α-lipoic acid, resulting in a significant decline in their overall growth
performance. These findings align with previous studies, such as the research on Trachinotus
marginatus, where α-lipoic acid inclusion at 316.4–524 mg/kg significantly improved WGR.
However, at higher levels (890 and 1367 mg/kg), WGR diminished significantly, and
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FCR increased markedly [24]. Similarly, adding 1200 mg/kg α-lipoic acid to the diet of
grass carp (Ctenopharyngodon idella) resulted in reduced feed intake and decreased FBW
and WG [25]. Furthermore, in Haliotis discus hannai, WGR was enhanced when α-lipoic
acid was included in the feed, peaking at 800 mg/kg, but declined considerably at 1600
and 3200 mg/kg [16]. In summary, the addition of α-lipoic acid to the diet positively
influences animal growth within specific concentration ranges. However, excessive levels
of α-lipoic acid can suppress appetite and food intake, ultimately hampering overall growth
performance. These observations emphasize the importance of carefully regulating α-lipoic
acid supplementation to optimize growth outcomes in fish.

The antioxidant defense mechanism of the body is a set of antioxidant enzymes, in-
cluding T-AOC, CAT, SOD and GSH-Px, which protect the body from damage caused by
reactive oxygen species [26,27]. CAT also plays an important role in the antioxidant defense
of the body by converting H2O2 to O2 and water, thus protecting cells from damage caused
by hydrogen peroxide [28,29]. In addition, glutathione peroxidase (GSH-Px), an important
peroxidolytic enzyme widely present in the organism, reduces toxic peroxides to non-toxic
hydroxyl compounds, thus protecting cell structure and function from peroxide interfer-
ence and damage [29,30]. Excessive fat intake and deposition can aggravate the degree of
oxidative damage in the organism [4,31]. The oxidative and antioxidant defense systems in
animals are in a dynamic equilibrium under normal physiological conditions, and when
the organism is stressed, the intracellular mitochondrial morphology is altered, leading to
abnormal function and the production of ROS [32,33]. High levels of ROS tend to attack
important intracellular biomolecules such as lipids, proteins and nucleic acids, triggering
oxidative stress in the organism [34,35]. Malondialdehyde (MDA) is a product of the perox-
idation of polyunsaturated fatty acids, and its level is a measure of the degree of oxidative
stress [27,36,37]. In the present experiment, CAT, SOD and GSH-Px enzyme activities in
serum and liver, as well as T-AOC in the livers of groupers, were significantly increased
with increasing α-lipoic acid concentration, while ROS and MDA levels were significantly
decreased. This suggests that α-lipoic acid as an additive can attenuate oxidative damage
in the body by enhancing the activity of free radical scavenging enzymes and improving
the antioxidant capacity of hybrid grouper. Similarly, a study in grass carp concluded that
α-lipoic acid as a feed additive could modulate the antioxidant defense system of the fish,
significantly increase the activity of antioxidant enzymes in the liver and serum, reduce
MDA accumulation and attenuate the toxic effects of lipid peroxidation [38]. The same
findings were also demonstrated in the Chinese mitten crab (Eriocheir sinensis) [39], carp
(Cyprinus carpio) [38] and tilapia (Oreochromis niloticus) [12]. This also corresponds to the
improvement of the liver structure. Alkaline phosphatase (AKP) plays a crucial role in the
regulation of animal metabolic processes, helps to maintain a stable internal environment
and organism health [40,41], and is associated with organism growth [42–44]. On the other
hand, lysozyme (LYZ) has been identified as a significant defense factor for vertebrates
against invading microorganisms [44–46]. LYZ is effective in lysing Gram-positive bac-
teria, killing Gram-negative bacteria and promoting phagocytosis, either by regulation
or through the activation of polymorphonuclear leukocytes and macrophages [47–49]. In
the course of our experiment, we observed that α-lipoic acid significantly increased the
activities of AKP and LYZ enzymes in the liver. This suggests that the addition of α-lipoic
acid may enhance the antimicrobial capacity. Additionally, a similar effect was noted when
600 mg/kg of α-lipoic acid was added to the feed of Nile tilapia, which led to a notable
increase in the activity of LYZ in serum [15]. Likewise, the introduction of 351 mg/kg
of α-lipoic acid significantly boosted LYZ activity and IgM levels in the serum of grass
carp [50]. Collectively, these results indicate that α-lipoic acid has the potential to enhance
an organism’s immunity.

The histological liver morphology, as determined through HE staining, serves as a
critical indicator for evaluating the physiological well-being of the fish and identifying
the presence or absence of liver lesions [51]. Previous research has established that high-
lipid diets can induce liver damage, characterized by nucleus displacement, nucleolysis,
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loss of cell structure and cellular vacuolization [52,53]. Our examination of liver sections
revealed partial damage in groups S1, S4, S5 and S6. In a prior study, we successfully
mitigated similar liver pathologies by supplementing with VE [54], choline [3] and tea
polyphenols [53]. In the current study, α-lipoic acid produced similar beneficial effects,
which can likely be attributed to its role as an antioxidant. This role enhances the organism’s
antioxidant capacity, effectively scavenging lipid peroxidation resulting from high-fat diets.
This, in turn, safeguards the organism’s health and preserves normal liver metabolism.

The activity of antioxidant enzymes plays an important role in the antioxidant defense
system, and their activity levels are regulated by antioxidant enzymes-related genes, such as
sod and cat. In the present experiment, the mRNA expression levels of both sod and cat were
significantly upregulated in the liver with increasing levels of α-lipoic acid addition, which
is consistent with the trend of their enzyme activities, again confirming that α-lipoic acid
can improve the antioxidant capacity of the organism. It was found that the upregulation
of pro-inflammatory factors and the downregulation of anti-inflammatory cytokines leads
to inflammatory responses in fish [38]. il1β is an important member of the il1 family, which
is of interest due to its important role in inflammation-related diseases [55]. il1β has strong
pro-inflammatory activity and induces a variety of pro-inflammatory mediators, such as
cytokines and chemokines, and its local activation is central to mediating pro-inflammatory
responses that lead to the activation of secondary inflammatory mediators (including
il6) [53,56]; il-10 and tgfβ are important anti-inflammatory factors that significantly reduce
inflammation by inhibiting the expression of pro-inflammatory factors [15]. In the present
study, the expression of the pro-inflammatory factor il1β was significantly downregulated
in the S2 group, while the expression of il6 was significantly upregulated in the S5 and S6
groups with increasing α-lipoic acid concentration. Conversely, the mRNA expression of
both the anti-inflammatory factor il10 and tgfβ was significantly upregulated, which may
represent a feedback response of the organism to the upregulation of pro-inflammatory
factors. Under normal physiological conditions, the expression level of hsp70 is typically
low, but it rapidly and significantly increases in response to external stimuli [11,57,58].
In this experiment, the hsp70 expression level in all groups did not significantly differ
from the S1 group, except in the S2 group, where it was significantly lower than in the
S4, S5 and S6 groups. This could be attributed to the organism’s relatively high immunity
when α-lipoic acid was added at 400 mg/kg. Currently, α-lipoic acid has been shown to
enhance immune responses in mammals, with the addition of 900 mg/kg α-lipoic acid
to the diet significantly elevating serum levels of interleukin 2 (il2) and decreasing levels
of inflammatory cytokines, such as il1β, il6, and tnfα in fattening pigs [59]. Similarly, the
addition of 100 mg/kg α-lipoic acid to feed significantly down-regulated the expression
level of tnfα in rat liver [60]. In aquatic animals, the addition of appropriate amounts of
α-lipoic acid to feed significantly up-regulated the levels of inflammatory cytokines such
as tgfβ1, growth transformation factor β2 (tgfβ2), white fine il10 and interleukin 11 (il11) in
the head, kidney and spleen of grass carp [25]. This is also consistent with the results of this
experiment. In conclusion, the addition of α-lipoic acid to a high-lipid diet can improve the
immunity of the organism by regulating the expression of non-specific related genes and
altering enzyme activities.

5. Conclusions

In this experiment, 2000 mg/kg of α-lipoic acid can inhibit grouper growth. At the
appropriate level of supplementation (400–800 mg), it can improve the shape of liver cells
in the liver, but excess (1600–2000 mg) can lead to inflammation of liver cells and punctate
necrosis. In the 400–1600 mg/kg α-lipoic acid groups, antioxidant activity, immunoenzyme
activity and expression of antioxidant and immune-related genes could be improved to a
certain extent. In summary, the recommended supplemental dose of alpha lipoic acid is
400–800 mg/kg.
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