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Abstract: Sugarcane straw (Saccharum officinarum) is a valuable coproduct renowned for its abundant
polyphenolic content. However, extracting these polyphenols for natural ingredients faces challenges
due to their inherent variability, influenced by biotic stress factors and plant characteristics. We
explored the impact of five crucial factors on sugarcane straw polyphenolic diversity: (i) production
area (Guariba, Valparaíso), (ii) borer insect (Diatraea saccharalis) infestation, (iii) plant age (first to
seventh harvest), (iv) harvest season, and (v) plant variety. Response surface methodology (RSM)
and artificial neural networks (ANN) were used to optimize polyphenol extraction conditions. A
second-order polynomial model guided us to predict ideal sugarcane straw harvesting conditions
for polyphenol-rich extracts. The analysis identified CU0618-variety straw, harvested in Guariba
during the dry season (October 2020), at the seventh harvest stage, with 13.81% borer insect infection,
as the prime source for high hydroxybenzoic acid (1010 µg/g), hydroxycinnamic acid (3119 µg/g),
and flavone (573 µg/g) content and consequently high antioxidant capacity. The ANN model
surpasses the RSM model, demonstrating superior predictive capabilities with higher coefficients of
determination and reduced mean absolute deviations for each polyphenol class. This underscores the
potential of artificial neural networks in forecasting and enhancing polyphenol extraction conditions,
setting the stage for AI-driven advancements in crop management.

Keywords: Saccharum officinarum; straw; modeling; polyphenols; biotic and abiotic factors

1. Introduction

Brazil is a relevant food producer as well as the world’s top producer of sugarcane
(Saccharum spp.), and the National Supply Corporation—CONAB (2019) reported that
during the 2018–2019 harvest, there was about 8.59 million hectares of cultivated land and
620.44 million tons of output. The state of São Paulo was the country’s most significant
producer, representing 53.65% of the total processed sugarcane production [1]. Straw
residues, often dumped after harvest, are one of the several by-products of sugar production
that are generated in large amounts. Those quantities have increased since harvesting
transitioned from burning to mechanized [2]. The straw represents a sustainable source
of polyphenols, due to the presence of 2,5-dihydroxybenzoic acid, caffeoylquinic acid
derivatives, flavones (derivatives of luteolin, apigenin, and tricin), and phenolic acids
(sinapic, caffeic, and ferulic acids) [3].

In recent years, the development of novel ingredients that can function as reaction
chain breakers and scavengers of damaging free radicals and reactive oxygen species and
their use in many applications has led to an expansion of the global polyphenol economy.
They have been used as food additives and in brewing goods like liquors and wines (e.g., in
baked products, noodles, and pasta) [4,5], as well as in cosmetics to delay the onset of skin
aging and enhance moisture and smoothness while reducing roughness and wrinkles [6].
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Polyphenols protect against oxidative stress from ultraviolet (UV) irradiation, which is
responsible for cutaneous damage and skin cancer [7]. Favorable food safety regulations
and increasing public awareness of the health benefits drove the global polyphenol market
to 1.6 billion USD in 2020. Projections indicate it will reach 2.7 billion USD by 2030, boasting
a 5.2% compound annual growth rate, propelled by expanded usage in the food, beverage,
pharmaceutical, and cosmetic industries in the following years [8].

Previously reported findings indicated that phenolic compounds in sugarcane straw
extracts are mainly hydroxycinnamic acids, with concentrations reaching approximately
1460.39 µg/g. Chlorogenic acid, neochlorogenic acid, and p-coumaric acid dominate this
group. Hydroxybenzoic acids form the second-most prevalent class, with concentrations
around 727.36 µg/g, while 1-O-vanilloyl-β-D-glucose, 2,4-dihydrobenzoic acid, and 3,4-
dihydroxybenzaldehyde are the most abundant compounds in this category. Among
phenolic compounds, flavones are the least abundant, at 77.56 µg/g. Remarkably, vitexin
and isoorientin are the most abundant compounds in this class. These phenolic compounds
have been shown to possess potent antioxidant properties, which may contribute to their
potential use in various food and pharmaceutical applications [9].

Turning attention to the production of polyphenolic extracts from plant sources, a
critical consideration is predicting optimal harvest conditions, especially when dealing with
by-products. Plants produce phenolic compounds naturally during growth or as responses
to various stimuli, including injuries, infections, or environmental stressors such as heavy
metal salts, UV irradiation, and temperature fluctuations [10]. These variables, called
abiotic and biotic factors, alter the amount and kind of phenolic chemicals [11,12]. Abiotic
factors encompass the nonliving components of the environment, including chemical and
physical elements, which influence the behavior of living organisms and the functioning
of ecosystems. These factors include soil, water, air, temperature, moisture, and light. In
contrast, biotic factors refer to any living organism that affects another organism. Alongside
the effects of animals and humans, biotic elements frequently encompass plants, fungi, and
microorganisms [10].

In the context of advancing technology, machine learning (ML) and deep learning (DL)
within artificial intelligence (AI) have emerged as promising fields with significant potential
to enhance various aspects of agricultural practices, including sugarcane crop production
and the extraction of valuable by-products such as polyphenols. AI technologies, including
artificial neural networks (ANNs), offer valuable tools for collecting and analyzing diverse
data in ways that can significantly enhance sugarcane crop production. Recent studies
have demonstrated the potential of ML and DL in various aspects of sugarcane production,
including crop yield prediction, determination of soil agricultural aptitude, weed identi-
fication, and classification of sugarcane varieties. ANNs, in particular, show promise as
prognostic tools in modeling studies related to plant cultures, indicating their potential
to contribute to the optimization of sugarcane production and the extraction of valuable
by-products such as polyphenols [13–16].

The present study determines how biotic (borer infection, harvestings) and abiotic
(geographic zone and season) factors affect polyphenol content (hydroxybenzoic acid,
hydroxycinnamic acids, and flavones) in straw from different sugarcane varieties as a
potential by-product to produce natural extracts. An estimation was performed with
modeling efficiencies of response surface methodology (RSM) and artificial neural networks
(ANNs), and they were statistically compared using various parameters, such as coefficient
of determination (R2) and root mean square error (RMSE).

2. Materials and Methods
2.1. Sampling Plan

To study the impact of two abiotic factors (geographic zone and season) on sugarcane
straw polyphenol richness, the samples were collected during the year 2020 between June
and October and from two different geographic areas separated by 274 km (Guariba and
Valparaíso, both in São Paulo, Brazil).
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At the level of biotic stress, plant samples were selected with a precise level (4–11%)
and a low level (0–4%) of borer (Diatraea saccharalis) infection and plants from different
harvestings (1st–7th). For the study, the sugarcane variety was also considered (SP813250,
SP803280, CU0618, RB985476, CTC4, CU7870, CTC15, RB966928, CTC9001). Figure 1
describes the sampling information used in this study.
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Figure 1. Sampling plan for the sugarcane straw biotic and abiotic effects evaluated in polyphe-
nol content.

Samples of 5 kg of straw were systematically collected for each specific combination
of variables, including variety, geographic area, season, borer infection level, and plant
age (Figure 1). During the sugar extraction harvest, a field worker carefully separated and
air-dried the straw before packing it for transport from Brazil to Portugal. The samples
were air-shipped at room temperature to the CBQF-UCP laboratory in Porto, Portugal.
Subsequently, the material underwent a drying process at 40 ◦C for 12 h using a ventilated
oven (Memmert GmbH + Co.KG, Schwabach, Germany), followed by milling with a grinder
(SM100, Retsch, Vila Nova de Gaia, Portugal) to achieve a particle size less than 4 mm.
Straw was stored at room temperature and protected from light until beginning assays.

2.2. Polyphenolic Extract Production from Sugarcane Straw

In brief, dried sugarcane straw powder was extracted with 50% (v:v) ethanol in ratio
biomass: solvent of 1:10 (w:v) during 24 h at 30 ◦C under agitation at 120 rpm (Innova
40 New Brunswick, Eppendorf, Hamburgo, Germany) and protected from light. The
solid and liquid fractions were separated by filtration with gauze, and the liquid fraction
was centrifuged at 18.671× g for 10 min (Sorvall Lynx 4000 centrifuge, Thermo Scientific,
Waltham, MA, USA). The ethanol was removed from the liquid fraction evaporation under
vacuum with a rotary evaporator at 50 ◦C, 150 mbar (Heidolph, Walpersdorfer, Germany).
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The obtained aqueous fraction was further applied to an Amberlite XAD-2 (Sigma-
Aldrich, St. Louis, MO, USA) resin for subsequent purification. The Amberlite XAD-2 was
washed with methanol and three times with deionized water. The resin was preconditioned
for 12 h in ultrapure water before being used. The resin was used in a ratio of 1:2 (v:w)
and left under agitation of 100 rpm overnight at room temperature. After that, the resin
was isolated and washed twice with deionized water at pH 2 to remove any adsorbed
sugar. The desorption of the phenolic compounds was performed in two steps, first with
a 50% ethanolic solution acidified at pH 2 (HCL, 10 M) under the agitation of 100 rpm at
37 ◦C overnight and a second desorption in the same conditions for 1 h. The ethanolic
extracts were combined and recovered by decantation and filtration (type I filter, V Reis,
Lisbon, Portugal). The ethanol was evaporated with a rotary evaporator (50 ◦C; 150 mbar),
and the dried extracts were obtained by freeze-drying (Martin Christ, Osterode am Harz,
Germany) for further characterization [3]. Extraction was conducted in triplicate for each
sampling condition.

2.3. Phenolic Compounds and Organic Acid Analysis by LC-ESI-UHR-QqTOF-MS

The identification and quantification of all phenolic compounds were conducted using
liquid chromatography—electrospray ionization—ultrahigh-resolution—quadruple time
of flight—mass spectrometry (LC-ESI-UHR-QqTOF-MS) [17]. The dried extracts were
first dissolved in a 50% ethanol solution to reach a final concentration of 50 mg/mL and
subsequently filtered through a 0.45 µm filter before injection. Separation was carried
out on a Bruker Elute series instrument equipped with a UHR-QqTOF mass spectrometer
(Impact II, Bruker Daltonics, Bremen, Germany) and a BRHSC18022100 Intensity Solo 2
C18 column (100 × 2.1 mm, 2.2 µm, Bruker, Bremen, Germany).

The separation process involved a flow rate of 0.25 mL/min and followed this elution
gradient: 0 min, 0% B; 10 min, 21.0% B; 14 min, 27% B; 18.30 min, 58%; 20.0 min, 100%;
24.0 min, 100%; 24.10 min, 0%; 26.0 min, 0%. The mobile phases used were A (0.1% aqueous
formic acid) and B (acetonitrile with 0.1% formic acid).

For the mass spectrometry acquisition, negative ionization mode was employed,
with these selected parameters: end-plate offset voltage, 500 V; capillary voltage, 3.0 kV;
drying gas temperature, 200 ◦C; drying gas flow, 8.0 L/min; nebulizing gas pressure, 2 bar;
collision radio frequency (RF), ranging from 250 to 1000 Vpp; transfer time, from 25 to 70 µs;
collision cell energy, 5 eV. Sodium formate clusters were used for internal mass calibration.
Elemental composition was confirmed based on accurate mass and isotope rate calculations
designated as mSigma (Bruker Daltonics), and phenolic compounds were identified using
their accurate mass [M-H]− using the Bruker Compass DataAnalysis software (version
5.1, Bruker Daltonic GmbH, Bremen, Germany). Quantification results are expressed in
micrograms per gram of dry extract.

2.4. Antioxidant Activity

The 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt radical
cation (ABTS) decolorization experiment was carried out [18] with an ABTS solution
prepared by mixing it with K2S2O8 solution at a 1:1 ratio and kept in the dark for 16 h.
The solution was diluted with deionized water to achieve an initial OD of 0.700 ± 0.020 at
734 nm. Five sample concentrations were prepared through a 1:1 dilution, starting with
a 6.25 mg/mL concentration. Each sample (15 µL, duplicated) was mixed with 200 µL of
ABTS, incubated for 5 min at 30 ◦C in a microplate reader (Synergy H1, Biotek, Winooski,
VT, USA), and the OD was measured at 734 nm after incubation.

The DPPH radical cation decolorization assay [18] involved the production of a solu-
tion with an OD of 0.600 ± 0.100 at 515 nm by mixing 600 µM of DPPH solution (Sigma-
Aldrich, St. Louis, MI, USA) with methanol. Five sample concentrations were prepared
through a 1:1 dilution, starting at 6.25 mg/mL. In a microplate, 25 µL of each sample (du-
plicated) was mixed with 175 µL of DPPH solution, followed by 30 min room-temperature
incubation. The OD was then measured at 515 nm using a microplate reader.
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For both methodologies, Trolox standard solutions (0.075–0.008 mg/mL) were used
for the calibration curve, and the results are expressed as IC50 (mg/mL).

2.5. Response Surface Methodology (RSM)

Collection time (date) (X1), variety (X2), geographical area (X3), borer infection level
(%) (X4), and harvest number (X5) were modulated according to a central composite design
(CCD). For that, the STATISTICA version 14.0.0.5 (TIBCO Software Inc., Palo Alto, CA, USA)
was used. Although the variety variable was not controlled, its significance in influencing
polyphenol variability in plants was duly considered for the study. Response variables
were estimated using the response surface model described by the following second-order
polynomial equation (Equation (1)):

Y = β0 + β1X1 + β2X2 + β3X3 + β4X2
1 + β5X2

2 + β6X2
3 + β7X1X2 + β8X1X3 + β9X2X3 (1)

where X1, X2, X3, X4, and X5 represent the levels of the factors. β0–β9 represent the coeffi-
cient estimates. The variables present in quadratic terms represent the surface curvature, the
variables present in linear terms represent the coordinates of the maximum value predicted,
and the variables present in bi-factorial cross products represent the axes of the geometric
figure formed by partitioning the surface area. The impact of the combinations of the four
independent variables on the total phenolic content and phenolic classes’ concentration
was examined using the response surface approach.

The optimization of the multi-criteria response surface is based on Derringer’s desir-
ability function. The function converts each variable’s answer into a score of desirability (d)
that ranges from 0 (totally unpleasant) to 1 (entirely desirable). The function can be maxi-
mized, minimized, or reach a specific goal based on the optimization criterion employed.
The desirability function for response variables takes the form of the following equation:

di = 0, i f yi ≪ y(i,min)

di =
[((

yi − y(i,min)

))
/
((

y(i,max) − y(i,min)

))](wi)

di = 1, i f yi ≫ y(i,max)

(2)

where yi,min, and yi,max are the minimum and maximum desired levels of each response
variable i, and here the highest and the lowest values of the corresponding quality attribute.
Responses below yi,min were assigned a 0 desirability, while responses above yi,max were
assigned a desirability of 1. Between yi,min, and yi,max, the desirability increased linearly by
assigning a weight (wi) of one. A predictive model was used to find the best conditions to
obtain the maximum polyphenols in the extracts.

2.6. Artificial Neural Networks (ANNs)

STATISTICA version 14.0.0.5 (TIBCO Software Inc.) was used to build and analyze
different neural networks to investigate the influence of the input parameters (collection
data, production area, borer infection, harvest number, and variety) on the three outputs.
From now on, the outputs will be referred to as hydroxybenzoic acids, hydroxycinnamic
acids, and flavones.

Data were analyzed using two different types of neural networks: the regression
network and the Kohonen network (KN) for categorization (multilayer perceptron, MLP).
The experimental dataset was used to generate the RSM model and the ANN models.
Of the experimental dataset, 70% (19 points) were used for network training, 15% for
validation, and the remaining 15% (4 points) for network testing.

Automated neural networks cluster analysis using the Kohonen training procedure,
with the training, testing, and validation data used to build the network. After that,
regression neural networks (MLP) were automatically searched for 20 MLP networks,
in which all were trained, and five of them were chosen for retention based on their
performance throughout training, testing, and validation. The identity, logistic, Tanh,
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and exponential activation functions were examined for hidden and output neurons. An
effective second-order training method was utilized, and the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm was selected. The training algorithm made use of the radial
basis function. The activation functions for hidden and output neurons were Gaussian and
identity functions. The sum of squares (SOS) was employed as the error function for MLP
networks. The Pearson correlation coefficient between experimentally determined values
and values predicted by neural networks was measured to evaluate the effectiveness of the
proposed neural network models. A global sensitivity analysis was conducted to assess
the input variables’ relative significance for the created neural network models. Upon
determining the optimal configuration for the ANN method, we conducted a sensitivity
analysis to unveil the significance of each operational variable and pinpoint the components
crucial for predicting fouling resistance. We applied Equation (3) to achieve this, leveraging
the partitioning of connection weights outlined in the Garson equation.

RIx =

∑kh
b=1

((
|W xb |

∑
ki
a=1 |W ab |

)
× |Vb|

)
∑

kp
a=1

(
∑kh

b=1

(
|W xb |

∑
ki
a=1 |W ab |

)
× |Vb|

) (3)

In Equation (3), RI denotes the relative importance of the input variable (x) regarding
the output variable. Here, ki and kh refer to the count of input and hidden neurons, while
Wab signifies the connection weights between the input layer and the hidden layer, and
Vb represents the connection weight between the hidden layer and the output layer. It is
important to clarify that the numerator in Equation (3) signifies the summation of absolute
weight products for each input. Conversely, the denominator corresponds to the total of all
weights contributing to the hidden unit, considering absolute values.

2.7. Comparison of the Prediction Ability of RSM and ANN

The construction of several statistical parameters, including the coefficient of deter-
mination (R2) and the root mean square error (RMSE), was employed to compare the
estimation skills of response surface methodology (RSM) and artificial neural network
(ANN) in the context of the study. RSM is a set of statistical methods used for optimizing
process variables, and it involves the calculation of summary statistics such as RMSE,
adjusted R2, and predicted R2. The RMSE, which is the square root of the mean square error,
is the standard deviation associated with the experimental error. On the other hand, ANN
conducts a sensitivity analysis on each model and displays the results in a spreadsheet,
which rates the importance of the model’s input variables. The comparison of RSM and
ANN in the study involved the assessment of their prediction capacity based on the cal-
culated statistical parameters, providing valuable insights into their respective estimation
skills.

3. Results and Discussion
3.1. Individual Polyphenols Content

The list of individual polyphenols identified among all extracts is given in Table 1, and
the quantification of each compound is presented in Tables 2 and 3.

Table 1. Phenolic compounds identified in sugarcane straw extracts.

Compound Name Formula [M-H]− Fragments MS2

Hydroxybenzoic acids

1-O-Vanilloyl-β-D-glucose C14H18O9 329 167

Vanillic acid C8H8O4 167.0350 108, 119, 152

Protocatechuic acid C7H6O4 153.0193 109, 153
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Table 1. Cont.

Compound Name Formula [M-H]− Fragments MS2

2,5-Dihydrobenzoic acid C7H6O4 153.0193 109, 153

Gentisic acid 2-O-β-glucoside C13H15O9 315.0709 108, 152

Gentisic acid 5-O-β-glucoside C13H15O9 315.0709 109, 153

Protocatechuic acid 4-β-glucoside C13H15O9 315.0709 109, 153

4-Hydroxybenzoic acid C7H5O3 137.0221 137

3,4-Dihydroxybenzaldehyde C7H5O3 137.0221 93, 137

4-Hydroxybenzaldehyde C7H5O2 121.0276 121

Hydroxybenzoic-4-β-glucoside C13H15O8 299.0717 137

Hydroxycinnamic acids

Neochlorogenic acid C16H18O9 353.08781 135, 179, 191

Chlorogenic acid C16H18O9 353.08781 191

4-Caffeoylquinic acid C16H18O9 353.08781 135, 173, 179, 191

cis-5-O-p-Coumaroylquinic acid C16H18O8 337.09289 93, 163, 173, 191

5-O-Feruloylquinic acid C17H20O9 367.0971 134, 193

trans-3-Feruloylquinic acid C17H19O9 367.0596 173

Feruloylquinic acid isomers C17H20O9 367.0961 173, 191

Caffeic acid C9H8O4 179.0317 135, 179

Ferulic acid derivatives C10H10O4 193.05063 134, 191

Coumaric acid derivatives C9H8O3 163.04007 119, 163

Caffeoylquinic acid C16H18O9 515.11 515

4,5-Dicaffeoylquinic acid C25H24O12 515.11 173, 179, 191, 353

Caffeoylshikimic acid C16H16O8 335.071 135, 161, 179

Flavones

Apigenin-8-C-glucoside C21H20O10 431.09837 311, 341, 431

Isovitexin 2′′-O-arabinoside C26H27O14 563.14063 353, 443

Isoschaftoside C26H27O14 563.14063 353, 473

Neoschaftoside C26H27O14 563.14063 399, 473

Apigenin-6-C-glucosyl-8-C-arabinoside C26H28O14 563.14063 353, 443

Luteolin-6-C-glucoside C21H20O11 447.09329 327, 357

Luteolin-8-C-glucoside C21H20O11 447.09329 327, 357

Apigenin 7-O-neohesperidoside C27H29O14 577.1563 293, 413

Luteolin C15H10O6 285.04046 285

6-Methoxyluteolin 7-rhamnoside C22H21O11 461.1089 461

Diosmetin C16H12O6 299.0502 284, 299

Tricin-O-neohesperoside isomer C29H33O16 637.1638 329

Tricin-7-O-glucoside C25H31O10 491.1826 329

Tricin-7-O-rhamnosyl-glucuronide C36H27O12 651.144 329

Tricin-4-(O-erythro) ether glucoside C33H35O16 687.1786 195, 329, 491, 525

Tricin C17H13O7 329.0667 299
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Table 2. (a) Polyphenols identified with concentrations > 20 µg/g extract in sugarcane straw extracts
of plants collected in the Guariba area with borer infection (BHI) and low infection (BLI) between
June and August 2020 from different harvests (1st–7th). Values represent the average ± standard
deviation. (b) Polyphenols identified with concentrations > 20 µg/g extract in sugarcane straw
extracts of plants collected in the Guariba area with borer infection (BHI) and low infection (BLI)
between September and November 2020 from different harvests (1st–7th). Values represent the
average ± standard deviation.

(a)

Identified Compound

4 June 2020 3 July 2020 24 July 2020 8 August 2020

CTC9001 CTC9001 RB966928 RB966928 RB985476 CTC4

BHI BLI BHI BLI BHI BLI BHI BLI

1st H 1st H 1st H 7th H 1stH 1st H 1st H 3rd H

Hydroxybenzoic acids µg/g DW extract

1-O-Vanilloyl-β-D-glucose - - - - - - 301.1 ± 31.9 122.1 ± 78.3

Vanillic acid - - - - - - 72.9 ± 9.9 40.7 ± 19.2

2,5-Dihydrobenzoic acid 38.8 ± 0.4 122.0 ± 4.6 100.8 ± 8.7 43.5 ± 6.8 245.5 ± 17.3 171.3 ± 1.0 156.7 ± 5.5 135.4 ± 6.2

Gentisic acid 2-O-β-glucoside - - 4.6 ± 0.2 3.9 ± 0.7 32.2 ± 1.0 46.3 ± 3.8 32.3 ± 5.1 19.8 ± 0.1

Gentisic acid 5-O-β-glucoside 1.4 ± 0.1 3.2 ± 0.2 5.3 ± 0.3 3.8 ± 0.1 30.2 ± 0.8 67.3 ± 7.1 26.1 ± 2.2 14.3 ± 0.6

4-Hydroxybenzoic acid 0.2 ± 0.0 1.8 ± 0.1 7.7 ± 2.5 17.1 ± 0.9 48.5 ± 1.5 37.6 ± 4.8 28.2 ± 2.7 32.7 ± 0.2

4-Hydroxybenzaldehyde 16.4 ± 0.8 16.3 ± 0.8 36.9 ± 1.0 20.1 ± 1.9 20.8 ± 1.0 26.8 ± 1.0 22.6 ± 1.5 37.3 ± 2.2

Hydroxybenzoic-4-β-glucoside - - - - 9.4 ± 0.5 26.6 ± 0.9 5.0 ± 0.1 5.8 ± 0.3

Hydroxycinnamic acids µg/g DW extract

Neochlorogenic acid 0.8 ± 0.2 2.2 ± 0.1 1.4 ± 0.5 0.2 ± 0.0 52.3 ± 0.6 22.5 ± 0.3 55.1 ± 6.4 62.8 ± 1.0

Chlorogenic acid 1.9 ± 0.2 3.6 ± 0.1 4.8 ± 0.7 3.5 ± 1.9 165.7 ± 19.1 85.4 ± 0.5 106.0 ± 8.4 131.5 ± 4.1

4-Caffeoylquinic acid 1.2 ± 0.1 2.2 ± 0.1 0.8 ± 0.4 0.2 ± 0.0 26.5 ± 0.8 15.1 ± 0.5 28.0 ± 2.5 34.4 ± 1.4

5-O-Feruloylquinic acid 14.8 ± 1.3 54.5 ± 1.7 124.4 ± 10.3 18.2 ± 5.8 333.5 ± 26.9 200.1 ± 2.6 186.2 ± 6.9 240.3 ± 11.4

trans-3-Feruloylquinic acid - - 88.8 ± 4.4 17.9 ± 1.9 44.3 ± 1.7 27.1 ± 0.3 87.4 ± 5.8 121.9 ± 2.5

Feruloylquinic acid isomer 9.2 ± 1.2 25.1 ± 0.1 - - 169.5 ± 11.7 108.7 ± 1.7 11.7 ± 0.7 12.2 ± 0.2

Caffeic acid 1.7 ± 0.2 3.3 ± 0.1 8.1 ± 0.5 2.1 ± 1.7 17.8 ± 1.1 12.8 ± 0.2 11.5 ± 0.3 13.9 ± 1.4

Ferulic acid 14.3 ± 0.2 33.0 ± 0.1 42.2 ± 1.3 28.4 ± 0.8 57.9 ± 1.6 47.7 ± 3.8 40.6 ± 0.7 48.5 ± 0.7

p-Coumaric acid 63.9 ± 5.6 59.7 ± 0.9 120.6 ± 11.9 102.4 ± 17.3 63.8 ± 1.4 59.7 ± 11.0 74.2 ± 1.6 83.0 ± 2.5

Caffeoylquinic acid 3.2 ± 0.4 13.7 ± 0.6 24.1 ± 2.1 22.5 ± 5.0 38.3 ± 0.4 26.9 ± 0.8 37.2 ± 1.8 46.3 ± 3.2

Flavones µg/g DW extract

Apigenin-8-C-glucoside 13.5 ± 0.5 32.9 ± 1.1 38.6 ± 1.0 27.8 ± 0.9 127.9 ± 10.0 70.6 ± 5.0 72.2 ± 1.5 80.0 ± 1.6

Isovitexin-2′′-O-arabinoside 1.20 ± 0.1 4.3 ± 0.1 3.5 ± 0.2 3.7 ± 1.1 20.1 ± 1.9 27.7 ± 0.7 3.5 ± 0.3 2.0 ± 0.1

Isoschaftoside 17.07 ± 1.4 40.7 ± 2.6 44.1 ± 4.5 38.0 ± 7.0 4.7 ± 0.6 6.73 ± 0.1 55.4 ± 3.3 37.2 ± 1.1

Luteolin-6-C-glucoside - - 101.6 ± 6.5 56.9 ± 17.2 250.3 ± 42.1 221.0 ± 0.9 215.4 ± 20.9 290.1 ± 1.0

Luteolin-8-C-glucoside - - - - 42.9 ± 4.4 9.7 ± 0.5 22.3 ± 2.1 29.2 ± 1.8

Apigenin-7-O-neohesperidoside 4.1 ± 0.6 9.0 ± 0.3 2.6 ± 0.4 5.64 ± 1.2 28.9 ± 1.5 17.6 ± 1.1 14.3 ± 0.9 21.9 ± 0.2

Tricin 3.8 ± 0.1 7.3 ± 0.6 0.01 ± 0.0 0.01 ± 0.0 8.7 ± 0.5 9.7 ± 0.4 14.4 ± 1.0 14.3 ± 0.9

(b)

Identified Compound

22 September 2020 14 October 2020 16 November 2020

CU7870 RB985476 SP803280 SP803280

BHI BLI BHI BLI BHI BLI

4th H 4th H 2nd H 3rd H 5th H 5th H

Hydroxybenzoic acids µg/g DW extract

1-O-Vanilloyl-β-D-glucose 158.6 ± 14.0 60.1 ± 60.0 123.4 ± 1.3 126.4 ± 70.0 - -

Vanillic acid 51.9 ± 2.9 53.3 ± 0.3 52.0 ± 1.7 53.7 ± 19.0 38.4 ± 4.9 43.3 ± 7.3

2,5-Dihydrobenzoic acid 106.3 ± 25.5 102.9 ± 1.7 170.5 ± 5.8 155.8 ± 7.4 14.5 ± 0.6 16.1 ± 0.3

Gentisic acid 2-O-β-glucoside 19.0 ± 3.0 20.9 ± 1.6 27.4 ± 1.4 22.7 ± 0.2 0.4 ± 0.2 0.3 ± 0.3

Gentisic acid 5-O-β-glucoside 18.9 ± 1.9 20.6 ± 1.7 21.8 ± 1.2 17.6 ± 0.2 0.5 ± 0.1 0.3 ± 0.1

4-Hydroxybenzoic acid 33.6 ± 0.5 30.3 ± 2.6 45.7 ± 1.8 73.6 ± 3.1 8.7 ± 1.7 5.7 ± 0.6

4-Hydroxybenzaldehyde 12.1 ± 0.9 9.6 ± 0.1 48.9 ± 1.4 61.4 ± 4.3 5.9 ± 0.6 4.3 ± 0.4

Hydroxybenzoic-4-β-glucoside 4.2 ± 1.3 5.3 ± 0.9 3.9 ± 0.2 2.9 ± 0.1 - -
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Table 2. Cont.

Hydroxycinnamic acids µg/g DW extract

Neochlorogenic acid 83.1 ± 3.2 59.6 ± 3.3 86.0 ± 3.7 81.1 ± 0.5 - -

Chlorogenic acid 103.7 ± 15.7 100.0 ± 5.3 70.7 ± 3.8 71.5 ± 0.5 2.6 ± 0.1 2.5 ± 0.3

4-Caffeoylquinic acid 43.4 ± 3.2 40.4 ± 1.5 42.9 ± 1.1 44.7 ± 1.5 - -

5-O-Feruloylquinic acid 102.4 ± 22.1 122.2 ± 2.5 163.9 ± 0.2 153.7 ± 2.8 6.2 ± 0.1 8.1 ± 0.4

trans-3-Feruloylquinic acid 11.8 ± 1.0 9.7 ± 0.6 94.5 ± 0.7 57.8 ± 25.9 3.5 ± 0.2 4.5 ± 0.2

Feruloylquinic acid isomer 79.8 ± 1.0 74.5 ± 2.7 9.3 ± 0.6 49.4 ± 10.0 - -

Caffeic acid 35.8 ± 8.9 42.6 ± 0.7 24.2 ± 1.4 46.1 ± 3.4 5.8 ± 0.3 6.5 ± 0.5

Ferulic acid 40.3 ± 10.0 50.2 ± 0.6 31.1 ± 0.8 34.3 ± 0.6 6.7 ± 1.0 7.0 ± 1.1

p-Coumaric acid 30.8 ± 1.7 38.5 ± 1.1 37.4 ± 2.2 53.6 ± 1.6 21.4 ± 0.7 22.0 ± 1.3

Caffeoylquinic acid 15.5 ± 2.2 17.4 ± 0.2 27.6 ± 2.8 26.4 ± 2.8 6.5 ± 0.4 8.6 ± 0.8

Flavones µg/g DW extract

Apigenin-8-C-glucoside 59.8 ± 2.5 56.6 ± 6.7 64.7 ± 3.5 52.7 ± 1.3 11.4 ± 1.0 12.0 ± 0.5

Isovitexin 2′′-O-arabinoside 1.3 ± 0.1 1.5 ± 0.1 - - - -

Isoschaftoside 22.3 ± 1.5 24.4 ± 0.5 15.1 ± 2.0 17.7 ± 0.2 7.3 ± 0.8 8.4 ± 0.4

Luteolin-6-C-glucoside 129.8 ± 17.5 137.5 ± 2.9 174.5 ± 22.7 168.6 ± 1.0 37.8 ± 4.4 40.3 ± 1.5

Luteolin-8-C-glucoside 13.9 ± 1.4 3.4 ± 0.1 7.8 ± 1.4 6.6 ± 0.4 12.4 ± 0.4 12.8 ± 1.6

Apigenin 7-O-neohesperidoside 27.0 ± 3.3 22.6 ± 0.2 11.3 ± 0.5 5.5 ± 0.2 - -

Tricin 33.1 ± 1.1 27.9 ± 1.0 9.7 ± 0.5 9.9 ± 0.6 4.8 ± 0.4 5.1 ± 0.5

Table 3. (a) Polyphenols identified with concentrations > 20 µg/g extract in sugarcane straw extracts
from plants collected in the Valparaiso area with borer high-infection (UHI) and low-infection
(ULI) levels between June and August 2020 from different harvests (1st–7th). Values represent the
average ± standard deviation. (b) Polyphenols identified with concentrations > 20 µg/g extract
in sugarcane straw extracts from plants collected in the Valparaiso area with borer high-infection
(UHI) and low-infection (ULI) levels between September and November 2020 from different harvests
(1st–7th). Values represent the average ± standard deviation.

(a)

Identified Compound

4 June 2020 3 July 2020 24 July 2020 8 August 2020

RB966928 CTC9001 CTC15 CU7870 CTC4 RB966928 CU7870

UHI ULI UHI ULI UHI ULI UHI ULI

1st H 1st H 7th H 5th H 2nd H 1st H 3rd H 4th H

Hydroxybenzoic acids µg/g DW extract

1-O-Vanilloyl-β-D-glucose - - - - - - 36.2 ± 0.4 21.3 ± 10.6

Vanillic acid - - - - - - 21.2 ± 3.5 11.7 ± 1.8

2,5-Dihydrobenzoic acid 16.0 ± 0.2 18.1 ± 0.5 142.4 ± 2.3 62.6 ± 1.8 125.7 ± 13.0 145.8 ± 12.1 17.6 ± 3.2 10.5 ± 1.2

Gentisic acid 2-O-β-glucoside - - 19.3 ± 0.5 11.2 ± 0.2 20.8 ± 1.7 24.8 ± 1.3 - -

Gentisic acid 5-O-β-glucoside - - 14.2 ± 0.1 6.9 ± 0.3 14.5 ± 0.7 20.4 ± 0.0 - -

4-Hydroxybenzoic acid 1.4 ± 0.5 0.5 ± 0.1 43.6 ± 1.6 22.2 ± 1.1 77.8 ± 0.5 43.8 ± 1.0 3.0 ± 0.4 1.7 ± 1.7

3,4-Dihydroxybenzaldehyde 1.8 ± 0.0 3.9 ± 1.0 5.1 ± 0.2 2.3 ± 0.6 2.7 ± 0.2 18.3 ± 0.5 - -

4-Hydroxybenzaldehyde 11.2 ± 0.8 29.8 ± 0.7 19.2 ± 0.1 35.3 ± 1.1 17.8 ± 1.0 38.2 ± 1.1 24.9 ± 0.1 22.6 ± 0.6

Hydroxycinnamic acids µg/g DW extract

Neochlorogenic acid 1.0 ± 0.2 1.1 ± 0.3 26.4 ± 1.5 7.2 ± 1.2 103.5 ± 12.0 106.7 ± 9.0 - -

Chlorogenic acid 2.0 ± 0.2 1.1 ± 0.3 68.9 ± 3.2 21.6 ± 3.3 255.1 ± 4.4 272.8 ± 6.0 2.5 ± 0.7 2.4 ± 0.1

4-Caffeoylquinic acid 1.3 ± 0.1 1.2 ± 0.1 14.1 ± 1.1 5.9 ± 0.8 60.3 ± 3.0 51.3 ± 2.6 - -

5-O-Feruloylquinic acid 8.2 ± 1.3 13.5 ± 1.0 263.2 ± 1.3 105.3 ± 2.9 211.5 ± 20.0 391.5 ± 8.1 4.5 ± 1.5 2.0 ± 0.2

trans-3-Feruloylquinic acid - - 16.8 ± 0.4 7.6 ± 0.4 12.9 ± 1.9 65.5 ± 4.7 4.7 ± 0.6 2.4 ± 0.0

Feruloylquinic acid isomer 6.0 ± 1.1 10.6 ± 1.0 118.5 ± 1.3 86.8 ± 0.5 100.4 ± 9.9 204.1 ± 12.6 - -

Caffeic acid 1.9 ± 0.2 1.4 ± 0.3 14.1 ± 0.7 5.6 ± 0.2 53.6 ± 12.0 25.8 ± 1.4 3.3 ± 0.7 3.7 ± 0.3

Ferulic acid 14.2 ± 1.0 13.2 ± 0.9 52.5 ± 0.5 46.4 ± 0.1 40.4 ± 1.7 56.8 ± 2.2 17.1 ± 0.6 16.2 ± 0.4

p-Coumaric acid 71.3 ± 5.6 100.8 ± 5.8 75.6 ± 1.1 125.3 ± 11.5 59.8 ± 1.7 76.6 ± 2.6 95.9 ± 5.6 106.3 ± 2.7

Caffeoylquinic acid 2.7 ± 0.4 2.8 ± 0.3 49.9 ± 1.8 53.7 ± 2.5 43.3 ± 5.9 58.9 ± 0.4 4.9 ± 0.7 3.1 ± 0.4

4,5-Dicaffeoylquinic acid - - - - 41.7 ± 2.9 11.2 ± 0.6 - -
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Table 3. Cont.

Flavones µg/g DW extract

Apigenin-8-C-glucoside 9.1 ± 0.2 7.0 ± 0.3 93.2 ± 0.6 35.5 ± 1.5 103.8 ± 2.7 124.2 ± 2.0 11.2 ± 0.3 8.8 ± 0.2

Isovitexin 2′′-O-arabinoside 0.8 ± 0.1 0.4 ± 0.0 7.0 ± 0.2 6.9 ± 0.9 51.5 ± 1.1 49.2 ± 2.0 0.7 ± 0.1 0.9 ± 0.1

Isoschaftoside 12.0 ± 1.0 9.3 ± 0.7 73.6 ± 2.2 63.6 ± 2.7 7.9 ± 0.4 6.7 ± 0.1 9.1 ± 0.4 11.2 ± 0.1

Apigenin-6-C-glucosyl-8-C-
arabinoside 2.4 ± 1.0 3.3 ± 1.1 13.7 ± 1.1 7.5 ± 1.2 14.5 ± 0.3 20.3 ± 0.3 - -

Luteolin-6-C-glucoside - - 188.7 ± 0.8 139.5 ± 3.5 244.9 ± 3.7 397.8 ± 19.2 28.2 ± 6.3 22.1 ± 5.4

Apigenin 7-O-neohesperidoside 0.6 ± 0.3 0.6 ± 0.2 9.5 ± 0.3 11.9 ± 1.2 13.6 ± 0.1 38.3 ± 0.5 - -

(b)

Identified Compound

22 September 2020 14 October 2020 16 November 2020

CU7870 CU0618 CTC15 SP813250 RB966928 CTC4

UHI ULI UHI ULI UHI ULI

5th H 3rd H 6th H 7th H 4th H 2nd H

Hydroxybenzoic acids µg/g DW extract

1-O-Vanilloyl-β-D-glucose 114.3 ± 14.5 11.4 ± 2.6 74.1 ± 0.7 1.2 ± 0.1 - -

Vanillic acid 78.6 ± 4.1 4.2 ± 1.3 114.4 ± 5.5 2.5 ± 0.8 50.7 ± 2.3 8.8 ± 0.1

2,5-Dihydrobenzoic acid 10.0 ± 0.7 29.5 ± 1.7 53.6 ± 0.5 57.6 ± 0.8 19.9 ± 0.3 17.8 ± 0.3

Gentisic acid 2-O-β-glucoside - 5.9 ± 0.5 - 2.6 ± 0.2 0.6 ± 0.0 -

Gentisic acid 5-O-β-glucoside - 5.9 ± 0.7 - 2.6 ± 0.2 0.4 ± 0.3 -

4-Hydroxybenzoic acid 1.3 ± 0.1 18.2 ± 1.6 49.8 ± 0.2 26.7 ± 4.2 12.9 ± 0.2 11.5 ± 0.2

3,4-Dihydroxybenzaldehyde - - 1.7 ± 0.3 - - -

4-Hydroxybenzaldehyde 9.4 ± 1.0 9.6 ± 0.7 23.5 ± 0.9 24.5 ± 0.8 8.4 ± 0.1 8.2 ± 0.1

Hydroxycinnamic acids µg/g DW extract

Neochlorogenic acid - 12.1 ± 0.0 28.5 ± 2.5 4.1 ± 0.8 - -

Chlorogenic acid 3.2 ± 0.4 8.5 ± 7.1 42.9 ± 2.4 12.5 ± 0.3 3.2 ± 0.1 3.2 ± 0.1

4-Caffeoylquinic acid - 8.8 ± 0.0 20.7 ± 1.2 3.9 ± 0.2 - -

5-O-Feruloylquinic acid 4.9 ± 0.3 71.7 ± 2.9 149.6 ± 8.3 46.6 ± 5.7 17.5 ± 0.2 14.5 ± 0.1

trans-3-Feruloylquinic acid 4.4 ± 0.3 5.3 ± 0.7 48.1 ± 10.0 12.6 ± 1.0 10.4 ± 0.1 8.3 ± 0.0

Feruloylquinic acid isomer - 46.5 ± 2.9 - 28.2 ± 1.1 - -

Caffeic acid 2.1 ± 0.2 4.1 ± 0.2 50.3 ± 4.3 14.9 ± 0.8 4.3 ± 0.1 4.1 ± 0.0

Ferulic acid 18.3 ± 0.7 27.7 ± 0.5 20.7 ± 0.1 21.7 ± 0.4 - -

p-Coumaric acid 37.2 ± 2.7 29.1 ± 0.4 40.8 ± 0.4 41.3 ± 0.9 20.5 ± 0.2 23.5 ± 0.2

Caffeoylquinic acid 1.8 ± 0.1 14.5 ± 0.5 23.2 ± 1.7 16.9 ± 1.4 6.3 ± 0.1 6.0 ± 0.0

4,5-Dicaffeoylquinic acid - 4.9 ± 0.2 - 2.2 ± 0.2 - -

Flavones µg/g DW extract

Apigenin-8-C-glucoside 10.7 ± 0.2 32.6 ± 0.6 49.3 ± 0.5 32.3 ± 0.5 8.3 ± 0.6 9.7 ± 0.1

Isovitexin 2′′-O-arabinoside 1.5 ± 0.1 3.3 ± 0.1 - - - -

Isoschaftoside 17.9 ± 1.0 37.7 ± 0.7 33.0 ± 0.2 33.4 ± 0.7 14.8 ± 0.2 17.5 ± 0.7

Apigenin-6-C-glucosyl-8-C-
arabinoside 2.1 ± 0.1 3.9 ± 0.2 7.9 ± 0.5 11.4 ± 0.2 3.7 ± 0.0 4.1 ± 0.1

Luteolin-6-C-glucoside 19.9 ± 0.1 47.8 ± 1.1 213.6 ± 3.9 112.4 ± 2.9 24.3 ± 0.4 21.9 ± 1.5

Apigenin-7-O-neohesperidoside 0.8 ± 0.0 1.3 ± 0.1 7.5 ± 0.4 1.4 ± 0.1 - -

The analysis of various sugarcane straw extracts revealed the presence of quinic acid
esterified with coumaroyl, caffeic, ferulic acid units, and glycosylated protocatechuic acid
among the detected metabolites. Hydroxybenzoic acid and dihydroxybenzoic acid linked
to sugar moieties were identified, including gentisic acid 5-O-β-glucoside. Notably, a
metabolite akin to salicylic acid, known as gentisic acid (2,5-dihydrobenzoic acid), plays a
crucial role as a signaling molecule in plants’ defense responses against infections [19].

Two types of glycosylation were detected among the flavones, such as C-glucosylated
apigenin, luteolin, diosmetin, and O-glucosylated tricin. These flavone profiles have
been extensively described in different sugarcane by-products, such as juice [20] and
leaves [21]. Flavonoid C-glycosides have been shown to have a variety of properties,
including antioxidant, insect antifeedant, antibacterial, mycorrhizal symbiosis promoter,
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and UV-absorbing pigment. These activities need high local concentrations, and many of
these chemicals are toxic to plants [22].

Caffeic acid, cis-p-hydroxycinnamic acid, quercetin, apigenin, albanin A, australone A,
moracin M, and 5′-geranyl-5,7,2′,4′-tetrahydroxyflavone were the eight phenolic chemicals
found in sugarcane’s top ethanolic extracts [23]. Vanillic, ferulic, and syringic acids are
among straw’s most prevalent phenolic chemicals [24]. Apigenin diglycoside, named
isochaftoside and schaftoside, p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, caffeic
acid, vanillin, protocatechuic acid, and syringic acid were also found in commercial sug-
arcane juice [25,26]. Our team has reviewed the primary polyphenols found in sugarcane
by-products, such as bagasse, juice, leaves, molasses, and rinds [27].

Analyzing the class of polyphenols predominant in all batches for Guariba and Val-
paraíso, the most representative were hydroxycinnamic acids, especially caffeoylquinic acids
derivatives like neochlorogenic acid (maximum of 86 µg/g and 106 µg/g), chlorogenic acid
(maximum of 165 µg/g and 276 µg/g), 5-O-feruloylquinic acid (maximum of 333 µg/g and
391 µg/g) and coumaric acid derivatives. Within hydroxybenzoic acids, the most represen-
tative was 2,5-dihydroxybenzoic acid (maximum of 245 µg/g and 125 µg/g), and finally, in
flavones, luteolin-6-C-glucoside (maximum of 290 µg/g and 397 µg/g) (Tables 2 and 3).

In the natural environment, plants are continuously pressured by biotic and abiotic
factors. These adverse circumstances increase reactive oxygen species (ROS) generation,
which inhibits plant growth and development and results in significant agricultural output
losses [28]. As a defense mechanism against various abiotic stimuli, phenolic accumulation
is a characteristic of stressed plants that is often consistent [29]. When plants are exposed
to biotic or abiotic stressors, the activation of the phenylpropanoid pathway leads to the
production of chlorogenic acid as the primary phenolic compound [30]. With tomato
plants subjected to a nematode and water stress simultaneously, a rise in flavonoid and
chlorogenic acid levels was also observed [31].

Other plants, such as tea, showed a response to abiotic stressors such as drought, salt,
methyl jasmonate, and cold. In this case, the gene expression increased in the phenyl-
propanoid and lignin pathways and reduced in the flavonoid route. The lignin pathway is
crucial for development of plant cell walls, serving as a primary line of defense against en-
vironmental stressors. The lignin route is upregulated because of the metabolic flux, where
the flavonoid and lignin pathways compete for the same carbon supply. In the presence of
abiotic stress and throughout the process of leaf maturation, polyphenols function as the
repository for carbohydrates, resulting from photosynthesis in tea plants [32]. In addition,
2,5-dihydroxybenzoic acid was found to be substantially raised in tomato plants infected
with the citrus exocortis viroid [33].

With the potential to be used in the food and cosmetic industries, sugarcane straw
is a by-product that is a rich source of polyphenols, including 5-O-feruloylquinic acid,
2,5-dihydroxybenzoic acid, and luteolin-6-C-glucoside. This makes it a good target for
researching the ideal harvesting conditions for high-quality extracts.

The antioxidant potential of sugarcane straw extract powder was assessed using two
chemical methods, namely, ABTS and DPPH, with results expressed in Trolox equivalents.
As indicated by the ABTS assay, the extract demonstrated the ability to neutralize free
radicals at a rate of 0.9–3.6 mg TE/mL, whereas the DPPH assay yielded an antioxidant
capacity in a range of 1.0–6.8 mg TE/mL (see Table 4).
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Table 4. Antioxidant activity (ABTS and DPPH) measured in sugarcane straw extracts from plants
collected in the Guariba and Valparaiso areas with borer high- and low-infection levels from plants
harvested between June and November 2020 from different harvests (1st–7th).

Geographic Area Harvesting Date Variety Borer Infection Harvest ABTS DPPH

Bonfim

4 June 2020
CTC9001 High 1st 3.4 ± 0.0 8.8 ± 1.4

CTC9001 Low 1st 2.3 ± 0.0 4.7 ± 0.0

3 July 2020
CTC9001 High 1st 1.8 ± 0.1 5.3 ± 0.5

RB966928 Low 7th 2.2 ± 1.5 6.8 ± 4.1

24 July 2020
RB966928 High 1st ND ND

RB966928 Low 1st ND ND

8 August 2020
RB985476 High 1st 1.5 ± 0.1 1.4 ± 0.2

CTC4 Low 3rd 1.5 ± 0.1 1.5 ± 0.3

22 September 2020
CU7870 High 4th 1.2 ± 0.0 1.1 ± 0.0

CU7870 Low 4th 1.5 ± 0.1 2.1 ± 0.0

14 October 2020
RB985476 High 2nd 0.9 ± 0.0 1.0 ± 0.1

SP803280 Low 4th 1.0 ± 0.0 1.2 ± 0.1

16 November 2020
CU7870 High 1st ND ND

CU7870 Low 1st ND ND

Univalem

4 June 2020
RB966928 High 1st 3.3 ± 0.0 6.9 ± 0.6

CTC9001 Low 1st 3.6 ± 0.0 9.1 ± 1.1

3 July 2020
CTC15 High 7th 1.4 ± 0.1 3.1 ± 1.0

CTC15 Low 5th 1.7 ± 0.1 4.6 ± 0.2

24 July 2020
CU7870 High 2nd ND ND

CTC4 Low 1st ND ND

8 August 2020
RB966928 High 3rd 2.9 ± 0.0 3.8 ± 0.2

CU7870 Low 4th 2.9 ± 0.1 4.0 ± 0.5

22 September 2020
CU7870 High 5th 1.2 ± 0.1 1.2 ± 0.2

CU0618 Low 3rd 1.4 ± 0.0 1.4 ± 0.0

14 October 2020
CTC15 High 6th 2.0 ± 0.0 5.0 ± 0.8

CTC15 Low 5th 1.3 ± 0.1 2.4 ± 0.5

16 November 2020
CU7870 High 2nd ND ND

CTC4 Low 1st ND ND

ND, not determined.

Phenolic compounds found in extracts from sugarcane rods have been identified as
exhibiting potent antioxidant properties, as indicated by DPPH and FRAP assays. These
assays have shown a significant correlation with the levels of phenolic compounds and
flavonoids [34]. A comprehensive review summarized the antioxidant potential of various
sugarcane products and byproducts, highlighting that the leaves and bagasse contain the
highest capacity for neutralizing free radicals, a trait associated with their rich polyphenolic
content [35]. Furthermore, another study suggested that sugarcane straw extracts possess
antioxidative attributes, which could prove beneficial in mitigating oxidative stress-related
diseases or their progression [36]. The current body of evidence points to the utilization of
sugarcane juice as a natural source of dietary antioxidants in functional foods, underscoring
its exceptional phenolic content, particularly in terms of flavonoids [37].
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3.2. RSM Modeling

To study how the effect of independent variables like geographic area, borer infection
level, harvest number, variety, and harvesting date can influence the recovery of polyphe-
nols from sugarcane straw, a response surface methodology (RSM) analysis was performed.
For that, the combination of the selected parameters was determined using central compos-
ite design (CCD), and a quadratic model proposed by STATISTICA software was chosen
after the analysis of the R2 values and p-values. This process guarantees that every fac-
tor and how it interacts with others is thoroughly investigated. The fitted second-order
quadratic model equations’ statistical significance and the importance of each element were
evaluated using ANOVA. The adjusted R2 in the current investigation was close to the
limitations that were deemed acceptable (R2 ≥ 0.80), indicating that the experimental data
fit the second-order polynomial equations well [38]. Based on the multiple linear regression
(MLR) equations, 3D surfaces and contour plots were created to understand the interactions
between the independent variables better. The primary and cross-product impacts of the
independent variables are more clearly understood thanks to these 3D visualizations that
significantly increase on-target replies.

The relationships among the response variables (hydroxybenzoic acid, hydroxycin-
namic acid, and flavone content) and the independent variables were evaluated. Based
on the analysis of the regression coefficients together with the results of the analyses of
variance (ANOVAs) of the second-order polynomial models, the hydroxybenzoic acid class
(R2 = 0.94) was significantly affected (p < 0.05) by the linear term of the variables “variety”,
“geographic area”, “infection level” (X2, X3, and X4), linear and quadratic terms of the
variable “harvest number” (X5 and X5

2), quadratic term of “variety” (X2
2) and interactive

effect between the variables harvesting, variety, geographic area, and collection date (X1
X2, X1 X3, X1 X4, X2 X3, X2 X5, and X3 X5) (Table 5). The linear variables with more potent
effects in hydroxybenzoic acid content are represented in 3D surface plots in Figure 2. It
was observed that varieties SP803280, SP813250, and CTC9001 were the ones presenting
higher content of hydroxybenzoic acids, and the variable “borer infection” had a negative
effect, meaning that when the borer infection level increased, the hydroxybenzoic acid
content tend to decrease. Through the analysis of the estimated effect for the linear variable
(β = –288.93) of “harvest number”, it seems to tend to have more hydroxybenzoic acids in
younger plants (1st harvest).

Table 5. Summary of the effect of collection time (date) (X1), variety (X2), geographical area (X3),
borer infection level (%) (X4), and harvest number (X5) on polyphenolic class content and antioxidant
activity (ABTS and DPPH) obtained in extracts evaluated for sugarcane straw according to the
factorial experimental design.

Estimated Effect of β Hydroxybenzoic Acids Hydroxycinnamic Acids Flavones ABTS DPPH

Intercept 157.15 ** 57.81 214.59 *** 2.78 *** 0.57

Collection time (X1) −279.32 1463.86 100.54 5.57 −11.86

Variety (X2) 472.95 *** −1147.95 27.59 −10.31 * 10.23

Geographical area (X3) −175.01 ** 460.15 −59.15 1.49 −4.46

Borer infection level (X4) −281.58 * −678.45 −64.99 1.90 1.94

Harvest number (X5) −288.93 * −1549.26 ** −74.35 0.02 6.15

X2
1 −103.11 −5.56 −158.66 −4.16 * 6.25

X2
2 830.57 *** −160.05 −190.47 −15.60 * 21.44

X2
3 - - - - -

X2
4 −169.99 −196.20 21.38 0.37 8.80

X2
5 375.45 *** 1625.61 *** 316.39 *** 0.07 −2.74
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Table 5. Cont.

Estimated Effect of β Hydroxybenzoic Acids Hydroxycinnamic Acids Flavones ABTS DPPH

X1 X2 −1070.49 *** −488.82 −249.28 14.78 * −18.51

X1 X3 −392.48 *** −1681.32 *** −109.58 0.77 0.39

X1 X4 −313.79 * 1316.06 116.41 −0.80 −3.40

X1 X5 44.96 543.74 277.76 *** 5.15 ** −4.00

X2 X3 224.98 ** 1310.92 *** 27.71 −2.11 ** −1.94

X2 X4 236.49 −1483.73 * −141.22 1.49 0.44

X2 X5 −443.79 *** −2028.47 *** −346.02 * −4.53 5.55

X3 X4 −103.02 274.62 24.52 1.84 −5.49

X3 X5 217.70 *** 593.82 * 167.65* −0.38 −4.47

X4 X5 101.01 −486.24 7.49 −1.42 5.48

R2 0.949 0.810 0.857 0.99 0.92

R2 Adjusted 0.922 0.710 0.781 0.84 0.84

RMSE 7.455 38.418 8.948 0.04 0.12

* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; beta (β) symbols represent unstandardized coefficients.

The chosen models for hydroxycinnamic acids and flavones moderately explain the
effects of independent variables, since they presented an adjusted R-squared value of 0.71
and 0.78, respectively (Table 5). The lower adjustment for the polynomial model for these
two classes could be due to the high variability observed for each compound, since not
all presented the same behavior. Due to the redundant effect, the quadratic term for the
geographic area was not considered in the polynomial model.

The predictive model for the hydroxycinnamic acids was significantly affected by
the linear and quadratic term of “harvest number” (X5 and X5

2) and interactions between
linear terms for the different variables (X1 X3, X2 X3, X2 X4, X2 X5, and X3 X5). Figure 2
represents the combination of variety and harvesting, which had a more substantial effect
on hydroxycinnamic acid content. Holder plants (6th–7th harvest) tend to have more of
those compounds in combination with varieties like SP813240, SP81340, and CTC9001.

The flavones were significantly affected by the quadratic term “harvest number” (X5
2)

and by the interactions between linear terms of “harvesting date”, “harvest number”,
“variety”, and “geographic area” (X1 X5, X2 X5, and X3 X5). In this class, the combination of
“harvesting” and “collection date” showed that straw from younger plants (1st harvest)
harvested between May and August tends to have more flavones (Figure 2).

Antioxidant activity, as assessed using the ABTS method, exhibited significant sen-
sitivity to the linear and quadratic components of “collection time” (X1 and X1

2) by the
quadratic term of “variety” (X2

2) and the interactions among the linear factors of “har-
vesting date”, “harvest number”, “variety”, and “geographic area” (X1 X2, X1 X5, and X2
X3). In contrast, the DPPH method did not reveal any notable effects associated with the
variables examined.

Within the constraints of the extraction conditions used, this study sought to maximize
the extraction of sugarcane straw phenolic compound content. Each projected response was
converted using this method into a dimensionless partial desirability function, di, whose
values range from 0 for a completely undesired response to 1 for a fully desired response.

For all responses in the current investigation, only one ideal condition was attained:
straw from variety CU0618 collected at Guariba near the end of the harvest season (October
2020), using older plants after seven harvestings and with a high level of borer infection
(13.81%) (Table 6).
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Table 6. Prediction values (±confidence intervals at a 95% confidence level) and desirability for the
optimal content of polyphenol classes (hydroxybenzoic acids, hydroxycinnamic acids, and flavones,
(µg/g dry extract) for the best harvesting conditions considering collection date, variety, geographic
area, borer infection level and harvest number according to the central composite design (CCD).

Parameter
Optimum Harvesting
Conditions for All the
Parameters Combined

Predicted Values at Optimum
Harvesting Conditions Desirability

Hydroxybenzoic acids
Collection date: October 2020

Variety: CU 0618
Geographic area: Guariba

Infection level: 13.81%
Harvesting: 7th

977.59 ± 482.52

1.0

Hydroxycinnamic acids 1336.16 ± 764.92

Flavones 1660.49 ± 388.94

ABTS 4.84 ± 5.92

DPPH 9.96 ± 17.95

The desirability function D = 1.0 was used to determine the ideal conditions and
anticipated values. A positive value for D (>0) denotes that all replies are concurrently in
a suitable range. The response numbers are around the goal values because values near
1 suggest that the sum of the various criteria is a global maximum. The predicted values
are presented in Table 6, with 977.59 µg/g for hydroxybenzoic acids, 1336.16 µg/g for
hydroxycinnamic acid, and 1660.49 µg/g for flavones. For the antioxidant activity, the IC50
was 4.84 and 9.96 mg/mL.

3.3. Artificial Neural Network (ANN) Modeling

ANNs are a complex optimization and simulation tool with high potential for prediction.
According to several published findings, ANN outperforms RSM in terms of its prediction
powers [39,40]. As a result, a nonlinear connection between the five input (independent)
variables and responses (target outputs) was defined by creating an ANN-based model using
a feed-forward back-propagation technique and a topology optimization procedure.

The data from the fifty-six experimental points utilized to create the RSM model
were used to train and validate neural networks. Three layers of neurons coupled the
feed-forward technique with the multilayer perceptron networks. The first (input) layer of
neurons comprised five components, each of which stood for an independent variable. The
intermediate (hidden) layer was built to create a model with the least variation between
anticipated and experimentally obtained values, and the intermediate (hidden) layer was
built. Twenty neurons were present in the intermediate layer of the created ANN model.
Three dependent variables were represented by five neurons in the third (output) layer.
The model with the highest coefficient of determination (R2) and the lowest root mean
square error (RMSE) as indicators of the best validation statistics were chosen.

Networks were constructed, and the findings for the best MLP networks (training, test,
and validation data), which were chosen based on their performance during the network
construction, are shown in Table 7. The names of neural networks indicate how many
neurons are present in the input, hidden, and output layers. The gathered results show that
in general, the MLP network could recognize and simulate the effect of the input variables
on the intended outputs.
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Table 7. The optimal multilayer perceptron (MLP) networks developed for single-variable outputs.

Target Output Optimal Neural
Network

Correlation Coefficients

Training Data Testing Data Validation Data

Hydroxybenzoic
acids

MLP 20-5-5 0.994 0.956 0.993

MLP 20-3-5 0.978 0.935 0.994

MLP 20-4-5 0.919 0.929 0.892

MLP 20-4-5 0.981 0.915 0.975

MLP 20-3-5 0.966 0.933 0.958

Hydroxycinnamic
acids

MLP 20-5-5 0.991 0.980 0.956

MLP 20-3-5 0.940 0.954 0.880

MLP 20-4-5 0.895 0.931 0.864

MLP 20-4-5 0.894 0.974 0.984

MLP 20-3-5 0.949 0.956 0.837

Flavones

MLP 20-5-5 0.989 0.992 0.973

MLP 20-3-5 0.950 0.973 0.967

MLP 20-4-5 0.888 0.834 0.886

MLP 20-4-5 0.976 0.940 0.989

MLP 20-3-5 0.904 0.951 0.928

ABTS

MLP 20-5-5 0.997 0.936 0.563

MLP 20-3-5 0.983 0.990 0.764

MLP 20-4-5 0.770 0.931 0.948

MLP 20-4-5 0.956 0.968 0.828

MLP 20-3-5 0.898 0.969 0.838

DPPH

MLP 20-5-5 0.979 0.985 0.742

MLP 20-3-5 0.941 0.967 0.621

MLP 20-4-5 0.868 0.910 0.862

MLP 20-4-5 0.955 0.972 0.702

MLP 20-3-5 0.911 0.964 0.781

The input variables that are particularly crucial in the constructed models for the
accurate prediction of the desired output variables were found using sensitivity analysis.
Sensitivity analysis was carried out for the MLP models for all target outputs. The results
are presented in Figure 3 and demonstrate that geographic area, variety, and collection date
were the three variables with higher impact on sugarcane straw polyphenol variation for
all MPL models.

The validation process employed herein involved the utilization of 15% of the dataset,
a choice made due to practical constraints. However, it is essential to acknowledge that
this approach may not fully capture the inherent complexities of the entire dataset. Recog-
nizing the imperfections inherent in this validation strategy, leave-one-out cross-validation
(LOOCV) would have been a preferable alternative for this specific dataset. LOOCV, by
systematically leaving out individual data points during the validation process, offers a
more exhaustive and robust evaluation of model performance. While our chosen validation
approach was pragmatic, the inclusion of this limitation underscores the need for future
investigations to consider employing more comprehensive validation methodologies, such
as LOOCV, to further enhance the rigor and generalizability of our findings.
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Figure 3. Sensitivity analysis for neural network models that successfully predict phenolic compound
classes hydroxybenzoic acids, hydroxycinnamic acids, and flavones and antioxidant activity (ABTS
and DPPH) in extracts produced from sugarcane straw considering collection date, variety, geographic
area, borer infection level (%), and harvest number.

3.4. Comparison between RSM and ANN

Here, the prediction performance and estimate skills of the RSM and ANN models
were examined. The predicted values of the three target responses (Y1, Y2, and Y3) from
the ANN model were statistically evaluated by creating comparative similarity plots. The
results show that the ANN model outperformed the RSM model in terms of accuracy,
precision, and estimate skills when fitting experimental data to all target answers. The
RSM model showed more variance in the residuals, which are the differences between
anticipated and actual values, than the ANN model, which showed stable residuals with
less change.

Root mean square error (RMSE) and coefficient of determination (R2) were also used
to compare the RSM and ANN models. Due to its ubiquitous ability to mimic nonlinear
systems, ANN has a substantially higher predictive capability than RSM according to the
results. In contrast, RSM is only valid for systems with a second-order polynomial regres-
sion structure. The RSM requires numerous runs under a standard experimental design
for multi-response optimization. However, the ANN can calculate multiple responses in a
single run and is independent of the experimental design [41]. To optimize the harvesting
conditions of sugarcane to produce the straw extract with a high content of phenolics, the
ANN architecture is therefore superior to the RSM model in terms of predictability. It
fits the measured responses (hydroxybenzoic acids, hydroxycinnamic acids, and flavones
content) (Table 8).

The network MLP 20-5-5 allowed us to get the best fit for all the polyphenolic classes
and antioxidant capacity (ABTS and DPPH).

Significant sugarcane losses are a result of biotic stress, and it has been estimated that
around 10% of these crop losses are attributable to insect pests, the most significant of
which is the sugarcane stem borer (Diatraea saccharalis Fabr., Lepidoptera, Crambidae). The
plant’s response to this pest still needs to be fully comprehended. Some authors suggest
that the mechanism behind plant protection against insect damage involves the activation
of defense proteins. It was reported that sugarcane leaf phenolic extracts show increased
proteins after a stimulus with oral secretions from Diatraea saccharalis [42,43].

Sugarcane plants may respond to injury by producing secondary compounds, like
phenols. A recent study demonstrates a rise in chlorogenic acid and other caffeic acid conju-
gates produced in the sugarcane leaves of the SP791011 variety in response to herbivory by
Diatraea saccharalis [44]. Chlorogenic acid is an intermediate in forming insoluble phenolic
compounds (e.g., lignin) associated with plant resistance to stress. During herbivory, higher
accumulations of chlorogenic acid have been described as an essential defense metabolite
in plants [43]. Higher levels of intensity of sugarcane borer infestation can also contribute
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to the accumulation of phenolic compounds through the action of pathogens that cause red
rot. SP80-3280 plants infected with sugarcane borer (19–25%) showed increased phenolic
content [45].

Table 8. Comparison of optimization and prediction capabilities of response surface methodology
(RSM) and artificial neuron network (ANN) for the extraction of phenolic compounds, organized by
class, and for antioxidant activity (ABTS and DPPH) from sugarcane straw harvested under different
biotic and abiotic conditions.

Response Modeling
Method

Optimal Neural
Network R2 RMSE

Hydroxybenzoic
acids

RSM 0.949 7.455

ANN

MLP 20-5-5 0.989 4.461

MLP 20-3-5 0.956 4.356

MLP 20-4-5 0.85 4.734

MLP 20-4-5 0.963 5.449

MLP 20-3-5 0.933 4.213

Hydroxycinnamic
acids

RSM 0.810 38.418

ANN

MLP 20-5-5 0.983 7.869

MLP 20-3-5 0.885 18.339

MLP 20-4-5 0.801 16.526

MLP 20-4-5 0.799 17.425

MLP 20-3-5 0.901 19.013

Flavones

RSM 0.857 8.948

ANN

MLP 20-5-5 0.978 3.908

MLP 20-3-5 0.902 4.020

MLP 20-4-5 0.789 5.154

MLP 20-4-5 0.952 4.928

MLP 20-3-5 0.817 5.839

ABTS

RSM 0.990 0.039

ANN

MLP 20-5-5 0.994 0.011

MLP 20-3-5 0.966 0.024

MLP 20-4-5 0.593 0.087

MLP 20-4-5 0.913 0.083

MLP 20-3-5 0.807 0.048

DPPH

RSM 0.920 0.118

ANN

MLP 20-5-5 0.959 0.089

MLP 20-3-5 0.886 0.119

MLP 20-4-5 0.753 0.207

MLP 20-4-5 0.913 0.220

MLP 20-3-5 0.829 0.144

Through a process known as ratooning, sugarcane may grow again after being har-
vested, resulting in repeated harvests of the same crop, usually every 11 to 16 months.
During each harvest, sugarcane plants produced less sugar, and this phenomenon was
related to management approaches that increased the pressure from pests, diseases, and
weeds, reduced soil fertility, compacted the soil, and physically damaged the crop during
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harvest [46]. We have yet to be aware of any study investigating the influence of the num-
ber of sugarcane harvests might have on sugarcane polyphenol content. According to the
polynomial model, the “harvest number” variable had a strong influence on the variability
of all phenolic classes (Table 6) and the best harvest conditions indicated that after the
seventh harvesting (Table 6), the sugarcane straw will contribute to an extract richer in
phenolic compounds. Based on the appointed factors associated with “ratooning”, extracts
richer in polyphenols should be expected for more harvests since factors like susceptibility
to diseases or physically damaged crops tend to produce those secondary metabolites. Me-
chanically damaged plants create a physical barrier to prevent tissue destruction, including
synthesizing polyphenols such as lignin and suberin [43,47].

According to the ANN modeling, the harvest month and variety and geographic area
represent the three main variables affecting the phenolic compound content variability
(Figure 3).

For meteorological analyses, winter is considered as the quarter of June, July, and
August. The winter of 2020 in the capital of São Paulo had rain and above-average temper-
atures according to measurements carried out by INMET at the meteorological station of
Mirante de Santana, in the north of the city of São Paulo. The total rainfall was 198.2 mm,
30% above the historical average. The average maximum temperature was 25.2 ◦C, and the
minimum was 14.7 ◦C, values that were 1.6 and 1.7 ◦C, respectively, above the historical av-
erage. However, between the months of this study (June–November), when looking for the
historical data of precipitation and air temperature, the maximum registered was between
October and November with 35 mm and 36.2 ◦C, respectively. Also, the global radiation
was higher in September–December, with a maximum of 3972 Kj/m2 in November [48].

In this experiment, the harvesting season was a variable that influenced flavone
content, exhibiting higher values when plants were harvested between May and September,
a period during which the precipitation was low (Figure 4A). As the polynomial model
(Table 6), straw gathered in October was the best month for extracting polyphenols, with
the prior months being dry. According to a recent study on sugarcane juice, the crop season
(year and season) mainly influenced flavones by lowering rainfall volume in the months
before harvest [20]. Activation of the phenylpropanoid biosynthesis pathway in response
to drought stress has been observed in several plants, which supports the current study’s
findings [29]. Once gathered in the cytoplasm, flavonoids can detoxify H2O2 molecules
produced by drought stress [49].

The maximum amount of global radiation was observed in August–September, and
higher average temperatures in September (Figure 4B,C) may also have contributed to
the predicted higher polyphenolic content in plants harvested in October according to the
meteorological data collected during the study (June–November 2020). Plants produce
polyphenols to defend themselves under stress, which can be brought on by radiation, heat,
dehydration, etc. As UV-B screens, polyphenols shield the plant from ionizing radiation [5].

In Brazil, there are three main breeding programs run by the Sugarcane Technology
Center (CTC varieties), a private company, Instituto Agronômico de Campinas (IAC vari-
eties), supported by the government of São Paulo state, and the Inter-University Network
for the Sugar and Ethanol Development (RIDESA—RB varieties), supported by the federal
government. In 2015, the variety census for São Paulo state indicated that the four most
planted varieties were RB966928 (18%), RB867515 (16%), RB92579 (10%), and RB855156
(7.8%). Two other kinds, RB855453 and SP81-3250, were among the five most cultivated,
but not among the five most planted. More resistant types are replacing SP81-3250 because
of its vulnerability to orange rust. RB92579 and CTC4 (tenth most cultivated and fifth most
planted) might rise in the coming years, given that they were among the five most planted
varieties [50].

The varieties analyzed in this study were from SP813250, SP803280, CU0618, RB985476,
CTC4, CU7870, CTC15, RB966928, and CTC9001. The polynomial model considered this
variety the best for greater phenolic recovery from sugarcane straw (Table 6).
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New sugarcane varieties with greater yields are continually being developed and
tested to increase the productivity of the Brazilian industry. An appropriate sugarcane vari-
ety should be well suited to local changes in temperature, soil type, and cutting technique
(manual or mechanical) or ratooning. It should be resistant to pests, infections, and water
stress and accumulate high concentrations of sucrose [51].

Plant polyphenol composition is highly dependent on the growing environment, and
plants from different geographical regions have demonstrated higher variations in phenolic
content due to the different climates and soil compositions [52]. Phenolic compounds and
olive leaves calcium, nitrogen, and sodium contents were positively associated. These
components have been raised by plants to speed up photosynthetic rate, promote plant
development, and boost resistance to drought stress [53]. An example is the olive leaf’s
total phenolic level which decreases as geographic altitude decreases. The primary reason
for this behavior was attributed to climate variations. Phenolic compounds tend to be
less abundant in the leaves of trees grown in windy, humid environments (close to sea
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level) and more abundant in high-altitude environments with terrestrial and Mediterranean
climates, where there are sizable annual temperature variations [11]. The soil nutrient’s
influence on plant growth greatly depends on the relationship between water and air in the
soil pores. A recent study on different soil media in Hibiscus sabdariffa var. growth and
phenolic composition showed no significant influence [54].

In this study, the distance between the two cities was 274 km (Guariba-Valparaiso,
São Paulo). The climate at Valparaíso-SP is considered tropical, and soils were classified
as sandy loam soil [55]. In Guariba-SP, the soil was classified as clayey according to the
Brazilian System of Soil Classification-SIBCS [4]. Valparaíso is characterized as having a
higher temperature frequency than Guariba [55].

In wines, for example, it was reported that soil influences vine water status through
sandy soils, which have lower water-holding capacity, resulting in wines richer in antho-
cyanins [56]. Sandy soils are more prone to soil health degradation than clayey soils, and
healthier soils were associated with higher sugarcane stalk yields [3]. Based on such pre-
sumptions, it should be predicted that plants from Valparaíso will have more polyphenols
than plants from Guariba, although other factors associated with the region, such as the
climate, may be more important in explaining the polyphenolic difference between them
than soil characteristics.

This study presents some limitations, including limited generalizability due to specific
conditions in Guariba and Valparaíso and the complexity of models. Findings may not
extend to diverse regions or settings with different environmental factors or sugarcane
varieties. While optimizing polyphenol extraction, advanced models like RSM and ANN
can be resource-intensive and challenging to implement in practice in resource-constrained
agricultural settings, potentially limiting their widespread applicability and interpretation.

4. Conclusions

In this study, the impact of five biotic and abiotic stresses (geographic area production
(Guariba, Valparaíso), level of borer insect (Diatraea saccharalis) infection, harvest number
(first to seventh), harvest season and plant variety) were evaluated in sugarcane straw
as a potential by-product for natural extract production richer in polyphenols. The ideal
extraction settings were found using a response surface methodology (RSM) based on
a central composite design to optimize the yield of all target compounds concurrently.
The optimal conditions were plants from the CU0618 variety collected at Guariba in the
dry season (October 2020), using holder plants (seventh harvest), with a level of borer
infection of 13.81%. The three most significant factors for the richness of sugarcane straw
polyphenols, according to the artificial neural network (ANN) model, are season, region,
and variety.

Compared to RSM models, the ANN model had better coefficients of determination
values, indicating a superior potential for prediction. The study’s findings that are being
presented advance our understanding of the extraction of essential compounds needed for
further development, separation, purification, and scale-up processes at the industrial level.

In practice, the developed model aid in monitoring year-round biotic and abiotic
conditions, offering predictive insights for strategic straw usage in extract production.
These findings highlight the potential for utilizing sugarcane straw as a source of valu-
able polyphenols, contributing to the development of sustainable practices in the sugar
production industry.
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