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Abstract: Polyphenolic compounds, encompassing flavonoids (e.g., quercetin, rutin, and cyani-
din) and non-flavonoids (e.g., gallic acid, resveratrol, and curcumin), show several health-related
beneficial effects, which include antioxidant, anti-inflammatory, hepatoprotective, antiviral, and
anticarcinogenic properties, as well as the prevention of coronary heart diseases. Polyphenols have
also been investigated for their counteraction against the adverse effects of common anticancer
chemotherapeutics. This review evaluates the outcomes of clinical studies (and related preclinical
data) over the last ten years, with a focus on the use of polyphenols in chemotherapy as auxiliary
agents acting against oxidative stress toxicity induced by antitumor drugs. While further clinical
studies are needed to establish adequate doses and optimal delivery systems, the improvement in
polyphenols’ metabolic stability and bioavailability, through the implementation of nanotechnologies
that are currently being investigated, could improve therapeutic applications of their pharmaceutical
or nutraceutical preparations in tumor chemotherapy.
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1. Introduction

Polyphenols constitute a major class of phytochemicals showing favorable effects
on various pathologic conditions. They are plant-derived metabolites mainly originating
from the acetate–malonate and shikimate biosynthetic pathways and they mostly exist as
glycosides or are conjugated with other moieties (e.g., amines, carboxylic acids, lipids, and
other phenols) [1,2]. Natural polyphenols include flavonoids and nonflavonoid compounds
(e.g., phenolic acids and their esters, stilbenoids, and curcuminoids) [3].

Several studies have highlighted the relationships between dietary polyphenols and
lower incidences of cancer, chronic heart diseases, and neurodegenerative syndromes [4–7].
The Mediterranean diet is associated with a reduced risk of cardiovascular disease, thanks
to an adequate intake of olive oil, red wine, and anthocyanin-containing fruits and vegeta-
bles [8,9]. Other beneficial health effects, such as anti-inflammatory, antioxidant, antiallergic,
antithrombotic, and antiviral activities, are related to dietary polyphenol intake [10–12].
Increasing lines of evidence have shown a relationship between some of the aforementioned
diseases and oxidative stress resulting from the generation of reactive oxygen (ROS) and
nitrogen species (RNS) [13], but no natural antioxidant has been approved so far for any
therapeutic indication, except for the nutrient content claims for dietary supplements and
conventional foods.
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Though the clinical effectiveness of polyphenols in the prevention and treatment
of cancer was recently reviewed [6,14], this article aims at evaluating the effectiveness
of polyphenols as protective agents against the ROS-mediated toxic effects induced by
some commonly used chemotherapeutic agents, providing a critical look at a sample of
preclinical and clinical studies from the past decade, as well as highlighting some key
issues related to their poor bioavailability and new nanoformulations that may increase the
potential of these phytochemicals as adjuvants in tumor chemotherapy.

2. Methods

In this study, the databases covering biomedical and pharmaceutical sciences (e.g.,
Pubmed, SciFinder® Scholar, and the ISI Web of KnowledgeSM) were analyzed as sources
of the literature. Clinical studies were retrieved from 2012 to October 2023, along with
the main websites collecting data from clinical trials [15] and pharmaceutical patents [16].
The query strings combined the following terms: “polyphenols”, “flavonoids”, “cancer
chemotherapy”, “side effects”, “toxicity”, and “bioavailability”, and the final selection of
relevant studies was made by crossing combinations of these terms with “human stud-
ies” and/or “clinical trials”. For polyphenolic compounds which had proved clinically
interesting as adjuvants against drug toxicity effects, updated preclinical and mechanistic
information was retrieved from the literature databases.

3. Sources and Healthy Effects of Polyphenols

Based on the diversity of the chromane core and the hydroxyl substitution pattern,
flavonoids can be divided into different groups [1–3], namely, flavones, isoflavones, fla-
vanones, flavonols, flavanols, anthocyanins, and others, which mostly exist as glycosides in
plants. Nonflavonoid compounds include phenolic acids (e.g., ellagic acid, protocatechuic,
vanillic and gallic acids, and cinnamic acid) and their ester derivatives, stilbenoids, and cur-
cuminoids. More complex nonflavonoid molecules are represented by stilbene oligomers,
tannins, and lignins.

Besides grape, olive, blueberry, citrus fruits, broccoli, and many other vegetables and
fruits [17–20], tea is a major source of dietary polyphenols [21,22]. As a frequently used
beverage, its three major forms are green (unfermented), black (fully fermented), and oolong
(semifermented). Catechines, in particular, epigallocatechin gallate (EGCG), are the main
polyphenolic components of green tea, whereas theaflavins and thearubigins prevail in
black tea. Many factors, including environmental conditions, storage, and food processing,
have different influences on the content and the profile of polyphenolic components. Indeed,
sun exposure, rainfall, different types of culture, and the degree of ripeness could affect
their concentration and chemical diversity, as well as the aglycone/glycoside ratio [23].

Several studies have highlighted the correlation between the consumption of
polyphenol-rich foods and a lower incidence of different types of cancer, chronic heart
diseases, and neurodegenerative diseases [4–6]. However, only a limited number of clin-
ical studies have proven the distinct impact of dietary polyphenols on cancer preven-
tion [24,25]. Regarding Alzheimer’s disease (AD), natural flavonoids and synthetic analogs
as multitarget-directed ligands (MTDLs) have recently been reviewed [26]. Useful informa-
tion on the structure–activity relationships (SARs) and pharmacophores of flavonoid-based
derivatives has been reported for a number of targets playing key roles in AD’s multifac-
torial pathogenesis, e.g., the enzymatic inhibition of cholinesterases (ChEs), β-secretase
(BACE-1), and monoamine oxidases (MAO), as well as interference with amyloid-β (Aβ)
aggregation, oxidative stress, and metal imbalances. Amongst the polyphenols in clinical
trials for the management of AD [27], STA-1 has entered phase 2 by Sinphar Pharmaceu-
ticals [28] as an add-on therapy to donepezil treatment. STA-1 is an herbal remedy from
traditional Chinese medicine, containing flavonoids and other polyphenolic constituents,
with a broad activity spectrum [29]. Semisynthetic derivatives of gallic, protocatechuic, and
vanillic acids (e.g., 1, Figure 1) have been proven to be in vitro inhibitors of β-amyloid pep-
tide Aβ1–40 aggregation [30] and potent modulators of ATP-binding cassette transporters
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(e.g., 2 and 3) involved in multidrug resistance (MDR) [31,32]. Some trimethoxygalloyl-
based compounds (e.g., 4) may be able to activate TNFα-induced MAPK (mitogen-activated
protein kinase) signaling in murine fibroblasts and human endothelial cells with different
MAPK selectivity profiles [33].
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4. Polyphenols and Oxidative Stress

Pathologic conditions, like cancer, cardiovascular disease, and ischemia-reperfusion
injury, are related to oxidative stress caused by ROS and RNS [13]. Preventing the formation
and/or scavenging of cellular ROS, such as superoxide (O2

−), hydroxyl (HO), peroxyl
(HOO) and alkoxyl (ROO) radicals, and RNS (e.g., peroxynitrite, ONOO−), is a main
mechanism underlying polyphenols’ antioxidant activity [12,13,19,20]. The neuroprotective
effects of kuromanin (i.e., the 3-O-glucoside of cyanidin) and other anthocyanins are related
to their activity against nitrosative stress [34].

ROS and RNS play beneficial or deleterious roles in cells depending on their con-
centrations. At low concentrations, ROS and RNS modulate intracellular signaling and
enzyme activity, whereas at high concentrations, they give rise to an imbalance between
reactive species formation and antioxidant defenses [35,36]. Such disequilibrium leads
to an increased level of the oxidant species, which can produce radical-mediated DNA
injury, lipid peroxidation, and protein damage, ultimately causing cell death via apoptosis
or necrosis.

As reducing agents, polyphenols suppress the generation of free radicals and reduce
the rate of oxidation by inhibiting the formation or deactivating the active species and
precursors of free radicals. In addition to their metal (iron, copper, etc.) chelating ability,
flavonoids (in particular, quercetin) inhibit ROS and RNS generation (Figure 2). Structure–
antioxidant activity relationships have shown the importance of the highly conjugated
aromatic ring and the hydroxylation pattern [37–39].
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However, so far, neither bioactive polyphenols nor synthetic antioxidants have been
approved for any indication. To the best of our knowledge, edaravone (Mitsubishi Tanabe
Pharma Corporation), a synthetic pyrazolone derivative (5, Figure 3) acting as a free-radical
scavenger, has recently been approved for stroke and amyotrophic lateral sclerosis [40],
whereas the nitrone compound NXY-059 (6) failed to show clinical efficacy, though it had
significant effects in the preclinical treatment of acute ischemic stroke [41].
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5. Polyphenols and Anticancer Activity

Epidemiological studies have evidenced a cause/effect correlation of cancer patholo-
gies with urban lifestyles, diets, and environmental conditions [42,43]. Current treatments
of cancer, i.e., chemo-, radio-, and immunotherapy, have variable toxic side effects for
patients [44]. The search for effective, nontoxic chemotherapeutics has often turned to the
natural world to discover new bioactive molecules. Among these, plant-derived polyphe-
nols are by far the most recognized as useful dietary components with many health benefits.
They are characterized by a high level of structural diversity, which in turn generates dif-
ferent biological properties. Epidemiological, preclinical, and clinical research has shown
that the daily consumption of polyphenols is strongly correlated with the prevention of
cancer. Polyphenols can exert their anticancer impact by regulating many cellular signaling
pathways when acting on different target proteins [45]. Polyphenolic compounds can there-
fore influence carcinogenesis processes through different mechanisms; however, the main
obstacles to effective treatment are high metabolic liability, weak membrane permeability,
low systemic exposure, physiological fluctuation, and oxidative damage [46].

Their antitumor characteristics have been mainly ascribed to their anti-inflammatory,
cell cycle arrest, antimetastatic, antiangiogenic, autophagic, antiproliferative, and apoptotic
effects [43]. Polyphenols can elicit their anticancer activity by targeting cellular mechanisms,
such as gene expression, cell cycle proliferation, cellular migration, and progression. The
cytoprotective and anticancer properties of polyphenolic substances can generally be
attributed to their antioxidant effects [47]. Polyphenols are able to (i) eliminate ROS
and other free radicals; (ii) decrease DNA mutation and damage; (iii) suppress the cell
cycle; (iv) induce apoptosis; and (v) down-regulate cell proliferation by means of key
signaling pathway modulation (PI3K/Akt, EGFR/MAPK, NF-kB). Moreover, polyphenols
may exhibit anticancer effects through different mechanisms, for example, the perforin-
granzyme apoptotic pathway, mitochondria-mediated apoptosis via ROS overgeneration,
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and the death receptor pathway [48]. Phenolic compounds can also induce the regulation of
metabolism, cell development, and the inhibition of tumor expression via the p53 pathway.
They can also act by stopping DNA replication and RNA transcription, as well as by
repairing the DNA damage in cancer cells [49].

6. Protective Effects of Polyphenols against Adverse Effects of Antitumor Therapies

Herein, several recent preclinical and clinical studies on the effectiveness of polyphe-
nols in protecting against the adverse effects of anticancer drugs, mainly ROS-mediated
toxicity, have been critically analyzed with the aim of evaluating their potential use as
adjuvants in cancer chemotherapy. The pharmacological key findings are summarized in
Table 1.

6.1. Polyphenolic Adjuvants in Anticancer Therapeutic Interventions

In a study conducted on MCF-7 cells (human breast cancer), ellagic acid was proven
to (i) increase cell death, (ii) reduce cells’ capacity to form colonies, and (iii) accumulate
cells in the sub-G1 (apoptotic) phase after gamma radiation treatment [50]. The effects were
significantly higher for the combined treatment compared to the ellagic acid or irradiation
treatment alone, thereby demonstrating the ability of ellagic acid to radio-sensitize MCF-7
cells. Interestingly, ellagic acid showed radio-protective effects on normal murine cell line
in vitro.

Fractions from wine extracts, mainly containing procyanidins, catechins, and flavonols,
have shown an antiproliferative effect on PC3 cells (prostate cancer) in a dose-dependent
manner [51]. These fractions induced autophagy on the same cell line, thus corroborating
the potential to prevent the disease.

In a recent in vitro study [52], ovarian cell lines were treated with oleuropein (a
phenolic compound present in the fruits and leaves of olive trees). In particular, the authors
showed that after using oleuropein to treat A2780 and A2780 cisplatin resistance cell lines,
the expression of p21 and p53 increased, while the expression of Bcl-2 decreased. As a result,
oleuropein was able to induce apoptosis, reduce cell proliferation, and reduce resistance to
cisplatin in ovarian cell lines.

Hydroxytyrosol, the product of oleuropein hydrolysis, is an effective anti-inflammatory
and antioxidant polyphenol. It is able to reduce the nephrotoxicity from cisplatin by inhibit-
ing chemokine-like factor 1 (CKLF1) involved in inflammation pathways and to induce
anti-oxidative stress and anti-apoptosis activities in the kidneys of mice [53].

Honey contains a mixture of different active compounds (Figure 4), including coumaric
acids (7–9), caffeic acid (10), ferulic acid (11), eugenol (12), and flavonoids, such as quercetin,
apigenin, chrysin (13), pinocembrin (14), pinobanksin (15), and naringin (16) in different
percentages depending on the floral source and geographical origins. An increasing
amount of evidence has attributed a potential chemopreventive activity to honey [54].
In fact, multi-floral honey prevented the formation of breast cancer induced by 7,12-
dimethylbenz(a)anthracene (DMBA) in a rat model [55]. Moreover, an increased level
of bone marrow lymphocytes and peritoneal macrophages in mice suggested the activation
of the immune system [56]. Oral mucositis (OM), which is one of the most common side
effects of chemotherapy, could be reduced by honey, thanks to its capacity to increase the
immune system response [57]. This effect was confirmed by a double-blind randomized
clinical trial in which the patients affected by OM after chemotherapy were treated with
betamethasone, honey, and a combination of honey and coffee [58].

Patients with head and neck cancer treated with radiotherapy showed a reduction
in oral side effects (xerostomia) after consuming thyme honey [59], and manuka honey
and talk honey induced a reduction in liver and kidney toxicity via cisplatin in rats [60].
This organ-protective effect could be due to honey’s free-radical scavenging as well as
anti-inflammatory and anti-apoptotic activities. These data suggest the protective effect of
honey and its promising application.
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To induce the same protective effect on oral mucosa, a clinical trial (NCT05994638,
2023) [61] is starting to recruit patients receiving a polyphenol-rich aerosol for minimizing
side effects in patients after radiation therapy. A group of 10 patients with head and neck
cancer who have undergone radiotherapy will orally receive an aerosol constituted of
polyphenol-rich plant extracts, hyaluronic acid, Cetraria islandica, and vitamin B3 for one
month. Another clinical trial (NCT06017661, 2023) [62] is using a standard commercial
product, ‘nutridrink’, enriched with a preparation of plant extracts rich in polyphenolic
compounds as support for recovering patients undergoing gastrointestinal tumor resection.

In a recent patent (CN111447940; 2020) [63], quercetin and its analogues were used
to provide novel compositions and methods for the treatment of radiation-induced by-
stander effects (RIBEs) resulting from radiation exposure. Moreover, in a recruiting clinical
study (NCT05984888, 2023) [64], some patients affected by breast cancer were treated
with the MIND (Mediterranean Intervention for Neurodegenerative Delay), with the aim
of protecting the brain from the toxic side effects of chemotherapy. The MIND is a diet
with anti-inflammatory nutrients (e.g., omega-3 polyunsaturated fatty acids (PUFAs),
carotenoids, B-vitamins, and polyphenols) which may help alleviate negative cognitive
outcomes from cancer treatments. Another clinical trial (NCT02195960, 2023) [65] seeks to
evaluate the effects of polyphenol-rich food supplementation against the toxic side effects
of breast cancer radiotherapy.

6.2. Activity against ROS-Mediated Effects of Chemotherapeutics

Anthracyclines are anticancer antibiotics characterized by an anthraquinone moiety
branched with an amino sugar at C-7. Doxorubicin (17) and daunorubicin (18) (Figure 5),
isolated from the bacteria Streptomyces peucetius, were the earliest drugs of this family
that entered clinical practice for cancer treatment [66]. Daunorubicin is effective in acute
lymphocytic and myeloid leukemia, while doxorubicin is a component of polypharma-
cological protocols for treating solid tumors (e.g., breast cancer, soft tissue sarcomas, and
aggressive lymphomas). Even though it is a common chemotherapeutic, the clinical use
of doxorubicin is limited by its dose-dependent cardiac toxicity, which may lead to severe
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and irreversible forms of cardiomyopathy [67,68]. Indeed, anthracyclines can induce the
early onset of progressive chronic cardiotoxicity, usually within one year of treatment [69].
Cardiomyopathy may persist or advance even after the discontinuation of therapy [70].
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The mechanistic explanation for iatrogenic cardiotoxicity lies in the overproduction of
ROS. Doxorubicin quinone can be reversibly reduced to semiquinone, an unstable metabo-
lite whose futile redox cycle within mitochondria leads to ROS overload, especially the
superoxide radical anion O2·−. As shown in Figure 5, the reduction in doxorubicin quinone
(C ring) to semiquinone is catalyzed by NADH-dependent enzymes. The semiquinone
in turn donates a single electron to O2, thereby generating O2·− and recycling itself to
quinone. Superoxide dismutase 2 (SOD2) catalyzes the transformation of O2·− in H2O2,
which can be detoxified by catalase or glutathione (GSH) peroxidase in the presence of GSH
or converted into the highly reactive hydroxyl radical (HO) in the presence of endogenous
Fe2+ through the Fenton reaction.

The highly reactive HO· can in turn generate lipid radicals and other ROS. In addi-
tion to ROS, the RNS peroxynitrite (ONOO−) is generated in cardiomyocytes following
doxorubicin administration, most likely due to the reaction between the O2·− generated
from mitochondria and nitric oxide (NO) [71]. In addition, iron ions (Fe2+/Fe3+) have
been shown to play a crucial role in this process. Fe3+ is able to react with hydrogen
peroxide to yield reactive hydroperoxyl radicals (HOO) and to form chelates with the
C11-C12 β-hydroxycarbonyl system of doxorubicin (Figure 5) [72]. Iron accumulates in
cardiomyocytes during doxorubicin treatment, probably because of its capability to in-
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terfere with the main iron-transporting and iron-binding proteins [73]. In preclinical and
clinical studies of anthracycline-induced cardiotoxicity, iron chelators, such as dexrazoxane,
showed promise [74]. Other molecules, such as amifostine and mesna for example, have
also been evaluated as cardioprotective auxiliary agents in preclinical studies [75].

6.2.1. Preclinical Findings

Ellagic acid (19, Figure 6) is a product of the hydrolysis of ellagitannins. Recent phar-
macological studies have demonstrated that 19 acts as a free-radical scavenger, with several
health benefits, such as anti-inflammatory, antihepatotoxic, antisteatosic, anticholestatic, an-
tifibrogenic, antidiabetic, hypolipidemic, and antiatherosclerotic effects [76,77]. Moreover,
ellagic acid has been proven to inhibit type-B monoamine oxidase (MAO-B) [78], thereby
protecting rat brains from 6-hydroxydopamine-induced neuroinflammation in a model of
Parkinson’s disease [79] and preventing scopolamine- and diazepam-induced cognitive
impairments [80]. In male Wistar rats, orally administered 19 was proven to attenuate the
doxorubicin-induced oxidative process in myocardial tissue [81].
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Gallic acid, a potent free-radical scavenger [82], is a product of the hydrolysis of
gallotannins. Doxorubicin-treated albino rats developed severe alopecia, and their fur
became scruffy [83]. A 60% mortality rate was observed in the doxorubicin group, whereas
in animals treated with gallic acid orally administered at doses of 15 mg/kg and 30 mg/kg,
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the mortality rate decreased to 30% and 15%, respectively. Gallic acid showed effectiveness
in the functional recovery of the heart, with a significant reduction in cardiac injury, which
may be related to its antioxidant properties [84].

Medicinal uses of turmeric (Curcuma longa L., Zingiberaceae) arise from its content of
volatile oil and curcuminoids (Figure 6, 20–22) [85]. It has been reported that turmeric has
anti-inflammatory, hepatoprotective, antiviral, and anticancer activities, and it might have
neuroprotective effects [86,87]. Recently, the medicinal chemistry of curcumin has been
reviewed in depth, and new research developments on curcuminoids have been widely
discussed [88]. Extensive investigations over the past quarter century, including over a
hundred clinical studies of curcuminoids against several diseases, have addressed the
pharmacokinetics, safety, and efficacy of turmeric [89].

The administration of a single dose of doxorubicin to a group of male rats was com-
pared with a group receiving doxorubicin and an alcoholic extract of C. longa L. via an
oral gavage. Compared to the controls, the doxorubicin-treated animals showed a 50%
increase in mortality. In rats co-treated with turmeric extracts, not only was the mortality
rate significantly diminished, but the heart weight and heart/bodyweight ratio significantly
increased. Turmeric was proven to protect animals against acute doxorubicin-induced
cardiotoxicity, ameliorate cardiac enzymes, and modulate the pathways triggering cardiac
apoptosis, decreased levels of GSH, and the overproduction of oxidant radicals [90].

6.2.2. Evaluation of Clinical Studies

The flavonoid 7-mono-O-(β-hydroxyethyl)rutoside (monoHER) (23, Figure 6), a semi-
synthetic derivative of rutin (24) bearing rutinose (α-l-rhamnopyranosyl-(1→6)-β-D-
glucopyranose) as the disaccharide moiety, has been shown to protect mice against
doxorubicin-induced cardiotoxicity without adverse effects at a very high dose
(500 mg/kg) [91]. Based on these results, clinical trials were performed to evaluate its pro-
tective effects in cancer patients. MonoHER, administered intravenously at a 1500 mg/m2

dose 60 min before doxorubicin was administered, was evaluated through an endomyocar-
dial biopsy, but the benefits observed in these preclinical studies were not confirmed [92].
These conflicting results might be attributable to interspecies differences in ADME (ab-
sorption, distribution, metabolism, and excretion). However, the antitumor activity of
doxorubicin appeared to greatly improve, even displaying a partial remission of metastatic
soft-tissue sarcoma in some patients. These results are somehow in agreement with the
potentiating anti-proliferative effects observed in vitro for a number of flavonoids [93].

Another noteworthy clinically investigated polyphenol is salidroside (i.e., tyrosol
glucoside, 25) found in Rhodiola rosea and used in traditional Tibetan medicine. Salidroside
(Figure 6), along with the less active rosavin 26 (a cinnamyl alcohol glycoside bearing α-L-
arabinopyranosyl-α-D-glucopyranoside as the disaccharide moiety), was reported to play a
role in reducing mitochondrial-generated ROS and apoptosis signaling [94]. Pretreatment
with salidroside appears to significantly reduce in vitro both ROS and mitochondrial
superoxide overproduction [95] as well as to arrest the cell cycle and apoptosis in human
breast cancer cells [96].

Furthermore, 25 showed antioxidant-related cardiovascular protection [97]. These
results led to clinical studies to assess its effectiveness in protecting against cardiac dysfunc-
tions induced by epirubicin in sixty patients with histologically confirmed breast cancer.
In this trial, all the patients had a scheduled cumulative epirubicin dose of 400 mg/m2.
Although the oral co-administration of 25 and epirubicin was well tolerated in all of the
patients, no significant differences in the protection from epirubicin-induced cardiotoxic
effects were found compared to the placebo groups, once again suggesting that most likely
the poor bioavailability of the polyphenolic phytochemicals in humans is a major factor
limiting its clinical application [98].
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Table 1. Major outcomes from pharmacological studies on the protective activity of polyphenols
against toxicity effects of antitumor drugs.

Source Polyphenol/s Key Findings Ref.

In vitro models

Wine extracts
Ellagic acid Pro-apoptotic effect after gamma

irradiation on MCF-7 cells [50]

Procyanidins, catechins,
flavonols

Antiproliferative effect in PC3
prostatic cancer cells [51]

Olive tree
Oleuropein

Apoptosis induction, cell proliferation
reduction, and resistance to cisplatin
Reduction in ovarian carcinoma cell
lines (A2780)

[52]

Salidroside
ROS and superoxide reduction in
breast cancer lines [95]

Cell cycle arrest of breast cancer lines [96]

Animal models

Honey
Coumaric acid, ferulic acid,
caffeic acid, eugenol,
flavonoids

Prevention of DMBA-induced breast
cancer in rats [55]

Olive tree
Hydroxytyrosol Activation of immune system in mice [57]

Inhibition of chemokine-like factor 1
(CKLF1), as well as anti-oxidative and
anti-apoptosis effects in kidneys of
mice during cisplatin treatment

[53]

Ellagic acid Attenuation of doxorubicin-related
oxidative stress in male Wistar rats [81]

Gallic acid
Mortality reduction and heart
functional recovery in
doxorubicin-treated rats

[84]

Turmeric alcoholic
extract

Curcuminoids
Reduction in doxorubicin-treated male
rats mortality as well as increase in
heart weight and heart/bodyweight

[90]

MonoHER Protection from doxorubicin
cardiotoxicity in mice [91]

Clinical studies

Honey

Coumaric acid, ferulic acid,
caffeic acid, eugenol,
flavonoids

Oral mucositis reduction in
double-blind clinical trial [58]

MonoHER
Doxorubicin activity improvement
(partial metastatic soft-tissue sarcoma
remission)

[93]

Salidroside
In co-administration, no significant
protection against epirubicin-related
cardiotoxicity although well tolerated

[98]

Aereosol

Polyphenols

Minimization of oral side effects in
patients after radiation therapy [61]

Nutridrink Recovery of patients undergoing
gastrointestinal tumor resection [62]

MINDS Brain protection from toxic side effects
of chemotherapy [64]

Rich-food Reduction in radiotherapy side effects
in those with breast cancer [65]

6.3. Bioavailability Issues

A main hurdle to the therapeutic application of polyphenols is their poor bioavail-
ability. Despite their antioxidant, antiphlogistic, and anticancer pharmacological activities,
which may synergistically cooperate in antitumor chemotherapy, polyphenols show poor
bioavailability, which strongly limits their efficacy. Several factors, such as low solubil-
ity/permeability, photochemical isomerization, auto-oxidation, and hepatic/intestinal
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rapid metabolic processes, just to name the main ones, negatively affect their bioavailability
and in fact represent major obstacles to their therapeutic use. Nanodelivery systems may
have the potential to improve their therapeutic efficacy. While the reader may refer to recent,
more exhaustive reviews on these topics [4,10], herein we would like to draw attention to
some promising applications in CNS diseases [46] or in cancer prevention and therapy [99].

For example, numerous studies have proven that curcumin (20) is chemically and
metabolically unstable and thereby poorly bioavailable [88]. A spectroscopic analysis
revealed that a major degradation product (27) is formed by the autoxidation of 20 [100],
whereas three minor degradation products, namely vanillin (28), ferulic acid (29), and the
ketone product 30, are generated via a solvolysis reaction in an aqueous alkaline buffer [101]
(Figure 7). Pharmaceutical nanotechnologies may implement efficient delivery systems
aimed at improving the bioavailability of polyphenols [102].
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6.4. The Clinical Promise of Nanothecnology-Based Delivery Systems

A major advantage of the particles within a range of less than 100 nm (nanoparticles)
is represented by the high surface-area-to-volume ratio [103]. In general, nanoformulations
(liposomes, micelles, natural and synthetic nanoparticles, metal nanoparticles, and micro-
spheres) may lead to improved bioavailability, biodistribution, and specificity, as well as
provide the optimal pharmacokinetics for drugs delivered to tumor sites [104–106]. Some
examples of optimized nanoformulations of plant-derived polyphenols are reported below.

The effects of polyphenolic extracts from green tea (GTE), red wine (RW) lees, and/or
lemon (L) peel, alone and in combination with antitumor drugs, were investigated on the
growth and development of different transplanted experimental tumors [107]. Nanosized
forms of these extracts (NanoGTE, NanoGTRW, or NanoGTRWL) were produced using
spray drying technology (with a 10–45 nm particle size). The total phenolic composition
for the extracts ranged from 18.0 to 21.3 g/100 g for each formulation. The antitumor prop-
erties of the polyphenolic extracts and biocomposites were tested in murine-transplanted
tumors, namely sarcoma 180, solid Ehrlich carcinoma, Ca755 mammary carcinoma, and B16
melanoma. The reduction indices of doxorubicin cardiotoxicity and cisplatin nephrotoxicity
suggest the beneficial effects of polyphenols in green tea, red wine lees, and lemon peels as
nanoextracts. This study suggested the promising development of GTE and nanoextracts
as auxiliary agents in anticancer treatment.

Luteolin, one of the flavonoids of celery, green pepper, honey, and chamomile tea,
showed inhibitory effects against the transcription factor Nrf2 [108]. The exposure to
carcinogenic molecules activates the Nrf2 pathway, inducing the elimination of carcinogenic
reactive intermediates and consequently resistance to chemotherapeutic agents. Luteolin
could sensitize cancer cells to chemotherapeutic agents through the inhibition of Nfr2.
Luteolin-phytosome was proven to be a potential drug delivery system able to increase
the efficacy of doxorubicin in human MDA-MB 321 breast cancer cells [109]. The real-time
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quantitative PCR (qRT-PCR) analysis showed that phyto-luteolin suppressed the mRNA
expression of Nfr2, as well as the expression of the genes of HO-1 and MDR-1 more than
luteolin alone in human MDA-MB 321 breast cancer cells [110]. The cytotoxicity data
showed that nanoformulations were able to inhibit the growth of MDA-MB231 cells better
than luteolin or doxorubicin alone.

Another study explored the synergistic effect of resveratrol and 5-fluorouracil using
PEGylated liposomes. This nanoformulation was tested in vitro on a head and neck cancer
cell line (NT8e). The data showed a cytotoxicity increase in nanoformulations (liposomes)
compared to the free drug [111].

The poor ADME properties of curcumin (20) could be overcome through nanoformula-
tions, as recently shown by several studies. Different nanocarriers were employed, ranging
from polymeric or solid lipid nanoparticles to nanocrystals, nano-emulsions, and nano
liposome-encapsulated curcumin, just to mention the most important applications [112,113].
Limited to anticancer treatment, curcumin-loaded N-dodecyl-chitosan-HPTMA-coated
liposomes showed an increased sensitivity of the mouse melanoma cell line B16F10. These
tumor cells can tolerate 20 at a concentration of about 10 µM, while the cytotoxicity of
the chitosan-based formulation can be observed at lower concentrations (2.5 µM) [114].
Actually, a number of studies have demonstrated that the nanoparticle encapsulation of
20 is not always beneficial. For example, curcumin-loaded chitosan/polycaprolactone
nanoparticles exhibited cytotoxicity on cervical cancer and choroidal melanoma (HeLa and
OCM-1 cell lines, respectively) to the same extent as free curcumin [115]. Furthermore,
mPEG 2000–curcumin conjugates were equipotent to unbound curcumin against a panel of
carcinoma cell lines [116].

The biodistribution and efficacy of different curcumin nanoformulations have been
investigated in many in vivo studies to assess the therapeutic potential of these release
systems [114]. Curcumin-loaded MPEG-PCL polymeric micelles showed a stronger an-
tiproliferative effect in mice LL/2 pulmonary carcinoma compared to free curcumin [117].
Finally, curcumin nanoformulations were investigated in human clinical trials for many
years, showing clinical benefits for patients with some solid tumors and multiple myeloma.
The effects and concentrations in normal and cancerous tissues after the administration of
curcumin formulations were compared; safety and immune responses were taken, in each
study, as the primary and secondary outcomes, respectively [114].

7. Conclusions and Perspectives

The literature provides a wealth of information about numerous health-related proper-
ties, including the anticarcinogenic activity, of plant-derived polyphenols. Pharmacological
data support several mechanisms for the activity of flavonoids in inhibiting cancer onset
and progression. Polyphenols could play a significant role in protecting patients from the
adverse effects of anticancer chemotherapeutics, especially those related to drug-induced
oxidative stress. Herein, both preclinical and clinical findings regarding the effectiveness
of polyphenols, or their synthetic analogs and derivatives, were reviewed with a focus
on their capacity to protect against ROS-mediated toxic effects induced by antitumor
chemotherapeutics. The only clinically tested flavonoid glycoside, monoHer (23), showed
protective activity against doxorubicin-induced cardiotoxicity in mice, but its effect was
not confirmed in human studies. Salidroside (25), which induces cell cycle arrest and
apoptosis in human breast cancer cells, though tolerated in all patients, did not show
significant protective effects against anthracycline-related cardiotoxic effects. This appar-
ent dichotomy could be explained by considering several factors, such as species-related
differences in metabolism and bioavailability, and issues related to dosing. Studies aimed
at establishing adequate dosing and delivery systems are needed, whereas a promising
research area is dedicated to the development of nanoformulations as a bioavailability
booster for polyphenolic phytochemicals.
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