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Abstract: Plants are highly sensitive to various environmental stresses, which can hinder their growth
and reduce yields. In this study, we investigated the potential of seed priming with salicylic acid (SA),
gibberellic acid (GA3), and sodium chloride (NaCl) to mitigate the adverse effects of salinity stress in
Hordeum vulgare at the germination and early seedling stages. Exposing H. vulgare seeds to salt stress
reduced the final germination percentage and seedling shoot and root growth. Interestingly, all seed
treatments significantly improved salt-induced responses, with GA3 being more effective in terms
of germination performance, plant growth, and photosynthesis. SA priming exhibited promising
effects on antioxidant defense mechanisms, proline, sugar, and ascorbic acid production. Notably,
SA priming also suppressed reactive oxygen species accumulation and prevented lipid peroxidation.
These findings highlight the ability of SA to manage crosstalk within the seed, coordinating many
regulatory processes to support plant adaptation to salinity stress.

Keywords: Hordeum vulgare; hormo-priming; redox homeostasis; salicylic acid; salt stress; stress memory

1. Introduction

Environmental stressors significantly challenge global food security, impacting crop
yields and productivity. Among these stressors, salt stress is one of the most severe, affecting
at least 20% of crop production [1]. Salt stress disrupts plant growth by disturbing osmotic
and ionic homeostasis, affecting photosynthesis, generating reactive oxygen species (ROS),
interfering with phytohormonal functions, and altering metabolic pathways and gene
expression patterns [2].

Seed germination and early seedling growth are the most salt-sensitive plant growth
stages. Salinity can delay seed germination by reducing water availability and altering
the mobilization of stored reserves [3]. Therefore, improving plant tolerance to salt stress
requires improving germination performance under saline conditions. The establishment of
‘vigorous crops’ under stressful conditions depends on successful germination [4]. However,
germination is a heterogeneous biological process, with variations in timings and patterns
among seeds. While strategies such as genetic engineering and conventional breeding
have been used to mitigate the adverse effects of salinity, they have limitations in terms
of success, biosafety restrictions, cost, and time [5,6]. Therefore, there is a critical need for
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simple, effective, low-cost, and low-risk methods to minimize the impact of salinity. Seed
priming has emerged as a potential alternative approach that leverages plant stress memory
and immune system activation to promote seed germination and enhance plant growth
under various abiotic stresses without the need for genetic engineering [7]. Furthermore,
immune stimulation through priming may confer improved defensive capabilities, which
can be inherited epigenetically across plant generations [8], emphasizing the importance of
understanding priming mechanisms.

Priming, also known as hardening, can occur naturally or be induced through exposure
to specific agents [9]. Different types of seed priming include hydropriming, osmopriming,
nutripriming, redox priming, and hormopriming [10]. Generally, seed priming treatments
enhance germination performance, early seedling growth, and mineral and water uptake
under various abiotic stresses, such as heat [11], drought [12], and salinity [13]. However,
the specific effects of priming are influenced by factors such as priming duration [14]
(Dai et al., 2017), priming agent concentration [13], and mode of action [15]. Priming acts
as a signaling mechanism that triggers specific stress response pathways in primed seeds,
enabling plants to respond more quickly and efficiently when subsequently exposed to
environmental stresses, a phenomenon known as memory or a primed state [9,15].

Various chemical compounds, whether natural or synthetic, can induce a primed
state in plants, enhancing their ability to tolerate salt stress [9]. These compounds include
ROS such as H2O2 [15], H2S [16], melatonin [17], NO [18], silicon [13], and vitamins such
as ascorbic acid [19], which are ideal priming agents for stimulating stress memory, so
that seeds may overcome stresses during germination and prepare plants to better defend
against external factors [20].

Phytohormones such as auxins (IAAs), cytokinins (CKs), gibberellins (GAs), ethylene
(ET), abscisic acid (ABA), salicylic acid (SA), brassinosteroids (BRs), and jasmonates (JAs)
play important roles in plant metabolism and development [21,22]. They also function as
paramount chemical messengers, control several cellular processes in plants under normal
and stressful conditions [23], and interact with each other, forming a signaling network
from seed germination to maturation [24]. Recent research highlighted the significance of
phytohormones as priming agents in mitigating abiotic stresses such as salt stress [23] and
improving salt tolerance in cereal food crops [25].

Phytohormones interact with other metabolites, such as ROS, in the signaling cascade
that regulates plant responses during priming [26]. For example, priming maize seeds
with 28-homobrassinolide enhanced antioxidant enzyme activities, minimizing lipid per-
oxidation in maize seedlings grown under salt stress [27]. Seed priming with spermidine
promoted salt tolerance in rice plants by reducing ROS accumulation and triggering the
expression of genes encoding antioxidant enzymes. Moreover, seed priming or foliar
application with JA mitigates salt stress in many plant species by scavenging ROS [28].
GA is also widely used in priming as a key mediator between the perception of an envi-
ronmental signal and growth response [29]. In this context, soaking wheat grains with
GA3 alleviated nutritional disorders caused by salinity better than ABA priming [30]. In
another study, pre-treating wheat seeds with GA3 significantly decreased Na+ content but
increased the activities of two key enzymes involved in amino acid biosynthesis (arginine
decarboxylase and ornithine decarboxylase) under salt stress [31]. Similarly, seed priming
with GA3 enhanced ion uptake, photosynthesis, and redox homeostasis in Vicia faba species
cultivated under saline conditions [32]. We also showed the effective role of GA3 seed
priming in cauliflower seedlings exposed to severe salinity [15]. Likewise, priming sum-
mer squash seeds simultaneously with GA3 and JA increased the production of catalase
(CAT), peroxidase (APX), and superoxide dismutase (SOD) as an adaptive mechanism to
salt stress [33]. Moreover, pre-treating corn seeds with SA increased α-amylase and leaf
antioxidant enzyme activities, indicating that SA may contribute to establishing a redox
balance by stimulating the antioxidant defense system [34].

Plants accumulate many non-toxic compounds under salt stress, such as sugars,
proline, and glycine-betaine (GB) that act as osmoprotectants, helping them withstand
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osmotic stress without hindering regular metabolism [35]. Some studies have suggested
a regulatory mechanism linking osmolytes and phytohormones in plant responses to
salinity [35,36]. For example, foliar application of GA3 stimulated proline accumulation
in salt-stressed Linum usitatissimum plants [37]. In contrast, a GA3 treatment decreased
the proline content in Zea mays seedlings grown under saline conditions [38]. JA and BRs
also modulate osmolyte production under stressful conditions [36]. Also, SA treatment
mitigated salt stress toxicity in maize via sugar and proline accumulation [39]. Likewise, SA
alleviated salinity stress in Vigna radiata seedlings in association with GB accumulation [40].

Therefore, this study investigates the effects of seed soaking with different priming
agents (NaCl, SA, and GA3) on seed germination, seedling growth, ion homeostasis, and
osmoprotectant production in barley (Hordeum vulgare) plants grown under saline and
non-saline conditions. This study also focuses on dealing with osmotic and oxidative stress
induced by salinity.

2. Materials and Methods
2.1. Priming Treatment and Growth Conditions

Barley seeds (Manel variety) were disinfected with a diluted sodium hypochlorite (NaOCl)
solution (50 µL of NaOCl in 150 mL of distilled water) for 5 min and washed three times
with distilled water. The seeds were soaked in salicylic acid (SA; 1 mM), gibberellic
acid (GA3; 50 ppm), or NaCl (25 mM) solution for 12 h at 25 ◦C. Afterward, the seeds were
oven-dried at 25 ◦C to the initial weight of unprimed seeds for 48 h. Figure 1 illustrates the
experimental design.
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Figure 1. Experimental design. Barley seeds were soaked for 12 h in salicylic acid (10 mM) or
gibberellic acid (50 ppm) solution. After drying to their original moisture content, primed and
unprimed seeds were germinated in Petri dishes in the dark at 22 ◦C and watered every two days
with distilled water (control) or 75 mM NaCl for 6 days. The Petri dishes were transferred to a growth
chamber with continuous light illumination (100 µmol photons m−2 s−1) at 22 ◦C for 14 days before
the seedlings were harvested.

Primed (P) and unprimed (UP) seeds were germinated in Petri dishes on moistened
double layers of filter paper, with 20 seeds per dish. The Petri dishes were kept in the
dark at 22 ◦C and irrigated every two days with distilled water (control) or 75 mM NaCl
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for 6 days. The Petri dishes were arranged in a completely randomized design with three
replicates per treatment and 20 seeds per Petri dish. Subsequently, the Petri dishes were
maintained under a 16 h light/8 h dark regime in the same constant environment chamber
set at 22 ◦C for two weeks, at which time the seedlings were harvested and analyzed.
It is important to mention that all data are the means of four replicates for the overall
analyzed parameters.

2.2. Germination Traits

The germination dynamics of P and UP seeds of H. vulgare sown under control and
saline conditions were evaluated by calculating mean germination time (MGT) and final
germination percentage (FGP) using the method described by Al-Mudaris [41]:

MGT = ΣF × X/ΣF (1)

where F is the number of seeds germinated on day X.
FGP = (the total number of seeds germinated at the end of the trial × 100)/(the number

of initial seeds used).

2.3. Relative Water Content (RWC) Measurement

Seedlings were harvested and separated into shoots and roots, and their fresh weights (FW)
were recorded. The shoot and root samples were then incubated in 30 mL of distilled water
in the dark for 24 h to determine the turgid weight (TW). Dry weights (DWs) of both
organs were obtained by oven-drying the samples at 60 ◦C. RWC was calculated as per
Sairam et al. [42]:

RWC = (FW − DW) × 100/(TW − DW) (2)

2.4. Total Chlorophyll Content

Total chlorophyll content was measured using the method described by Lichtenthaler [43].
Briefly, 100 mg of fresh shoot samples were homogenized in 5 mL of 80% acetone and
incubated in the dark at 4 ◦C for 72 h, before measuring the absorbance of the extract
using a UV-visible spectrophotometer (Dual Beam 8 Auto Cell UVS-2700) at 470, 646,
and 663 nm wavelengths.

2.5. Total Sugar Content

Soluble sugars in shoots and roots were measured using anthrone reagent, as described
in [44] Yemm and Willis.

2.6. Sodium (Na+) and Potassium (K+) Analysis

For ion extraction, shoot and root dry matter was incubated in H2SO4 (1 N) at 80 ◦C
for 1 h [45] before measuring Na+ and K+ contents using flame photometry (BWB flame
photometer, BWB Technologies, Newbury, UK).

2.7. Hydrogen Peroxide (H2O2) Content

H2O2 content was determined according to the method of Sergiev et al. [46]. Fresh
shoot and root tissues were homogenized in 5% (w/v) TCA before centrifuging the ho-
mogenate at 10,000× g for 15 min at 4 ◦C. The supernatant was mixed with 10 mM potas-
sium phosphate buffer (pH 7.0) and 1 M KI before measuring the absorbance at 390 nm.
The H2O2 content was calculated using a standard calibration curve.

2.8. Lipid Peroxidation (MDA) Content

The degree of lipid peroxidation was assayed by determining the malondialdehyde (MDA)
content (nmol/g FW) in shoots and roots, as described by Hodge et al. [47].
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2.9. Proline Accumulation

Proline content was assayed according to Bates et al. [48]. For proline extraction, fresh
shoot and root samples were homogenized in 2 mL of ethanol, with the mixture heated
at 85 ◦C in a water bath for 1 h. The reaction was stopped by placing the tubes in an ice
bath. Subsequently, a solution was prepared comprising 1 mL of the upper phase of the
tube mixed with 1 mL of acetic acid and 1 mL of a mixture containing 120 mL of distilled
water, 300 mL of acetic acid, 300 mL of orthophosphoric acid, and 25 mg of ninhydrin. The
solution was boiled for 30 min. After cooling, 5 mL of toluene was added to the mixture.
The proline phase was collected and the absorbance was read at 528 nm. Proline content
was calculated in ng/g FW.

2.10. Ascorbic Acid (AsA) Content

Total ascorbic acid (AsA) content was determined in shoot and root samples using the
method in Kampfenkel et al. [49].

2.11. Polyphenol Quantification

Phenolic compounds were determined using the Folin–Ciocalteu reagent [50]. Briefly,
dry leaf samples were extracted using pure methanol for 30 min, with the extract kept at
4 ◦C for 24 h. An aliquot of the extract was added to 125 µL of Folin–Ciocalteu reagent and
500 µL of deionized water, shaken, and incubated for 6 min before adding 1.25 mL of 7%
Na2CO3 solution. The solution was diluted with deionized water to a final volume of 3 mL.
After that, the reaction mixture was incubated at 23 ◦C for 90 min, with the absorbance
measured at 760 nm. The total phenolic content in the shoots is expressed as mg gallic acid
equivalents (GAE) per gram of dry weight (mg GAE/g DW).

2.12. Antioxidant Enzyme Extraction and Assay

Antioxidant enzymes were extracted from frozen shoot and root samples using
polyvinyl pyrrolidone in 50 mM K-phosphate buffer (pH 7.8) containing 10 mM
ethylenediaminetetra-acetic acid (EDTA), 1 mM dithiothreitol, and 0.1 mM phenylmethyl-
sulfonyl fluoride (PMSF). After centrifugation at 12,000× g for 30 min, the supernatant
was collected and used for different enzyme assays. Total protein content was determined
using the Bradford method [51], with bovine serum albumin as the standard.

Total superoxide dismutase (SOD, EC 1.11.1.5) activity was assayed according to [52]
(Scebba et al., 1999). Total catalase (CAT, EC 1.11.1.6) activity was measured by monitoring
the decrease in absorbance at 240 nm using spectrophotometry [53]. Guaiacol peroxidase
(GPX, EC 1.11.1.7) activity was determined by monitoring the increase in absorbance at
470 nm, following the method described by Fielding and Hall [54].

For phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) activ-
ities, shoot samples (100 mg) were extracted in 50 mM Tris-HCl buffer (pH 8.0) con-
taining 14.4 mM 2-mercaptoethanol and 1% (w/v) polyvinyl polypyrrolidone (PVP). The
homogenates were centrifuged at 15,000× g for 10 min at 4 ◦C and assayed using the
method of Berner et al. [55]. For PAL activity, the reaction mixture contained 50 mM
Tris-HCl buffer (pH 8.0) and the enzyme extract, with the reaction initiated by adding
15 mM L-phenylalanine. The mixture was incubated for 70 min at 37 ◦C, with the reaction
stopped by adding HCl (5N). The amount of trans-cinnamic acid formed was determined
by measuring the absorbance at 290 nm. A molar extinction coefficient of 17.4 mM cm–1

was used to quantify the cinnamic acids formed during the enzymatic reaction. For TAL
activity, the reaction medium comprised 150 mM L-tyrosine and 3 mL of the extraction
buffer. The mixture was incubated at 30 ◦C for 30 min, with TAL activity measured by
monitoring the formation of hydroxycinnamic acid at 310 nm.

2.13. Statistical Analysis

Statistical analysis was conducted using the software package SPSS version 21.0
(SPSS Inc., Chicago, USA). Differences between priming treatments at a given salinity level
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were determined using one-way analysis of variance (ANOVA) according to Duncan’s
multiple range tests (p ≤ 0.05). Comparisons between 0 and 75 mM NaCl for a given
priming treatment was performed according to Student’s t-test 6 (p ≤ 0.05).

3. Results
3.1. Effect of Seed Priming on Germination Traits

Both hormopriming techniques significantly decreased MGT (mean germination time)
irrespective of the salt treatment, although the beneficial effects of seed halopriming were
less pronounced (Figure 2A). In non-saline conditions, primed and unprimed seeds had
an FGP of 100% (Figure 2B). In saline conditions, unprimed seeds had an FGP (final
germination percentage) of 65%, increasing to 89% with NaCl priming and 100% with
SA and GA3 priming (Figure 2B).
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Figure 2. Effects of different seed priming agents on the germination characteristics; Mean of
germination time (A) and Final germination percentage (B), of barley seeds grown in saline medium.
UPS, unprimed seed; PS SA, primed seeds with salicylic acid; PS GA3, primed seeds with gibberellic
acid; and PS NaCl, primed seeds with NaCl. Data are the means of four replicates ± SE. Means
followed by different letters significantly differ (p ≤ 0.05) as determined using one-way ANOVA.
The comparisons between all priming treatments under the different salt stress conditions were
statistically analyzed through TWO-WAY ANOVA using SPSS software version 21.0. The asterisks
indicate significant differences (p ≤ 0.05).

3.2. Effect of Seed Priming on Plant Growth and Water Status

In non-saline conditions, only GA3 seed priming enhanced shoot growth (Figure 3A).
In saline conditions, shoot growth increased the most with GA3 seed priming, followed
by SA and NaCl. Moreover, unprimed seed treatments exposed to salinity had less shoot
growth than primed seed treatments (Figure 3A).

All seed priming treatments increased root weight. In non-saline conditions, seeds
primed with SA increased root fresh weight by ~75%, followed by GA3, NaCl, and un-
primed seeds (Figure 3B). In saline conditions, seeds primed with GA3 increased root
weight the most, followed by SA, NaCl, and unprimed seeds. Halopriming and hormo-
priming alleviated the harmful effects of NaCl on plant growth, with shoot and root FWs
reaching the control level in seedlings from SA- and NaCl-primed seeds and exceeding the
control level in seedlings from GA3-primed seeds.

Seedlings from unprimed seeds exposed to salt stress had about 31% lower shoot
RWCs than those from primed seeds (Figure 3C). Interestingly, seeds primed with
GA3 and NaCl had higher shoot RWCs than seeds primed with SA (Figure 3C). Salt
stress decreased root RWC by about 45% compared to unstressed seedlings (Figure 3D). All
priming treatments significantly increased root RWC under salt stress.

The seedling vigor of unprimed seeds significantly decreased under salt stress com-
pared to the control (Figure 3E,F). All seed priming treatments improved plant vigor under
saline conditions, as evidenced by the increased coleoptile length (Figure 3E,F).
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Figure 3. Effects of different seed priming agents on biomass and relative water content (RWC) in
shoots (A,C) and roots (B,D) of barley seedlings grown under salt stress. UPS, unprimed seed;
PS SA, primed seeds with salicylic acid; PS GA3, primed seeds with gibberellic acid;
and PS NaCl, primed seeds with NaCl. Data are the means of four replicates ± SE. Means followed
by different letters significantly differ (p ≤ 0.05) as determined using one-way ANOVA. The com-
parisons between all priming treatments under the different salt stress conditions were statistically
analyzed through TWO-WAY ANOVA using SPSS software version 21.0. The asterisks indicate
significant differences (p ≤ 0.05). (E,F) Morphological aspect of barley seedlings grown under
saline (75 mM NaCl) and non-saline conditions (0 mM NaCl) during 14 days.

3.3. Effect of Seed Priming on Chlorophyll Content

In seedlings from unprimed seeds, salinity stress decreased chlorophyll by 67% com-
pared to the control (Figure 4). All priming agents alleviated the adverse effects of salt
stress on chlorophyll content, increasing 2.7-fold in seeds primed with NaCl, 3-fold in
seeds primed with SA, and 4-fold in seedlings primed with GA3 compared to unprimed
stressed seedlings.
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Figure 4. Effects of different seed priming agents on total chlorophyll content in shoots of barley
seedlings grown under salt stress. UPS, unprimed seed; PS SA, primed seeds with salicylic acid;
PS GA3, primed seeds with gibberellic acid; and PS NaCl, primed seeds with NaCl. Data are the
means of four replicates ± SE. Means followed by different letters significantly differ (p ≤ 0.05)
as determined using one-way ANOVA. The comparisons between all priming treatments under
the different salt stress conditions were statistically analyzed through TWO-WAY ANOVA using
SPSS software version 21.0. The asterisks indicate significant differences (p ≤ 0.05).

3.4. Effect of Seed Priming on Na+ and K+ Accumulation

Unprimed salt-stressed seedlings accumulated 5.5–6.5 mmol Na+ g–1 DW in the shoots
and roots, respectively (Figure 5A,B). Seed priming markedly reduced Na+ accumulation,
particularly in the shoots where it decreased by approximately half. Salt stress decreased
K+ content by about 75% in the shoots and 71% in the roots (Figure 5C,D). However, seed
priming significantly increased K+ contents to values equal to or higher than those of
the control. Seedlings from GA3-primed seeds exposed to salinity stress had the greatest
increases in K+ contents in the shoots (7.7-fold) and the roots (9.5-fold) compared to salt-
treated seedlings from unprimed seeds.
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Figure 5. Effects of different seed priming agents on Na+ and K+ contents in shoots (A,C) and roots
(B,D) of barley seedlings grown under salt stress. UPS, unprimed seed; PS SA, primed seeds with
salicylic acid; PS GA3, primed seeds with gibberellic acid; and PS NaCl, primed seeds with NaCl.
Data are the means of four replicates ± SE. Means followed by different letters significantly differ
(p ≤ 0.05) as determined using one-way ANOVA. The comparisons between all priming treatments
under the different salt stress conditions were statistically analyzed through TWO-WAY ANOVA
SPSS software version 21.0. The asterisks indicate significant differences (p ≤ 0.05).
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3.5. Effect of Seed Priming on H2O2 and MDA Contents

In seedlings from unprimed seeds, salt stress significantly increased H2O2 and MDA
accumulation in shoot and root tissues. However, seedlings from primed seeds had
significantly reduced oxidative damage (Figure 6A–D).
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Figure 6. Effects of different seed priming agents on H2O2 and MDA contents in shoots (A,C) and
roots (B,D) of barley seedlings grown under salt stress. UPS, unprimed seed; PS SA, primed
seeds with salicylic acid; PS GA3, primed seeds with gibberellic acid; PS NaCl, primed seeds
with NaCl. Data are means of four replicates ± SE. Means followed by different letters signifi-
cantly differ (p ≤ 0.05) as determined using one-way ANOVA. The comparisons between all priming
treatments under the different salt stress conditions were statistically analyzed through TWO-WAY
ANOVA using SPSS software version 21.0. The asterisks indicate significant differences (p ≤ 0.05).

Seed priming with SA had a more pronounced effect on H2O2 and MDA accumulation
than on GA3 and NaCl under salt stress, reducing shoot and root H2O2 accumulation
by 43 and 65%, respectively, and MDA contents by 80–84%. However, seed priming with
GA3 resulted in the lowest H2O2 and MDA accumulation in the shoots and roots among
all priming treatments.

3.6. Effect of Seed Priming on Total Sugar and Proline Contents

Salt stress decreased total sugar contents by 48% in the shoots and 25% in the roots of
seedlings from unprimed seeds compared to control plants (Figure 7A,B). In non-saline
conditions, seed priming increased the total sugar content in the roots but not the shoots.
However, in saline conditions, total sugar contents increased in both organs, with the
highest levels in seedlings from seeds primed with SA.

For seedlings grown from unprimed seeds, salt stress decreased proline contents by
50% in the shoots and 61% in the roots (Figure 7C,D). In non-saline conditions, the only
noticeable change in proline content occurred in the shoots of seedlings from SA-primed
seeds (by 42% of increase in comparison with shoots of unprimed seeds). However, in
saline conditions, all seed priming treatments increased proline accumulation in the shoots
and roots, with the effect of SA priming the most pronounced.

3.7. Effect of Seed Pre-Treatment on AsA Accumulation

Salinity stress decreased AsA accumulation by about 61% in the shoots and 56% in the
roots (Figure 8A,B). However, seed priming, particularly SA, increased AsA accumulation
to levels exceeding the controls.
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Figure 7. Effects of different seed priming agents on total soluble sugar and proline contents in
shoots (A,C) and roots (B,D) of barley seedlings grown under salt stress. UPS, unprimed seed;
PS SA, primed seeds with salicylic acid; PS GA3, primed seeds with gibberellic acid; and PS NaCl,
primed seeds with NaCl. Data are means of four replicates ± SE. Means followed by different
letters significantly differ (p ≤ 0.05) as determined using one-way ANOVA. The comparisons be-
tween all priming treatments under the different salt stress conditions were statistically analyzed
through TWO-WAY ANOVA using SPSS software version 21.0. The asterisks indicate significant
differences (p ≤ 0.05).
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Figure 8. Effects of different seed priming agents on ascorbic acid (AsA) contents in shoots (A) and
roots (B) of barley seedlings grown under salt stress. UPS, unprimed seed; PS SA, primed seeds with
salicylic acid; PS GA3, primed seeds with gibberellic acid; and PS NaCl, primed seeds with NaCl. Data
are means of four replicates ± SE. Means followed by different letters significantly differ (p ≤ 0.05)
as determined using one-way ANOVA. The comparisons between all priming treatments under the
different salt stress conditions were statistically analyzed through TWO-WAY ANOVA using SPSS
software version 21.0. The asterisks indicate significant differences (p ≤ 0.05).

3.8. Effect of Seed Priming on Antioxidant Enzyme Activities (SOD, CAT, and GPX)

Salt stress significantly decreased SOD and CAT activities in the shoots and roots of
seedlings from unprimed seeds. Salt stress decreased SOD activity by 45% in the shoots
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and 63% in the roots (Figure 9A,B). For GPX, the most pronounced decrease was recorded
in salt-stressed roots (37%) Seed priming, especially SA, increased SOD activity above the
control levels in both organs. Salt stress decreased CAT activity by 37% in the shoots and
29% in the roots (Figure 9C,D). Seed priming alleviated the detrimental effects of salt stress
on CAT activity, particularly in the shoots with SA priming. Again, GPX activity increased
significantly in salt-stressed roots (46%) derived from SA-primed seeds (Figure 9E,F).
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Figure 9. Effects of different seed priming agents on SOD, CAT, and GPX activities in shoots (A,C,E) and
roots (B,D,F) of barley seedlings grown under salt stress. UPS, unprimed seed; PS SA, primed seeds
with salicylic acid; PS GA3, primed seeds with gibberellic acid; and PS NaCl, primed seeds with
NaCl. Data are means of four replicates ± SE. Means followed by different letters significantly
differ (p ≤ 0.05) as determined using one-way ANOVA. The comparisons between all priming treat-
ments under the different salt stress conditions were statistically analyzed through TWO-WAY
ANOVA using SPSS software version 21.0. The asterisks indicate significant differences (p ≤ 0.05).

3.9. Effect of Seed Priming on Shoot PAL and TAL Activities and Polyphenol Content

Salt stress decreased polyphenol contents (Figure 10A) but did not affect PAL and TAL
activities (Figure 10B,C). Seed priming with SA increased shoot polyphenol content by 120%
in salt-stressed seedlings compared to unprimed seeds (Figure 10A). Seed priming did not
affect PAL activity in seedlings under salt stress (Figure 10B). However, seed priming with
SA increased TAL activity by 45% under saline conditions (Figure 10C).
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Figure 10. Effects of different seed priming agents on polyphenol content (A), PAL (B), and
TAL (C) activities in shoots of barley seedlings grown under salt stress. UPS, unprimed seed;
PS SA, primed seeds with salicylic acid; PS GA3, primed seeds with gibberellic acid;
and PS NaCl, primed seeds with NaCl. Data are means of four replicates ± SE. Means followed
by different letters significantly differ (p ≤ 0.05) as determined using one-way ANOVA. The com-
parisons between all priming treatments under the different salt stress conditions were statistically
analyzed through TWO-WAY ANOVA using SPSS software version 21.0. The asterisks indicate
significant differences (p ≤ 0.05).

4. Discussion

Improving salt tolerance in crops has become crucial for using saline lands and in-
creasing productivity. Seed priming is an important technique for enhancing germination
performance and seedling growth under saline conditions [4] by controlling osmoregulation
processes [56]. In the present study, we investigated the effects of three seed priming agents
(NaCl, GA, and SA) on barley germination dynamics and early seedling growth under salt
stress. We also evaluated the oxidative stress response, focusing on ROS accumulation and
the activation of antioxidant (enzymatic and non-enzymatic) systems.

4.1. Growth and Physiological Alterations with GA3 and NaCl Seed Priming

The results showed that the seed priming treatments (SA, GA3, and NaCl) significantly
improved seed vigor and germination performance, as indicated by a decreased mean
germination time (MGT) and increased final germination percentage (FGP) under salt
stress. Among the priming treatments, GA3 seed priming had the most beneficial effect on
germination, aligning with the role of GA3 in regulating seed germination, as reviewed
by Ravindran and Kumar [57]. GA3 seed priming can also overcome seed dormancy by
stimulating embryo growth and mobilizing reserves in maize plants [58]. In other studies,
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seed priming with GA3 improved rice seedling emergence even under low-temperature
stress [59], and halopriming (KNO3) or hormopriming (GA3) improved wheat and oat seed
germination, while hormopriming (IAA or GA3) improved barley germination under salt
stress [60].

Hormopriming and halopriming alleviated the adverse effects of salt stress on shoot
and root growth and water content. Among the priming agents, GA3 seed priming had the
most significant increase in growth parameters, possibly by increasing cell division and
elongation under stressed conditions [61]. Therefore, the improved growth in our study for
GA3-primed seeds could be attributed to the stimulation of endogenous gibberellin pro-
duction, as reported by Rodriguez et al. [62]. Saeidi-Sar et al. [63] also observed enhanced
growth in plants from GA3-primed seeds, which was associated with GA3-mediated inver-
tase activity, an enzyme involved in shoot elongation that can lead to hexose accumulation,
essential for primary cell wall biosynthesis.

The growth performance of plants under salt stress is closely linked to their ability to
regulate Na+ accumulation in leaf and root tissues [64]. Our results showed that seed prim-
ing, regardless of the agent used, significantly reduced Na+ concentrations in the leaves and
roots compared to unprimed seeds. At the same time, seed priming increased leaf and root
K+ contents, particularly from GA3-primed seeds. Similarly, Iqbal and Ashraf [65] reported
that salt-stressed wheat accumulated less Na+ and more K+ following seed priming with
gibberellin. Mohammed [66] reported that salt-stressed plants from GA3-primed seeds
decreased Na+ and Cl– accumulation, which correlated with increased K+ and Ca2+ levels,
relative to unprimed seeds. These findings indicate that seed priming with GA3 enhances
Na+ exclusion and K+ accumulation in plant tissues, which play crucial roles in main-
taining ion homeostasis during salt stress. The ameliorative effects of GA3 seed priming
on germination have been well documented [67], but its role in regulating ion homeosta-
sis under salt stress is not well known. Ahmad et al. [68] proposed that GA3 reduced
Na+ toxicity in salt-stressed Pisum sativum by upregulating Na+/H+ antiporter genes,
leading to the activation of SOS1 and NHX1, which help maintain ion concentrations in
the cytosol and enhance salt tolerance. Choudhary et al. [69] suggested that GA3 may
interact with the salt overly sensitive pathway through the Ca2+ signaling pathway, which
mediates plant responses to salt stress. Shukry and El-Bassiouny [70] hypothesized that
the reduced Na+ accumulation and increased K+ ions observed in Vicia faba under salt
stress were associated with the synergistic effect of gibberellic acid on the activation of
salt-responsive proteins, such as osmotin, dehydrin, and ubiquitin, essential for optimal
growth. We propose that the GA3 present in primed seeds activates early changes that
may be associated with the upregulation of Na+/K+ transporters. The beneficial effect
of GA3 on K+ levels, which is crucial for osmotic adjustment, could be attributed to the
activation of various osmoregulatory enzymes in the developing embryo, which are then
transported to young seedlings to help them overcome the subsequent osmotic stress [15].
However, further research is needed to explore the interplay between GA3 as a priming
factor, Na+/K+ homeostasis, and osmoprotectants during the priming process.

4.2. SA Seed Priming Enhances Antioxidant Defense

The disturbances in chlorophyll content, water status, and seedling growth under
salt stress could partly be attributed to ROS accumulation. Salt stress typically induces
ROS overproduction, including H2O2, O2–, and HO2–, which damage cell membranes and
structures, resulting in lipid peroxidation (oxidative stress indicator) [71]. We found
a significant increase in H2O2 levels in the shoots and roots of unprimed seeds un-
der saline conditions, accompanied by pronounced lipid peroxidation. In unprimed
cauliflower, salt stress decreased membrane stability due to increased ROS production,
leading to lipid peroxidation and cell injury, while the opposite profile occurred for primed
seeds. In the present study, seedlings from primed seeds grown in saline media sub-
stantially decreased H2O2 and MDA contents in the shoots and roots. Seed priming
with SA reduced H2O2 and MDA accumulation more than GA3 and NaCl priming, which
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may be due in part to the restoration of seed membranes and organelles after prim-
ing [15,34]. Hongna et al. [1] also found that SA seed priming significantly decreased
MDA and H2O2 contents in salt-stressed Leymus chinensis plants. These results suggest
that ROS, especially H2O2, act as effective signaling molecules under combined seed prim-
ing and salt stress. Moreover, ROS and plant hormones may coexist during abiotic stress,
including salinity, such as ROS and GA [72] and ROS and SA [34].

Our previous research supports the current findings, showing that priming cauliflower
seeds with H2O2 increased O2–, H2O2, and MDA production while activating the overall
antioxidant system, including enzymatic (SOD, CAT, GPX, and APX) and non-enzymatic
systems (AsA, GSH, and proline), in H2O2-primed seeds [15]. Thus, these compounds
(O2–, H2O2, and MDA), despite being damaging agents, may also serve as crucial sig-
naling molecules during primed seed germination. ROS has been associated with seed
dormancy and germination [73]. In the current study, priming barley seeds with NaCl,
GA3, or SA alleviated the oxidative damage caused by salinity stress. Notable, barley
seedlings from seeds primed with SA had the highest overall antioxidant levels under
saline and control conditions. Our results demonstrate that SA seed priming significantly
increased shoot and root AsA contents, regardless of NaCl application. This finding is
consistent with Wiciarz et al. [74], who suggested that enhanced AsA levels with SA prim-
ing can reduce oxidative damage in PSII by detoxifying ROS. This may partly explain
the higher AsA levels typically observed in the leaves from SA-primed seeds. Further-
more, this suggests that SA is an effective regulator of the redox state mediated by the
ascorbate–glutathione (AsA–GSH) cycle, which plays a key role in H2O2 detoxification [75].
Several studies have reported that exogenous SA treatment improves the salt stress re-
sponse in plants such as tomato [76] and maize [77] by increasing AsA accumulation. Our
results showed that SA seed priming significantly increased the proline content in salt-
stressed barley leaves and roots compared to the unprimed state. Proline provides osmotic
adjustment under salinity [78] and functions as a molecular chaperone by scavenging
ROS and regulating the cellular redox state [79,80]. The specific increase in shoot and root
proline contents under combined salinity and priming suggests that proline accumulation
results from the tissue response to the priming agent rather than a reaction to osmotic stress.
In lentil, SA seed priming increased proline accumulation by improving γ-glutamyl kinase
activity and reducing proline oxidase activity [81]. In Torreya grandis, SA seed priming
improved the salt stress response through proline synthesis associated with the biosyn-
thesis of stress-protective proteins such as dehydrins [82]. Sharma et al. [35] suggested
that increased proline production after SA application is related to the regulation of gene
expression, such as P5CSA and P5CSB, which encode pyrroline-5-carboxylate synthase
involved in proline biosynthesis. The positive effect of SA priming on sugar content, which
correlated with decreased H2O2 and MDA levels, suggests that sugar accumulation is
activated to counteract the detrimental effects of oxidative stress damage. Sugars may act
as ROS scavengers and membrane protectors, with increased sugar accumulation possibly
related to the recovery of photosynthetic attributes indirectly linked to redox homeostasis
under stressful conditions [83]. To protect themselves from salt-induced stress, plants can
decrease salt ion uptake into the cytoplasm, increase osmolyte (organic and inorganic)
accumulation, or activate antioxidant systems [84]. In our study, all seedlings originating
from primed seeds had higher SOD, CAT, and GPX activities than those from unprimed
seeds. However, specific differences related to plant organs and priming agents were
observed. Seed priming with SA had the most beneficial effect on the overall dynamics of
antioxidant enzymes in the leaves and roots compared to NaCl and GA3. These findings are
consistent with a study on pistachio seeds treated with SA, which demonstrated improved
SOD, CAT, and POX activities in salt-stressed plants, with a more prominent effect in the
shoots than the roots [85]. This response was correlated with a decrease in Na+ content,
which was lowest in salt-stressed leaves from SA-primed seeds. At the same time, this
effect was consistent with the most significant decrease in shoot H2O2 and MDA con-
tents. No significant differences between NaCl and GA3 treatments were observed in the
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shoots or roots in terms of oxidative-stress-related attributes, suggesting that their impact
is essential for water uptake, particularly for seedling growth [85]. The present findings
support our previous research showing that seed soaking with NaCl or GA3 enhanced the
growth and water status of cauliflower seedlings under severe salinity stress [15]. Thus,
it can be concluded that a strong correlation exists between the priming agent and the
plant’s ability to distinguish and use the preferred priming agent to enhance its ability
to cope with environmental stressors. Our previous work in barley seedlings showed
that priming seeds with silicon (Si) diverted antioxidant systems in the roots, the first
site of salt signal detection, to the shoots to maintain redox balance [13]. Based on our
findings, it is reasonable to suggest that SA, as a fundamental signal molecule, is specifically
recommended for seed priming to repair oxidative damage, particularly in leaves, when
seedlings are subjected to subsequent salt stress. Recent studies have highlighted the con-
nections and crosstalk between the SA signaling pathway, redox homeostasis, osmolytes
(such as proline and sugars), and antioxidant systems under abiotic stresses, including
salinity [86,87]. For example, SA seed priming in peas (Pisum sativum) increased antiox-
idant defense systems and improved the accumulation of osmotic regulators, including
soluble sugars and proline [69]. The protective role of SA has been associated with the
regulation of ROS and antioxidants [88,89]. In addition, plants have been reported to
resist salt-induced oxidative stress by accumulating polyphenolic compounds (secondary
metabolites) and activating the PAL pathway [90]. In our study, all seed priming treatments
increased polyphenol accumulation when germination occurred under saline conditions
compared to the unprimed state, with seeds primed with SA producing the highest total
polyphenols. Similarly, PAL and TAL activities increased under saline conditions com-
pared to non-saline conditions. However, no significant differences were observed in
PAL activity among priming agents under salt stress, while TAL activity was highest in
the shoots from SA-primed seeds. These findings differ from those of Sheteiwy et al. [91],
who reported enhanced PAL activity in Oryza sativa seedlings primed with SA and subse-
quently exposed to salt stress. Conversely, wheat seedlings treated with SA and exposed
to salinity exhibited increased PAL activity [92]. Another study reported that the increase
in total phenolic content in Artemisia aucheri primed with SA and subjected to drought
stress, during four weeks, was associated with increased PAL and TAL activities [93], with
similar observations reported by Dogbo et al. [94]. Based on these findings, the contribution
of PAL and TAL may depend on plant species and the type of stress applied (abiotic or
biotic stress). Some investigations have proposed that this differential role can be explained
by the association between PAL activity and enzymes from dicots and monocots, while
TAL activity is more prevalent in monocots [95]. PAL and TAL are key enzymes in the
phenylpropanoid pathway. While PAL gene expression and activity have been studied
in various plant species, especially under abiotic stresses, TAL activity has not been well
studied, particularly in terms of priming and salt stress responses. Our findings clearly
showed that the salt tolerance of barley seedlings issued from SA-primed seeds is greatly
associated with the crosstalk between SA itself and ROS, osmolytes, and PAL pathways,
since SA is an essential signal in plants against salt stress (Figure 11).
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Figure 11. Hypothetical diagram of the cross-talk between SA, ROS, osmolytes, and PAL pathway in
seedlings from primed seeds with SA.

5. Conclusions

Our study demonstrates the effectiveness of seed priming treatments (halopriming and
hormopriming) in improving plant performance and reducing salt-induced damage. Both
halopriming and hormopriming techniques enhanced various growth parameters under
saline conditions. Seed priming with GA3 significantly improved early photosynthesis,
growth, and water adjustment, while SA emerged as a powerful signaling molecule for
coordinating with other signals in response to combined priming and salt stress. Seed
priming with SA enhanced salt tolerance in barley by (i) reducing Na+ uptake and thus
maintaining Na+/K+ homeostasis and increasing osmolyte production, (ii) preventing
ROS accumulation and thus lipid peroxidation, and (iii) boosting redox signaling and
antioxidant defense mechanisms mediated by enzymatic and non-enzymatic antioxidant
systems. Thus, when applied early during seed priming, SA can crosstalk with numerous
regulatory processes, coordinating their action and execution by plants exposed to salinity.
However, the precise mechanisms and interactions involved in the crosstalk between
SA and other signaling components during seed priming and the salt stress response
remain unclear. Further research is needed to elucidate the intricate network of interactions
among these signaling pathways. Understanding these interactions will contribute to the
development of more effective strategies for enhancing plant tolerance to salinity and other
abiotic stresses.
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