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Abstract: This research was conducted to investigate the effects of four dietary zinc (Zn) sources on
growth performance, Zn metabolism, antioxidant capacity, endoplasmic reticulum (ER) stress, and
tight junctions in the intestine of grass carp Ctenopharyngodon idella. Four Zn sources consisted of Zn
dioxide nanoparticles (ZnO NPs), Zn sulfate heptahydrate (ZnSO4·7H2O), Zn lactate (Zn-Lac), and
Zn glycine chelate (Zn-Gly), respectively. Grass carp with an initial body weight of 3.54 g/fish were
fed one of four experimental diets for 8 weeks. Compared to inorganic Zn (ZnSO4·7H2O), grass carp
fed the ZnO NPs and Zn-Gly diets exhibited better growth performance. Furthermore, grass carp
fed the organic Zn (Zn-Lac and Zn-Gly) diets displayed enhanced Zn transport activity, improved
intestinal histology, and increased intestinal tight junction-related genes expression compared to other
groups. In comparison to other Zn sources, dietary ZnO NPs caused increased Zn deposition and
damaged antioxidation capacity by suppressing antioxidant enzymatic activities and related gene
expression in the intestine. Grass cap fed the ZnO NPs diet also exhibited lower mRNA abundance
of endoplasmic reticulum (ER) stress- and tight junction-associated genes. According to the above
findings, it can be concluded that dietary organic Zn addition (Zn-Lac and Zn-Gly) is more beneficial
for intestinal health in grass carp compared to inorganic and nanoform Zn sources. These findings
provide valuable insights into the application of organic Zn sources, specifically Zn-Lac and Zn-Gly,
in the diets for grass carp and potentially for other fish species.

Keywords: dietary Zn sources; growth; Zn metabolism; intestinal health; grass carp

1. Introduction

Zinc (Zn) is a vital micro-element and plays a crucial role in multiple biological
processes in vertebrates—including fish—such as growth, development, antioxidant, and
metabolism [1–4]. The primary source of Zn acquisition for fish in natural conditions is
the diet [5,6]. However, Zn is typically deficient in many plants used as alternative protein
sources in the feeds [7]. Thus, dietary Zn supplementation is necessary. Zn sulphate
(ZnSO4) is traditionally used in fish feeds, but it suffers from low bioavailability and
poor absorption efficiency [3,8]. Studies demonstrated that dietary organic Zn source (2-
hydroxy-4-(methylthio) butanoic Zn) or nano-Zn addition promotes growth performance
and intestinal Zn accumulation of fish compared to the inorganic Zn source (ZnSO4) [9,10].
Therefore, compared with inorganic Zn sources, organic and nanoform Zn have higher
bioavailability, making them effective alternatives to inorganic Zn in aquafeeds [10,11].
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However, there is a little research investigating the impacts of different dietary Zn sources
on Zn metabolism and intestinal health in fish.

The intestine is an essential organ responsible for digesting and absorbing nutrients
from feed, and also for regulating the absorption and excretion of Zn in fish [5]. Zn
transporters, ZnTs and ZIPs, work together with the metal response element binding
transcription factor 1 (MTF1) to maintain cellular and systemic Zn homeostasis [2]. ZnT
transporters are primarily responsible for moving Zn out of the cytosols and into either
intracellular compartments or the extracellular space, while ZIP transporters play opposite
roles in Zn transport compared to ZnT transporters [2]. It has been reported that ZnSO4
led to an increased expression of ZnT family-related genes but a decreased mRNA level of
ZIP family-related genes in the intestine of yellow catfish [5]. ZnO NPs exhibited a similar
pattern with increased expression of ZnT family-related genes and a reduced mRNA
content of ZIP family-related genes in the liver of yellow catfish [6]. Recent research also
revealed that methionine-chelated Zn (Zn-Met), compared to inorganic Zn source (ZnSO4),
elevated the hepatic mRNA abundance of ZIP family-related genes of yellow catfish [11].
However, how dietary Zn sources differentially influence these Zn transporters’ expression
in fish is lacking in fish.

The intestine is highly susceptible to damage, and its healthy status adversely impacts
nutrients digestion and absorption. Studies have revealed that the histological features,
antioxidant capacity, ER stress, and tight junctions serve as critical indicators of the intestinal
health of fish [5,6,12,13]. Studies have been performed to investigate the influences of diets
with Zn sources on these parameters in fish [5–7,14]. Previous research pointed out that
the dietary organic Zn source (Zn-Lac) improved intestinal histology and increased mRNA
abundance of genes associated with the antioxidant and tight junctions [14]. Furthermore,
Meiler and Kumar [7] revealed that rainbow trout fed the amino acid-chelated Zn diet
exhibited higher hepatic expression of antioxidant-related genes than those fed the ZnSO4
diet [7]. Chen et al. [5] showed that dietary ZnO NPs supplement inhibited antioxidant
capacity and induced oxidative stress in the liver of yellow catfish. It also has been
demonstrated that the hepatic activities of antioxidant-related enzymes were lower for Nile
tilapia fed the ZnSO4 diet compared to those fed the ZnO NPs diet [15]. However, studies
were still lacking about the different effects of dietary Zn sources on these parameters
related to intestinal health.

Grass carp Ctenopharyngodon idella, the highest-producing farmed fish in the world,
recorded a production of 5.76 million tons in 2021 [16]. As an economically important
species in China and several countries, grass carp production continues to increase annually.
Though some studies have been conducted to compare the different impacts of dietary Zn
sources (ZnO, ZnSO4, and ZnO NPs) on the growth of grass carp, there is still a lack of
research evaluating the roles of organic, inorganic, and nanoform Zn sources in the growth
and intestinal health [17,18]. Given the significant role of Zn in growth and physiology in
fish and the higher bioavailability of organic and nanoform Zn compared to inorganic Zn
sources, we hypothesize that dietary Zn sources significantly affected growth performance,
Zn metabolism, and intestinal health in grass carp. Therefore, the current study was
conducted to compare the impacts of four dietary Zn sources on growth, Zn metabolism,
antioxidant capacity, ER stress, and tight junctions in the intestinal tissues of grass carp.
The findings from this study will offer valuable insights into the choice for the optimal
dietary Zn sources in the diets for grass carp and probably for other fish species.

2. Materials and Methods
2.1. Ethic Statement

This study on grass carp culture and management adhered to the Management Rule of
Laboratory Animals (Chinese Order No. 676 of the State Council, revised 1 March 2017). All
necessary measures were taken to minimize animal suffering. The Huazhong Agricultural
University (HZAU) Ethics Committee approved the research protocols (identification code:
Fish-2021-1031).
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2.2. Feed Formulation, Animals Feeding and Sampling

The feed formulation was prepared based on our recent research [6]. A previous
study has established the Zn requirement of grass carp to be a 55.1 mg kg−1 diet, and
four experimental diets were produced according to this requirement value [19], which
contained ZnO nanoparticles (ZnO NPs, <50 nm, >97% in purity, #677450, Sigma-Aldrich,
St. Louis, MO, USA), Zn sulfate heptahydrate (ZnSO4·7H2O, ≥99.5% in purity, #10024018,
Sinopharm chemical reagent Co. Ltd., Shanghai, China), Zn lactate (Zn-Lac, ≥98% in
purity, #S11095, Shanghai Yuanye Bio-Technology Co., Ltd., Shanghai, China), and Zn
glycine chelate (Zn-Gly, ≥99% in purity, #S20212, Shanghai YuanYe Bio-Technology Co.,
Ltd.) (Supplementary Materials Table S1). In brief, all of the dry feed ingredients were
ground, weighed, and thoroughly blended. The pre-weighed fish oil and soybean oil were
added to homogenous dry ingredients and mixed thoroughly. Four different Zn sources
were dissolved in the pre-weighed distilled water, respectively, and then mixed well with
the corresponding feed ingredients to form a dough. Subsequently, the dough was passed
through a 2-mm diameter die. Finally, the diets were dried using a dryer and stored in
a freezer at 4 ◦C until used. Final dietary Zn contents were measured, and the contents
were 81.12, 81.09, 81.38, and 81.56 mg kg−1 Zn for the ZnO NPs, ZnSO4·7H2O, Zn-Lac, and
Zn-Gly diets, respectively.

The culture and management of grass carp were conducted according to our pre-
vious publications [5,6]. In brief, a total of 240 uniformly sized grass carp (initial mean
body weight: 3.54 ± 0.01 g, means ± S.D.) were randomly distributed among twelve
300-L circular aquariums, with 20 fish per tank. Each experimental diet was assigned
to three replicate tanks, and the fish were fed to satiation twice daily for 8 weeks. The
water temperature, dissolved oxygen, NH4-N, nitrite, and Zn levels were regularly moni-
tored throughout the feeding experiment, with the corresponding values of 28.7–29.3 ◦C,
≥5.8 mg L−1, <0.09 mg L−1, <0.01 mg L−1, and 0.04 ± 0.00 mg L−1, respectively.

At the end of the 8-week feeding experiment, grass carp were subjected to a 24 h
fasting before sampling to minimize prandial impacts. The fish were then euthanized using
MS-222 (100 mg L−1, #E10521, Sigma-Aldrich, St. Louis, MO, USA). The final total weight
of grass carp from each tank was determined. Twelve fish were randomly chosen from
each tank. Six of these fish were used to measure their body length and body weight and
dissected on ice to measure the weight of visceral and intestinal tissue mass, which were
used to calculate the condition factor (CF) and viscerosomatic index (VSI). Intestine tissues
from three fish per tank were sampled and fixed in 4% buffered formalin for histological
analysis. Other samples were quickly frozen in liquid nitrogen and stored at −80 ◦C for the
analysis of Zn contents, indices of oxidative stress, mRNA levels, and protein expression.
The following formulas were used:

WG (weight gain, %) = 100 × (FBW − IBW). (1)

SGR (specific growth rate, %/d) = 100 × (ln (FBW) − ln (IBW))/day. (2)

FI (feed intake, g/fish) = the sum of feed consumed by fish throughout the
experiment/fish number per tank.

(3)

FCR (feed conversion rate) = dry feed fed (g)/wet weight gain (g). (4)

CF (condition factor) = 100 × (body weight, g)/(body length, cm) 3. (5)

VAI (visceral adipose index, %) = 100 × (visceral adipose weight, g)/(body weight, g). (6)

VSI (viscerosomatic index, %) = 100 × (viscera weight, g)/(body weight, g). (7)



Antioxidants 2023, 12, 1664 4 of 16

2.3. Sample Analysis
2.3.1. Hematoxylin and Eosin (H&E) Staining

For histological assessment, intestine samples were fixed in 4% buffered formalin
overnight. Subsequently, they were dehydrated in graded ethanol concentrations and em-
bedded in the paraffin. The samples were then sectioned at a thickness of 5 µm and stained
with H&E, and eventually observed under a light microscope. General morphological
analysis was conducted using Image J software (version 1.50i, NIH, Bethesda, MD, USA).
Villi height, width, and area were measured and calculated based on the methods described
in Eiras et al. [20].

2.3.2. Proximate Analysis of Nutrient Components and Zn Contents

The moisture, ash, crude lipid, and crude protein levels of the diet were analyzed
following the AOAC standard methods [21]. In brief, moisture content was determined
through drying the sample at 105 ◦C. Ash content was analyzed by incinerating the diets in
a muffle furnace at 550 ◦C. The Soxhlet ether extraction method was used to determine the
lipid content, while the Kjeldahl method was used to measure the crude protein content via
concentrated H2SO4 digestion. To determine the Zn contents in the diets, water, and tissues,
inductively coupled plasma optical emission spectrometry (ICP-OES) was employed [22].

2.3.3. Real-Time Quantitative PCR (qRT-PCR) Analysis

The qRT-PCR assay was conducted to analyze the gene abundances following our
recent studies [6]. Total RNA was extracted using Trizol (#9108, TaKaRa, Tokyo, Japan). The
integrity of the total RNA was measured using agarose gel electrophoresis (Supplementary
Materials Figure S1). The purity of the total RNA was determined using a Nanodrop
ND-2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) by measuring
OD260, OD280, and OD230 (OD260/280 ≥ 1.8, OD260/230 ≥ 1.5) (Supplementary Materials
Table S2), Total RNA was treated with DNase (#D7076, Beyotime Biotechnology, Shanghai,
China) and then reverse transcribed into cDNA using a reverse transcription kit (#RR036,
TaKaRa). qRT-PCR was conducted in a 25 µL reaction system which contained qPCR
Mix (#RR430, TaKaRa), diluted cDNA template, forward and reverse primers, and double
distilled H2O. In addition, no reverse transcriptase (NRT) and no-template control (NTC)
analysis was performed. Gene-specific primers are provided in Supplementary Materials
Table S3. We normalized the relative mRNA abundance values to the housekeeping genes
(β-actin and gapdh), and calculated fold changes using 2−∆∆Ct method.

2.3.4. Immunoblot

To measure protein levels, immunoblot analysis was conducted based on a previously
published protocol [6]. The samples were lysed using RIPA buffer (#P0013B, Beyotime
Biotechnology, Shanghai, China). An equal amount of protein (20 mg) was loaded onto an
SDS-polyacrylamide gel and transferred to the polyvinylidene fluoride (PVDF) membrane.
The membranes were blocked with 4% bovine serum albumin (BSA, #ST023, Beyotime
Biotechnology), followed by overnight incubation with primary antibodies at 4 ◦C. Af-
terwards, the membranes were incubated with appropriate secondary antibodies. After
washing, the membranes were visualized using ECL (#P0018FS, Beyotime Biotechnology).
The antibodies contained anti-NRF2 (1:1000, #16396-1-AP, Proteintech, Wuhan, China),
anti-GAPDH (1:10000, #10494-1-AP, Proteintech, Chicago, IL, USA), anti-KEAP1 (1:1000,
#80744-1-RR, Proteintech), and HRP-conjugated anti-rabbit IgG antibody (#7074, Cell Sig-
naling Technology, Danvers, MA, USA).

2.3.5. Measurement of Antioxidant Capacity

The activities of antioxidant enzymes, including superoxide dismutase (SOD, #S0101S),
catalase (CAT, #S0056), glutathione peroxidase (GPx, #S0051), as well as the levels of
glutathione (GSH, #S0053) and malondialdehyde (MDA, #S0131S) were determined via the
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corresponding commercial kits (Beyotime Biotechnology). The coefficient of variation was
provided in Supplementary Materials Table S4.

2.4. Statistic Analysis

The statistical analysis was performed using SPSS 27.0 software (Armonk, NY, USA). The
quantitative results are presented as means ± standard deviation (S.D.). The Shapiro–Wilk test
and the Bartlett test were applied to evaluate data distribution normality and homogeneity
of variances among groups, respectively. To determine significant differences among
the treatments, a one-factor ANOVA and a post-hoc Duncan’s multiple range test were
conducted. Statistical significance was set at p < 0.05. The principal component analysis
(PCA) was conducted using chiplot (https://www.chiplot.online/, accessed on 6 August
2023). PCA was performed on the correlation matrix of values of growth performance,
histological assessment, antioxidant capacities, and mRNA abundance of genes related to
Zn transporters, ER stress, and tight junctions in the intestine of grass carp.

3. Results
3.1. Growth Performance

The impacts of different dietary Zn sources on the growth performance of grass carp
are presented in Table 1. Among four groups, FBW and WG were higher for grass carp in
the ZnO NPs and Zn-Gly groups than those in the ZnSO4·7H2O group (by 32.80–41.82%
and 10.38 -13.61%, respectively, p < 0.001 and < 0.001, respectively). The ZnO NPs, Zn-Gly,
and Zn-Lac group exhibited higher SGR than the ZnSO4·7H2O group (by 5.44–18.20%,
p < 0.001). Grass carp fed the ZnO NPs diet demonstrated the higher FI than the other three
groups (by 19.4–33.94%, p < 0.001). FCR was lower for grass carp fed the Zn-Lac diet than
those in the ZnSO4·7H2O and Zn-Gly groups (by 7.0–7.93%, p = 0.066). Grass carp fed the
ZnO NPs diet had higher CF than those fed the Zn-Gly diet (by 5.28%, p = 0.047). There
were no significant differences in VAI, VSI, and survival among the four groups. Therefore,
the nano-particle ZnO sources are better for promoting growth performance than the other
three Zn sources for the grass carp.

Table 1. Influences of dietary Zn sources on growth performance and feed utilization of juvenile
grass carp.

ZnSO4·7H2O ZnO NPs Zn-Lac Zn-Gly

IBW, g/fish 3.54 ± 0.01 3.54 ± 0.01 3.55 ± 0.01 3.54 ± 0.01
FBW, g/fish 16.81 ± 0.37 c 22.32 ± 1.58 a 18.33 ± 0.06 bc 18.55 ± 0.47 b

WG, % 374.83 ± 10.6 c 531.59 ± 46.91 a 416.75 ± 1.28 bc 425.85 ± 14.11 b

FI, g/fish 14.91 ± 0.93 b 19.97 ± 1.57 a 15.29 ± 0.43 b 16.72 ± 1.01 b

SGR, %/d 2.78 ± 0.04 c 3.29 ± 0.14 a 2.93 ± 0.00 b 2.96 ± 0.05 b

FCR 1.12 ± 0.05 a 1.06 ± 0.05 ab 1.03 ± 0.03 b 1.11 ± 0.02 a

CF 1.81 ± 0.15 ab 1.87 ± 0.08 a 1.80 ± 0.07 ab 1.78 ± 0.09 b

VAI, % 1.09 ± 0.49 1.15 ± 0.38 1.21 ± 0.45 1.10 ± 0.38
VSI, % 8.46 ± 1.55 8.02 ± 1.37 8.06 ± 1.06 7.60 ± 1.13
Survival, % 96.67 ± 5.77 98.33 ± 2.89 96.67 ± 2.89 98.33 ± 2.89

Values are shown as means ± S.D. (n = 3 replicate tanks. For IBW, FBW, WG, SGR, FCR, and survival, 18–20 fish
each tank; for CF, VSI, and HSI, 6 fish each tank). Values with different letters (a–c) within the same row are
significantly different at p < 0.05.

Abbreviations: CF, condition factor; FBW, final mean body weight; FCR, feed con-
version rate; FI, feed intake; HSI, hepatosomatic index; IBW, initial mean body weight;
SGR, specific growth rate; VAI, visceral adipose index. VSI, viscerosomatic index; WG,
weight gain.

WG (%) = 100 × (FBW − IBW).
SGR (%/d) = 100 × (ln (FBW) − ln (IBW))/day.
FI (g/fish) = the sum of feed consumed by fish throughout the experiment/fish number

per tank.

https://www.chiplot.online/
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FCR = dry food fed (g)/wet weight gain (g).
CF = 100 × (body weight, g)/(body length, cm)3.
VAI (%) = 100 × (visceral adipose weight, g)/(body weight, g).
VSI (%) = 100 × (viscera weight, g)/(body weight, g).

3.2. Intestinal Zn Level and mRNA Abundance of Zn Transporters

We then investigated the influences of different dietary Zn sources on the intestinal
Zn level and gene expression of Zn transporters (Table 2 and Figure 1). The intestinal Zn
level was higher for grass carp fed the ZnO NPs diet than those in the other three groups
(by 38.24–80.13%, p = 0.003) (Table 2). There were no remarkable differences in mRNA
abundance of mtf1, znt6, znt9, znt10, zip6, zip7, zip10, zip13, and zip14 among four groups
(Figure 1). The znt1 mRNA level was higher for grass carp in the Zn-Lac and Zn-Gly
groups than those in the ZnO NPs and ZnSO4·7H2O groups (by 27.00–97.19%, p = 0.003).
The mRNA level of znt4 was higher in the Zn-Gly group than in the other three groups
(by 26.94–44.38%, p = 0.002). The znt5 mRNA expression was higher for grass carp in the
Zn-Lac group than the other three groups (by 23.40–42.57%, p < 0.001). The mRNA levels
of zip1 and zip5 were higher for grass carp in the Zn-Gly group than those in the other
three dietary groups (by 33.69–41.85% and 25.08–56.93%, respectively, p = 0.002 and 0.009,
respectively). The zip4 expression was lower for grass carp in the Zn-Lac group than those
in the other three groups (by 27.02–36.83%, p = 0.005). The zip8 mRNA level was lower
for grass carp fed the ZnO NPs diet than those in the other three groups (by 46.97–70.00%,
p < 0.001). The zip9 mRNA expression was lower for grass carp fed the ZnSO4·7H2O diet
than those in the other three groups (by 15.20–24.02%, p = 0.016). The mRNA abundance of
zip14 was higher for grass carp fed the ZnSO4·7H2O and Zn-Lac diets than those fed the
ZnO NPs and Zn-Gly diet (by 1.19- to 3.58-fold, p < 0.001).
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Figure 1. Different dietary Zn sources affected intestinal Zn transport-related genes expression in
juvenile grass carp. (A) The mtf1 mRNA levels. MTF1, metal response element binding transcription
factor 1; (B) The mRNA levels of ZnT family proteins; (C) The mRNA levels of ZIP family proteins.
Values are shown as mean ± S.D. (n = 3 replicate tanks). Values with different letters (a–c) within the
same row are significantly different at p < 0.05.
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Table 2. Zn concentration (mg kg−1 live weight) in the intestine of juvenile grass carp at the end of
the growth experiment.

ZnSO4·7H2O ZnO NPs Zn-Lac Zn-Gly

Zn 26.89 ± 5.72 b 37.17 ± 3.98 a 20.88 ± 3.33 b 20.63 ± 2.47 b

Values are shown as means ± S.D. (n = 3 replicate tanks). Values with different letters (a,b) within the same row
are significantly different at p < 0.05.

3.3. Histological Assessment of Intestine

The intestinal morphology of grass carp was analyzed after feeding diets containing
different Zn sources (Figure 2A). Unlike the other three dietary groups, the ZnO NPs
diet damaged the histological structures of villi in grass carp (Figure 2A). The villi height
and area were higher for grass carp fed two organic Zn sources (Zn-Lac and Zn-Gly)
compared to those fed diets containing ZnO NPs and ZnSO4·7H2O (by 29.28–53.92% and
40.23–76.41%, respectively, p = 0.002 and 0.002, respectively) (Figure 2A–C). The villi width
was lower for grass carp fed the ZnO NPs diet than those in the other three groups (by
17.25–26.40%, p = 0.008) (Figure 2A–C). These results demonstrate that two organic Zn
sources contribute to better intestinal histology for the grass carp.
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Figure 2. Different dietary Zn sources affected the intestinal histology of grass carp. (A) Represen-
tative H&E staining images. VH, villi height; VW, villi width. Bars represent 200 µm. (B–D) Sta-
tistical analysis of villi height, villi width, and villi area, related to Figure 2A. Values are shown
as mean ± S.D. (n = 3 replicate tanks). Values with different letters (a,b) within the same row are
significantly different at p < 0.05.

3.4. Indices of Antioxidant Capacity

To explore the roles of different Zn sources in antioxidant capacity, we evaluated the
indices of antioxidant capacity (Figure 3). The activities of total SOD (T-SOD) and Cu
Zn-SOD were higher for grass carp fed the ZnSO4·7H2O diet than those in the other groups
(by 0.90- to 1.93-fold and 0.56- to 1.50-fold, respectively, p < 0.001 and < 0.001, respectively)
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(Figure 3A). The CAT and GPX activities, as well as reduced GSH level, displayed similar
trends among four groups, with higher levels observed in the Zn-Gly group than those
in the other three groups (by 3.66–16.13%, 13.48–66.42%, and 18.34–54.21%, respectively,
p < 0.001, <0.001, and <0.001, respectively) (Figure 3B–D). The GSSG: GSH ratio was higher
in the ZnO NPs group than those in the other three groups (by 0.42- to 2.42-fold, p < 0.001)
(Figure 3E). The MDA content was significantly higher for grass carp fed the ZnO NPs diet
than those in the other three groups (0.66- to 1.29-fold, p < 0.001) (Figure 3F).
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Next, the intestinal expressions of genes and proteins related to antioxidant capac-
ity were analyzed. As shown in Figure 3G, the mRNA level of sod1 was higher in the
ZnSO4·7H2O and Zn-Lac groups than those in the Zn-Gly and ZnO NPs groups (by 0.43- to
1.22-fold, p < 0.001). The mRNA abundance of cat, gpx1, and nrf2 was lower for grass carp
in the ZnO NPs group than those in the other three groups (by 45.90–53.63%, 71.34–73.48%,
and 23.69–44.62%, respectively, p < 0.001, <0.001, and <0.001, respectively) (Figure 3G).
The protein level of NRF2 was lower for grass carp fed the ZnO NPs diet than the other
groups (by 84.18–86.63%, p < 0.001), while no significant differences were observed among
the other three groups (Figure 3H,I). Conversely, the protein expression of KEAP1 was
lower for grass carp in the ZnSO4·7H2O group than those in the other three groups (by
52.87–56.91%, p = 0.005) (Figure 3H,I). Thus, our findings indicate that grass carp fed the
ZnO NPs diet exhibited the weakest antioxidant capacity among the four groups.

3.5. mRNA Expression of Gens Related to ER Stress

Considering the essential pathophysiological role that ER stress plays in vertebrates [23,24],
we then investigated the impacts of different dietary Zn sources on the intestinal mRNA
levels of genes related to ER stress in grass carp (Figure 4). Our findings indicated the
expression of ire1, grp78, atf4, and xbp1s showed similar trends among four groups, with
higher levels observed in the ZnO NPs group than the other three groups (by 71.69–98.37%,
54.91–75.19%, 23.99–40.99%, and 0.50- to 1.03-fold, respectively, p < 0.001, =0.001, =0.003,
and =0.032, respectively) (Figure 4). The mRNA level of perk was lower for grass carp fed
the two organic Zn (Zn-Lac and Zn-Gly) diets compared to those fed the ZnO NPs and
ZnSO4·7H2O diets (by 19.53–41.98%, p = 0.001) (Figure 4A). Grass carp fed the Zn-Gly
diet showed lower mRNA abundance of atf6 than the other three groups (by 28.08–39.02%,
p = 0.022) (Figure 4C). Taken together, the above results suggest that ZnO NPs diet is more
likely to induce ER stress in the intestine compared to other dietary Zn sources.
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Figure 4. Different dietary Zn sources affected the endoplasmic reticulum stress-related genes
expression in the intestinal of grass carp. (A) perk. (B) ire1. (C) atf6. (D) grp78. (E) eif2a. (F) atf4. (G)
xbp1s. ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; EIF2a, eukaryotic
translation initiation factor 2α; GRP78, glucose-regulated protein 78; IRE1, inositol-requiring enzyme
1; PERK, Eukaryotic translation initiation factor 2-alpha kinase 3; XBP1, X-box binding protein 1.
Values are shown as means ± S.D. (n = 3 replicate tanks). Values with different letters (a–c) within
the same gene are significantly different at p < 0.05.
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3.6. mRNA Expression of Genes Related to Tight Junctions

A tight junction is considered as an indicator of intestinal healthy status in fish [25,26].
In this study, the intestinal mRNA expression of genes related to tight junctions was
analyzed in grass carp fed with different dietary Zn sources (Figure 5). The mRNA levels of
claudin 1, claudin 5a, and zo-1b were lower for grass carp in the ZnO NPs group than those
in the other three groups (by 51.01–68.47%, 41.42–50.00%, and 59.38–69.54%, respectively,
p < 0.001, =0.009, and =0.016, respectively) (Figure 5). Grass carp fed the Zn-Lac diet
showed higher mRNA abundance of claudin 2, 4, 8, and 12 than those in the other three
groups (by 0.51- to 1.70-fold, 0.67- to 3.78-fold, 34.27–66.19%, and 36.13–46.12%, respectively,
p = 0.003, =0.006, <0.001, and <0.001, respectively) (Figure 5). Furthermore, the mRNA
level of claudin 2 and 4 was higher in the Zn-Gly group than in the ZnO NPs group (by
78.62% and 1.75-fold, respectively, p = 0.003 and 0.006, respectively), while there is no
marked difference in claudin 2 and 4 mRNA levels between the ZnSO4·7H2O and Zn-Gly
groups (Figure 5). The mRNA expression of claudin 8 was higher for grass carp in the
ZnSO4·7H2O group than in the ZnO NPs and Zn-Gly groups (by 20.60–23.77%, p < 0.001),
but no significant difference was observed in claudin 8 mRNA abundance between ZnO NPs
and Zn-Gly groups (Figure 5H). Additionally, grass carp fed the two organic Zn (Zn-Lac
and Zn-Gly) diets showed higher occludin expression in comparison with those fed the
ZnO NPs and ZnSO4·7H2O diets (by 31.70–58.17%, p < 0.001) (Figure 5J). In general, these
results indicate that the Zn-Lac diet is more beneficial for intestinal tight junctions in grass
carp compared to other dietary Zn sources.
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Figure 5. Different dietary Zn sources affected the mRNA abundance of tight junction-related genes
in the intestinal of grass carp. (A) claudin 1. (B) claudin 2. (C) claudin 3. (D) claudin 4. (E) claudin 5a.
(F) claudin 5b. (G) claudin 7. (H) claudin 8. (I) claudin 12. (J) occluding. (K) zo-1b. (L) zo-2. Values are
shown as mean ± S.D. (n = 3 replicate tanks). Values with different letters (a–c) within the same gene
are significantly different at p < 0.05.
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3.7. The Principal Component Analysis (PCA)

As shown in Supplementary Materials Figure S2, the PCA was performed on the
whole set of average values with 49.63% in the first principal component (PC1) and 19.13%
in the second (PC2). The first two principal components (PCs) explained 68.76% of the
total variability. The PCA results revealed significant differences among the ZnSO4·7H2O
group, ZnO NPs group, and the two groups of organic Zn sources (Zn-Lac and Zn-Gly)
(Supplementary Materials Figure S2). Similarities were observed between the Zn-Lac group
and the Zn-Gly group (Supplementary Materials Figure S2). Analyzed samples of the same
cultivar grouped together demonstrated that ZnSO4·7H2O, Zn-Lac, and Zn-Gly groups
were richest in the protein level of NRF2 and the mRNA abundance of claudin4, which were
negatively regulated by the ZnO NPs source (Supplementary Materials Figure S2, Table S5).
In addition, our results showed that the activity of T-SOD was more sensitive to grass carp
fed the ZnSO4·7H2O diet than to those fed the Zn-La and Zn-Gly diets (Supplementary
Materials Figure S2, Table S5).

4. Discussion

In the current study, we first explored the impacts of four dietary Zn sources on the
growth of grass carp. Results showed that grass carp fed the ZnO NPs and Zn-Gly diets
exhibited higher growth performance, compared to those fed the ZnSO4·7H2O diet, while
grass carp fed the Zn-Lac diet displayed the lowest FCR among four Zn sources diets,
demonstrating that nanoform and organic Zn sources were utilized better than inorganic
Zn sources. Similarly, Faiz et al. [17] disclosed the enhanced growth in grass carp fed the
ZnO NPs diet compared to those fed inorganic Zn diets. Meanwhile, Mohseni et al. [27]
reported that beluga sturgeons fed an organic Zn (Zn-methionine) diet exhibited higher
growth performance and lower FCR than those fed an inorganic Zn diet. In our study,
the ZnO NPs group had the highest FI, but FCR was not significantly different from the
ZnSO4·7H2O and Zn-Gly groups, suggesting that the superior growth performance of
grass carp in the ZnO NPs group was primarily attributed to increased food intake. The CF
is critical for assessing the health status of fish [7]. We found that grass carp fed the Zn-Gly
diet displayed lower CF, whereas those fed the ZnO NPs diet showed higher CF. Previous
studies on rainbow trout revealed that CF was not significantly affected by the dietary Zn
level of rainbow trout [7].

The intestine is the primary organ for absorbing mineral elements derived from
diet. It was demonstrated that, compared to the inorganic Zn source (ZnSO4), the dietary
organic Zn source (2-hydroxy-4-(methylthio) butanoic Zn) and nano Zn promoted more
Zn accumulation in the intestine of fish [9,10]. Zn transport is mainly regulated by ZnTs,
ZIPs, and MTF1 [2]. This study discovered that ZnO NPs are more easily bioaccumulated
in the intestine, while organic Zn sources have greater influences on the regulation of Zn
transporter-related gene (znt1, znt4, znt5, zip1, zip4, zip5, zip8, and zip14) expression. Cellular
Zn efflux is primarily mediated by ZnT1 [28,29]. ZnT4 and ZnT5, located in the cytoplasmic
membrane, control Zn efflux from cytoplasm to maintain cytosolic Zn homeostasis [2].
On the contrary, ZIP1, ZIP4, ZIP5, ZIP8, and ZIP14 are located at the plasma membrane
and mainly function as importers of Zn from the extracellular space [2,30]. Based on our
findings, it appears that, in comparison to inorganic and nanoform Zn, the intake of organic
Zn in grass carp enhances the mRNA levels of the ZIP family-related genes to facilitate Zn
entry into the cell. However, excess Zn needs to be excreted by up-regulating the mRNA
abundance of the ZnT family-related genes to counteract the increasing intestinal Zn
contents and contribute to maintaining Zn homeostasis. Chen et al. [5] also demonstrated
that Zn overload caused the up-regulation of ZnT5 and 7 expressions in the intestine, which
helps to delay intracellular Zn toxicity. Similarly, it was found that diets with organic Mn
sources (Mn glycine chelate and Mn-MHA) showed higher mRNA expression of both Mn
absorption and efflux-related genes in the intestine of yellow catfish compared to MnO2
NPs and diets with inorganic Mn sources (MnSO4 and MnO2), indicating that dietary
organic mineral sources have a greater impact on the activity of mineral transport [26]. To
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our best knowledge, studies were very scarce about the impact of organic Zn sources on Zn
transport-related gene expression. Here, we report for the first time that organic Zn is more
likely to induce alterations in Zn transport-related gene expression than inorganic and
nanoform Zn. In addition, our research demonstrated that nanoform Zn exerts a relatively
slight effect on the mRNA abundance of Zn transport-related genes among the four Zn
sources. However, it is important to note that dietary nanoform Zn results in more Zn
accumulation in the intestine. Studies have demonstrated that nanoparticles can enter
the cell through endocytosis [31,32]. Chen et al. [6] also revealed that dietary ZnO NPs
up-regulated mRNA abundance of genes associated with endocytosis, which indicates that,
besides Zn transporters, there are alternative pathways in which ZnO NPs enter the cell.

Intestinal histology is a crucial physiological indicator for assessing the health status
of the intestine [13,26]. This study exhibited that grass carp fed diets containing organic
Zn sources exhibited greater intestinal villi height and areas in comparison to those fed
the ZnO NPs and ZnSO4·7H2O diets. The height and area of villi are closely associated
with the absorption area of the intestine [20]. Therefore, our results indicate that organic
Zn diets promote an increase in the intestinal absorption area compared to nanoform
and inorganic Zn diets. Similarly, Xu et al. [26] demonstrated that the villi height was
higher for fish fed the organic Mn source diets in comparison to those for fish fed the
nanoform and inorganic Mn source diets. It was revealed that intestinal histology is closely
influenced by tight junctions [33]. The tight junction, located in the most apical region
of the cell, plays important roles in ions and solutes diffusion, barrier function, and cell
proliferation [34]. This study demonstrated that grass carp fed the Zn-Lac diet showed the
highest mRNA abundance of claudin 2, 4, 7, 8, and 12, while the Zn-Gly group showed the
highest mRNA abundance of claudin 1. Conversely, the mRNA levels of claudin 5a and zo-1b
were the lowest for grass carp fed the ZnO NPs diet. Furthermore, the ZnSO4·7H2O group
displayed up-regulation of claudin 1, 4, and 8 expressions compared to the ZnO NPs group.
Transmembrane proteins, including claudins and occludin, along with adaptor proteins like
ZO-1 and ZO-2, are crucial components of the tight junction [34]. The increase in mRNA
abundance of the tight junction-related genes indicates that the organic Zn source diets
promote the enhancement of the tight junction. Similarly, previous research reported that
diets with organic Zn sources (Zn-Gly and Zn-Lac) up-regulate the mRNA level of occludin
in the intestine compared to the ZnSO4 diet [35]. Taken together, our findings suggest that
organic Zn sources promote the enhancement of the tight junction compared to inorganic
and nanoform Zn sources.

The intestinal antioxidant capacity serves as a valuable index for evaluating the
intestinal health in fish [5,26]. We revealed that grass carp fed the inorganic and organic
Zn diets elevated intestinal antioxidant-related enzyme (T-SOD, Cu Zn-SOD, CAT, and
GPX) activities and reduced-GSH content, and there was a lower GSSG: GSH ratio and
lower MDA levels, compared to those fed the ZnO NPs diet. SOD, CAT, and GPx are the
essential enzymes involved in the antioxidant process. SOD is responsible for catalyzing
the dismutation of superoxide radicals to H2O2, which is then metabolized to H2O and
O2 by CAT and GPx [6,36]. GPx reduces H2O2 to H2O with the electrons coming from
GSH [6,36]. MDA, an end product of lipid peroxidation, is commonly used as an indicator
of oxidative stress [6]. Thus, the up-regulation of their activities and down-regulation of
the GSSG: GSH ratio and MDA content displayed the improvement of antioxidant capacity
for grass carp fed the inorganic and organic Zn diets in comparison to those fed the ZnO
NPs diet. However, Kishawy et al. [37] showed that the dietary ZnO NPs supplement,
compared to ZnO and Zn-Met addition, up-regulated SOD activity and down-regulated
MDA content in the muscles of tilapia. It was also demonstrated that tilapia fed the ZnO
NPs diet exhibited higher hepatic SOD and CAT activities and lower MDA content than
those fed the organic Zn source (Zn acetate) diet [38]. Therefore, the effects of Zn sources
on the antioxidant capacity of fish are tissue- and fish species-dependent. We also revealed
that grass carp in inorganic and organic Zn groups tend to have higher intestinal mRNA
abundance of sod1, cat1, and gpx1 than those in the ZnO NPs group. The effects of different



Antioxidants 2023, 12, 1664 13 of 16

Zn sources on antioxidant-related gene expression and enzymatic activities were found
to be similar, which further supported that dietary inorganic and organic Zn sources,
in comparison with ZnO NPs, enhanced the intestinal antioxidant capacity of fish. In
addition, we demonstrated that the mRNA and protein expressions of NRF2 were higher
for grass carp fed the inorganic and organic Zn sources diets than those fed the ZnO NPs
diet. Conversely, the mRNA and protein abundance of KEAP1 was the lowest for grass
carp in the ZnSO4·7H2O group. NRF2 is a vital transcription factor involved in positively
controlling the expression of antioxidant-related genes, while KEAP1 acts as an inhibitor
of NRF2 [39]. Thus, the increase in NRF2 level and the decrease in KEAP1 abundance
promote the expression of antioxidant-related genes, leading to an enhanced antioxidant
capacity [39]. Taken together, the above findings suggest that the ZnO NPs diet resulted
in oxidative stress while the inorganic and organic Zn sources diets contributed to the
enhancement of antioxidant capacity.

ER is a crucial organelle for maturing secreted and transmembrane proteins, while
various external factors and intrinsic cellular events can interfere with the protein-folding
capacity of the ER, resulting in a situation identified as ER stress [23]. Our findings indicated
that, in the ZnO NPs group, there was a higher mRNA abundance of ire1, grp78, atf4, and
xbp1s. Grass carp fed the two organic Zn diets displayed a lower mRNA level of perk and
grass carp fed the Zn-Gly diet exhibited the lowest mRNA abundance of atf6. ATF6, IRE1,
and PERK serve as sensors of ER stress, while GRP78 has a higher affinity for binding
misfolded or unfolded proteins under ER stress [40]. The IRE1-XBP1 and PERK-eIF2α-ATF4
represent the most evolutionarily conserved arm of the ER stress [23]. Thus, the ZnO NPs
diet tends to induce ER stress in the intestine compared to other dietary Zn sources, whereas
diets with inorganic and organic Zn sources inhibited ER stress. Similarly, Xu et al. [26]
found that compared with dietary organic Mn sources and MnSO4 supplement, the dietary
addition of MnO2 NPs inhibited intestinal grp78 and atf4 expression of yellow catfish, which
provides evidence that dietary nano-form mineral sources contribute to the induction of
ER stress. Studies investigating the distinct impacts of dietary Zn sources on ER stress are
currently limited. For the first time, this study elucidated the impact of different diets with
Zn sources on ER stress. It is worth noting that oxidative stress and ER stress are tightly
related. Oxidative stress can initiate ER stress, while an increase in the load of protein
folding within the ER can lead to oxidative stress by elevating ROS content [41,42]. Thus,
the ability of diets with inorganic and organic Zn sources in alleviating ER stress compared
to diets with ZnO NPs may be attributed to their antioxidant effects.

5. Conclusions

In this study, we discovered that (1) ZnO NPs and Zn-Gly diets facilitated growth
more than the inorganic Zn source for the grass carp; (2) organic Zn sources exhibited
greater Zn transport activity, while ZnO NPs were more readily bioaccumulated in the
intestine; (3) organic Zn sources improved intestinal histology in grass carp; (4) the ZnO
NPs diet caused oxidative and ER stress, while the Zn-Lac diet benefited the integrity of
a tight junction in the intestine of grass carp. Our research elucidated the influences of
different dietary Zn sources on growth performance, Zn metabolism, antioxidant capacity,
endoplasmic reticulum stress, and tight junctions in intestinal tissues of grass carp, which
provides valuable insights for applying organic Zn sources in the diets for grass carp and
probably for other fish species.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antiox12091664/s1, Table S1: Formulation and proximate
composition of the experimental diets (% dry matter); Table S2: The quality of RNA samples; Table S3:
Primers used for quantitative real-time PCR (qRT-PCR) analysis; Table S4: The coefficient of variation
for the indices of antioxidant capacity; Table S5: The representative loading scores of the principal
component analysis (PCA); Figure S1: The measurement of RNA integrity in the samples using RNA
gel (n = 3 replicate tanks); Figure S2: The principal component analysis (PCA) shows the relationship
of four dietary Zn sources.
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