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Abstract: Loss of skeletal muscle mass and function has detrimental effects on quality of life, morbid-
ity, and mortality, and is particularly relevant in aging societies. The enhancement of mitochondrial
function has shown promise in promoting muscle differentiation and function. Ginsenoside Rc
(gRc), a major component of ginseng, has various pharmacological activities; however, its effect on
muscle loss remains poorly explored. In this study, we examined the effects of gRc on the hydrogen
peroxide (H2O2)-induced reduction of cell viability in C2C12 myoblasts and myotubes and H2O2-
induced myotube degradation. In addition, we investigated the effects of gRc on the production
of intracellular reactive oxygen species (ROS) and mitochondrial superoxide, ATP generation, and
peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) activity in myoblasts
and myotubes under H2O2 treatment. Furthermore, to elucidate the mechanism of action of gRc,
we conducted a transcriptome analysis of myotubes treated with or without gRc under H2O2 treat-
ment. gRc effectively suppressed H2O2-induced cytotoxicity, intracellular ROS, and mitochondrial
superoxide production, restored PGC-1α promoter activity, and increased ATP synthesis. Moreover,
gRc significantly affected the expression levels of genes involved in maintaining mitochondrial
mass and biogenesis, while downregulating genes associated with muscle degradation in C2C12
myotubes under oxidative stress. We provide compelling evidence supporting the potential of gRc as
a promising treatment for muscle loss and weakness. Further investigations of the pharmacological
effects of gRc under various pathological conditions of muscle loss will contribute to the clinical
development of gRc as a therapeutic intervention.

Keywords: ginsenoside Rc; skeletal muscle; oxidative stress; mitochondrial biogenesis; muscle atrophy

1. Introduction

Skeletal muscle accounts for approximately 40–50% of the human body and plays a
pivotal role in maintaining the motion, posture, and movement of various organs. Skeletal
muscle mass decreases by approximately 1% per year after 30 years of age and rapidly
decreases after 65 years of age [1,2]. Decreased muscle mass causes decreased exercise
capacity, falls, osteoporosis, and fractures, which are closely related to a decreased quality
of life, increased hospitalization, and increased mortality. In addition, reduced physical
activity and total energy expenditure due to decreased muscle mass and function signif-
icantly increases weight gain, decreases lung function, and increases the prevalence of
cardiovascular and metabolic diseases [3–5]. These diseases promote muscle loss through
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feedback mechanisms. Muscle loss can be caused by damage and dysfunction of mitochon-
dria, which are organelles within muscle cells [6]. Chronic diseases such as pulmonary
tuberculosis and diabetes, malignant wasting diseases such as cancer cachexia, long-term
administration of drugs such as glucocorticoids and statins, oxidative stress, disuse due to
surgery and long-term bed rest, and aging-related hormonal changes are the main causes
of impaired mitochondrial function in muscles [6,7]. Therefore, to improve muscle mass
and function, it is important to enhance mitochondrial quantity and function by increasing
mitochondrial biogenesis and regulating mitochondrial dynamics and mitophagy.

Adequate levels of reactive oxygen species (ROS) are required to regulate various
signaling pathways; however, excessive and sustained ROS production in cells can trigger
an oxidative damage response [8]. As mitochondria are a major source and the most vul-
nerable targets of ROS, inappropriate ROS accumulation reduces mitochondrial membrane
potential and activates the caspase cascade, leading to mitochondrial dysfunction-induced
apoptosis [9]. Similar to many other cell types, oxidative stress in skeletal muscle can
trigger mitochondrial DNA damage and lead to defects in myogenesis and muscle regen-
eration. Additionally, oxidative stress plays an important role in the pathophysiology of
various muscle diseases including age-related loss of muscle quantity (sarcopenia) and
strength (dynapenia), muscular dystrophy, and myopathies [10,11]. The balance between
ROS generation and antioxidant defenses is critical for maintaining muscle redox home-
ostasis [12]. Therefore, various attempts have been made to strengthen muscle cells by
removing excessive ROS using various antioxidants and preventing apoptosis and protein
degradation in the skeletal muscle.

Ginseng root (Panax ginseng Meyer) is one of the most widely used herbal medicines
and has been prescribed for over 2000 years in Asian countries, including Korea, China,
and Japan [13]. Ginseng contains many active ingredients such as steroidal saponins, pro-
topanaxadiol, and protopanaxatriol, which are collectively referred to as ginsenosides [13].
Ginsenosides exert a wide range of pharmacological and therapeutic effects against ox-
idative stress, cancer, diabetes, vasorelaxation, and inflammation [13,14]. Ginsenosides
exert beneficial effects on immunity, vitality, and libido [15,16]. Among ginsenosides,
Rb1, Rb2, Rd, Rg1, Rg3, and Rh2 have been demonstrated to positively affect muscle
strengthening by increasing mitochondrial biogenesis, inhibiting muscle degradation, and
enhancing myoblast proliferation and myotube differentiation [17–21]. Ginsenoside Rc
(gRc) has been reported to alleviate myocardial ischemic damage through its antioxidant
and anti-inflammatory actions [22] and to improve cellular insulin resistance by increasing
angiotensin-converting enzyme 2 expression [23]. However, its pharmacological efficacy
and mechanism of action in muscle damage have not yet been reported.

In the present study, we investigated the effects of gRc on the hydrogen peroxide
(H2O2)-induced inhibition of C2C12 myoblasts and degradation of C2C12 myotubes. More-
over, we examined whether gRc restores mitochondrial damage caused by oxidative stress
and confirmed its mechanism of action through transcriptome analysis.

2. Materials and Methods
2.1. C2C12 Cell Culture and Differentiation to Myotubes

Murine skeletal muscle cell C2C12 myoblasts (CRL-1772; ATCC, Manassas, VA, USA)
were cultured in a growth medium (GM, Dulbecco’s Modified Eagle Medium (DMEM)
with 4.5 g/L glucose containing 10% heat-inactivated fetal bovine serum (FBS) and 100 IU
penicillin/100 µg/mL streptomycin (P/S). To differentiate into myotubes, C2C12 myoblasts
were grown in GM to reach more than 90% confluence, and the GM was removed and
replaced with differentiation medium (DM, DMEM containing 2% heat-inactivated horse
serum (HS) and P/S) every 2 days for 5–7 days. The cells were cultured at 37 ◦C in a
humidified 5% CO2 incubator. DMEM, HS, and P/S were all purchased from Thermo
Fisher Scientific (Waltham, MA, USA).
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2.2. Reagents and Antibodies

gRc (PHL89210, ≥90% purity), H2O2 solution (216763), 4′,6-diamidino-2-phenylindole
dihydrochloride (DAPI, D8417,≥98% purity), and dimethyl sulfoxide (DMSO, D8418) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). gRc was dissolved in 100% DMSO
to a final concentration of 20 mM and aliquots were stored at −20 ◦C. Anti-myosin heavy
chain antibody (MyHC, MAB4470) was obtained from R&D Systems (Minneapolis, MN,
USA). Antibodies against myogenic differentiation 1 (MyoD, sc-32758), muscle ring-finger
protein-1 (MuRF1, sc-398608), and β-actin (sc-47778) were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Anti-peroxisome proliferator-activated receptor-
gamma co-activator 1α (PGC-1α, ab54481) and muscle atrophy F-box (MAFbx/Atrogin1,
ab168371) antibodies were obtained from Abcam (Cambridge, MA, USA). Anti-nuclear
respiratory factor 1 (NRF1, #46743), anti-Parkin (#4211), anti-α-tubulin (#2144), horseradish
peroxidase (HRP)-conjugated anti-mouse IgG (#7076), and anti-rabbit IgG (#7074) were
obtained from Cell Signaling Technology (Beverly, MA, USA).

2.3. Cytotoxicity Assay in Myoblasts and Myotubes

To determine cytotoxicity in myoblasts, cells (5 × 103/well) were seeded in 96-well
culture plates, cultured overnight, and treated with gRc, H2O2, or vehicle (0.1% DMSO) for
24 h. After removing the culture supernatants, the cells were washed twice with phosphate-
buffered saline (PBS, Thermo Fisher Scientific), and viable cells were measured using the
EZ-Cytox Enhanced Cell Viability Assay Kit (Daeil Lab Service Co., Ltd., Seoul, Republic
of Korea) and a SpectraMax3 microplate reader (Molecular Devices, LLC, Sunnyvale, CA,
USA) according to the manufacturer’s instructions. To determine cytotoxicity in myotubes,
cells differentiated for 5 days (DD5) were treated with gRc, H2O2, or vehicle for 24 h,
washed twice with PBS, and stained with crystal violet solution (0.2% crystal violet and
20% methanol) for 30 min at 25 ◦C. After washing completely with distilled water (DW),
stained cells were dissolved with 1% sodium dodecyl sulfate (SDS) at 37 ◦C for 30 min and
absorbance at 590 nm was detected using a SpectraMax3 microplate reader. To investigate
the effects of gRc on H2O2 stimulation, the cells were pretreated with gRc for 12 h and then
treated with H2O2 for 24 h.

2.4. Mouse PGC-1α (mPGC-1α) Luciferase Assay and β-Galactosidase Activity Assay

C2C12 myoblasts or myotubes (DD5) were seeded in 12-well culture plates at a density
of 3 × 105/well, incubated overnight, and transiently transfected with mPGC-1α-luciferase
reporter plasmid (a kind gift from Professor Gyu-Un Bae, Sookmyung Women’s University,
Republic of Korea) and β-galactosidase plasmid using the Mirus TransIT-X2 Dynamic
Delivery System (Mirus Bio LLC, Madison, WI, USA) according to the manufacturer’s
instructions. After 4 h, cells were treated with gRc, H2O2, or vehicle for 24 h and then lysed
in 100 µL of Passive Lysis Buffer (Promega Co., Madison, WI, USA). Luciferase activity was
determined using a Bio-GloTM Luciferase Assay Kit (Promega) and a SpectraMax L Lumi-
nometer (Molecular Devices) according to the manufacturer’s protocol. β-galactosidase
activity in each sample was measured using O-nitrophenyl β-galactopyranoside (ONPG,
Sigma-Aldrich) as the substrate and a SpectraMax3 microplate reader. β-galactosidase was
used to correct the variability of transfection efficiency; therefore, the relative mPGC-1α
luciferase activities were calculated after normalization to β-galactosidase activity.

2.5. Immunoblotting Analysis

To obtain total protein, cells were lysed using M-PER mammalian protein extraction
reagent (Thermo Fisher Scientific), left at 4 ◦C for 30 min, and then centrifuged at 16,000× g
for 15 min at 4 ◦C. After the clear supernatant was transferred to a new tube, it was subjected
to a bicinchoninic acid assay to determine the protein concentration. Equal amounts of
proteins (20 µg) were separated on SDS-polyacrylamide gel electrophoresis and transferred
to an ImmobilonR-P PVDF membrane (Millipore, Bedford, MA, USA). After blocking with
an EzBlock Chemi Solution (ATTO Korea, Daejeon, Republic of Korea) for 1 h at 25 ◦C,
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the membrane was incubated with a target-specific primary antibody (1:1000 dilution in
blocking buffer) overnight at 4 ◦C. After washing with TBS-T solution (0.1% Tween in Tris-
buffered saline), the membrane was incubated with an HRP-conjugated secondary antibody
(1:4000 diluted in blocking buffer) for 1 h at 25 ◦C and then washed with TBS-T solution.
Target proteins were detected using SuperSignal West Femto Maximum Sensitivity Substrate
(Thermo Fisher Scientific) and ImageQuant LAS4000 mini (GE Healthcare, Piscataway, NJ,
USA). Protein levels were measured using ImageJ software version 1.53t (National Institute of
Health, Bethesda, MD, USA), and the relative band intensities of representative immunoblots
from the two experiments were calculated after normalization to the value of β-actin or
α-tubulin. Uncropped blot images were presented in Supplementary Figure S1.

2.6. Quantitation of Mitochondria Density

The DD5 myotubes were pretreated with gRc for 12 h and then treated with H2O2
for 24 h. After washing with PBS, the cells were incubated at 37 ◦C for 30 min in 50 nM
MitoTracker Deep Red FM (M22426; Thermo Fisher Scientific). Red fluorescence was
observed under a fluorescence microscope (Olympus TH4-200, Olympus Optical Co.,
Tokyo, Japan), and fluorescence density was analyzed using ImageJ software.

2.7. Immunocytochemistry for Myosin Heavy Chain (MyHC)

The DD5 myotubes differentiated on glass bottom dishes (SPL Life Sciences, Pocheon,
Republic of Korea) were pretreated with gRc for 12 h and then treated with 0.25 mM H2O2
for 24 h. Cells were washed with PBS, fixed in 10% formalin solution, permeabilized in 0.1%
Triton X-100, and blocked with 3% bovine serum albumin (Thermo Fisher Scientific) in PBS
for 30 min at 25 ◦C at each step. After washing with PBS, the cells were stained with anti-
MyHC antibody (1:1000 dilution in blocking buffer) overnight at 4 ◦C, followed by staining
with Alexa Fluor 488-conjugated goat anti-mouse IgG antibody (1:1000 dilution in blocking
buffer, Thermo Fisher Scientific) at 25 ◦C for 3 h. After nuclear counterstaining with DAPI,
fluorescent images were captured under a fluorescence microscope. Using ImageJ software,
the fusion index and myotube length were analyzed in seven representative images per
group. The fusion index was calculated using the following formula: number of nuclei in
multinucleated cells/number of total nuclei ×100.

2.8. Measurement of Intracellular ATP Content

The DD5 myotubes were pretreated with gRc for 12 h and then treated with 0.25 mM
H2O2 for 24 h. Intracellular ATP content was determined using the ATP Bioluminescent
Assay Kit (FLAA, Sigma-Aldrich) according to the manufacturer’s protocol. Briefly, the
cells were lysed with DW and centrifuged at 13,000× g for 10 min at 4 ◦C to collect the clear
cell lysates. ATP standards or cell lysates were mixed with an ATP assay mix solution and
luminescence was measured immediately using a SpectraMax L luminometer. Intracellular
ATP levels were calculated from an ATP calibration curve and relative values were obtained
after normalization to the amount of protein used in the assay.

2.9. Detection of Oxidative Stress

To detect ROS and mitochondrial superoxide in live cells, CellROX™ Green and
MitoSOX™ Red reagents were used, respectively. In brief, myoblasts or myotubes at
DD5 grown on glass bottom dishes were pretreated with gRc for 12 h and then exposed
to 0.25 mM H2O2 for 6 h. After washing the cells with Hanks’ Balanced Salt Solution
(HBSS, Thermo Fisher Scientific), they were incubated in 5 µM CellROX™ Green reagent or
MitoSOX™ Red reagent for 15 min at 37 ◦C. After washing with HBSS, fluorescent images
of cells were captured using a fluorescence microscope.

2.10. RNA Sequencing Data Acquisition and Preprocessing

Total RNA (1 µg) was processed to prepare the mRNA sequencing library following
the manufacturer’s instructions provided with the MGIEasy RNA Directional Library Prep
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kit (#1000006386; MGI Tech, Shenzhen, China). The constructed library was quantified
using a QauntiFluor® ssDNA System (E3190; Promega). Subsequently, the prepared DNA
nanoballs were sequenced on the MGISeq platform (MGI Tech) with 100 bp paired-end
reads. FastQC (v0.11.9) was used to assess the read quality. Common sections of the
MGISEQ adapter sequences were eliminated using TrimGalore (v0.6.5). The resulting
trimmed reads were mapped to the GRCm38 (mm10) mouse reference genome using STAR
(v2.7.3a) [24] with default configurations. To quantify gene expression levels, we used
RSEM (v1.3.3) [25] along with the GRCm38.86 gene annotation to obtain the expected read
counts and transcript per million (TPM) values.

2.11. Functional Enrichment Analysis

Functional enrichment analysis using RNA-seq data was conducted using R software
(v4.2.1). Differential gene expression analysis was performed between the different groups
(e.g., H2O2 vs. vehicle or gRc + H2O2 vs. H2O2) using the DESeq2 package (v1.36). This
analysis generated a ranked gene list based on the Wald statistics. To identify the pathways
or functions that were overrepresented among the genes at the top or bottom of the ranked
gene list, we used the Gene Set Enrichment Analysis (GSEA) method implemented in the
fgsea package (v1.22) [26]. Functional annotation of genes was obtained from the Molecular
Signature Database (MSigDB) on 20 January 2023, using the msigdbr package (v7.5.1). We
only used curated gene sets sourced from reliable databases within MSigDB, including
Hallmark, Gene Ontology (GO), Reactome, and WikiPathways. GSEA produced enriched
functional terms with normalized enrichment scores (NESs) and p-values, which indicated
the strength and significance of the association with the gene sets.

2.12. Statistical Analysis

Data were analyzed using GraphPad Prism 9 software (GraphPad Software, San
Diego, CA, USA). Values are expressed as the mean ± standard error of the mean (SEM) of
multiple experiments. The differences in means among groups were analyzed by one-way
ANOVA (Dunnett’s multiple comparison test), and a value of p < 0.05 was considered
statistically significant.

3. Results
3.1. gRc Reduces H2O2-Induced Cytotoxicity in C2C12 Myoblasts

To evaluate the beneficial effects of gRc on muscle cells, we assessed the viability of
myoblasts after treatment with gRc for 24 h. The chemical structure of gRc was presented
in Figure 1A. As shown in Figure 1B, gRc did not exhibit any cytotoxic effects on myoblasts
at concentrations up to 100 µM. Interestingly, at concentrations ranging from 5 µM to
50 µM, gRc slightly enhanced the cell viability by approximately 5% to 7%. As previously
reported [27], H2O2 treatment at 0.1, 0.25, 0.5, and 1 mM decreased myoblast viability by
approximately 17.6%, 47.8%, 67.9%, and 89.7%, respectively (Figure 1C). In the present
study, 0.25 mM H2O2 was selected to induce oxidative stress and the highest concentration
of gRc to examine the protected effects was set at 20 µM. To determine the protective effects
of gRc on H2O2-induced cytotoxicity, myoblasts were pretreated with gRc for 12 h and
then further incubated with 0.25 mM H2O2 for 24 h. As shown in Figure 1D, gRc markedly
inhibited the H2O2-induced decrease in myoblast viability in a dose-dependent manner.
Particularly, gRc at 20 µM maintained cell viability at approximately 95% of that of the
control cells.

3.2. gRc Decreases H2O2-Induced Oxidative Stress and Increases Mitochondrial Functions in
C2C12 Myoblasts

PGC-1α, the master transcriptional co-activator, has been reported to enhance muscle
mitochondrial biogenesis and function and to be associated with the regulation of cellular
redox balance and attenuation of H2O2-induced apoptotic cell death [28–30]. Because
oxidative stress is a negative regulator of PGC-1α, an increase in PGC-1α expression and
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activity is crucial for counteracting oxidative stress-induced muscle damage. In line with
previous reports, we confirmed that H2O2 dramatically reduced PGC-1α promoter activity
and PGC-1α protein expression in myoblasts (Figure 2A). gRc at 10 and 20 µM significantly
increased PGC-1α promoter activity in myoblasts approximately 1.2-fold and 1.4-fold,
respectively. Furthermore, gRc pretreatment effectively prevented the H2O2-induced reduc-
tion in PGC-1α activity to higher levels compared to those in the H2O2-untreated control
cells (Figure 2B). Treatment with 0.25 mM H2O2 led to approximately 30% ATP deprivation
in myoblasts. In contrast, gRc treatment substantially increased intracellular ATP synthe-
sis, irrespective of the presence of H2O2, and gRc pretreatment effectively mitigated the
decrease in ATP synthesis caused by H2O2 (Figure 2C). To detect intracellular ROS and
mitochondrial superoxide levels in myoblasts, we labeled the cells with CellRox green and
MitoSox red dyes, respectively. Following a 6 h exposure to H2O2, myoblasts exhibited
intense green and red fluorescence, indicative of increased ROS and mitochondrial super-
oxide production. In contrast, pretreatment with gRc significantly decreased both the green
and red fluorescence intensities in a dose-dependent manner (Figure 2D). Collectively, these
findings indicate that gRc effectively alleviates oxidative stress and enhances mitochondrial
function by increasing PGC-1α activity, thereby protecting myoblasts against oxidative
stress-induced cytotoxicity.
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ginsenoside Rc (gRc). (B) Myoblasts were treated with gRc up to 100 µM for 24 h and cell viability was
measured. (C) Myoblasts were treated with H2O2 for 24 h. Morphological changes were observed
under an inverted microscope and cell viability was measured. Scale bar = 100 µm. (D) Myoblasts
were pretreated with gRc for 12 h, and then further incubated with H2O2 for 24 h. Relative cell
viability compared to vehicle-treated control cells was expressed as the mean ± SEM (n = 3). Dots
are individual values. *** p < 0.001 vs. vehicle-treated cells, ## p < 0.01 and ### p < 0.001 vs. H2O2 +
vehicle-treated cells; n.s., non-significant.
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with indicated concentrations of H2O2 for 24 h, luciferase activity was measured. The PGC-1α protein
levels were determined by Western blotting. (B) After co-transfection with mPGC-1α-Luc and β-
galactosidase plasmids, myoblasts were treated with gRc alone or in combination with H2O2. After
normalization to β-galactosidase activity, relative mPGC-1α promoter activity was expressed as the
mean ± SEM (n = 3). Dots are individual values. (C) After treatment of myoblasts with gRc alone or in
combination with H2O2, ATP level was determined and presented as the mean ± SEM (n = 3). Dots are
individual values. (D) Myoblasts were pretreated with gRc and then exposed to H2O2 for 6 h. Cellular
ROS and mitochondrial superoxide generation was observed under a fluorescence microscope. Scale
bar = 100 µm. *** p < 0.001 vs. vehicle-treated cells, ### p < 0.01 vs. H2O2 + vehicle-treated cells; n.s.,
non-significant.

3.3. gRc Inhibits H2O2-Induced C2C12 Myotube Degradation

To evaluate the protective effects of gRc against H2O2-induced muscle degradation, we
first examined the effects of gRc and H2O2 treatment on C2C12 myotubes. gRc treatment
up to 100 µM did not induce cytotoxicity; conversely, the treatment slightly increased cell
viability (Figure 3A). In contrast, H2O2 disrupted cellular morphology and decreased cell
viability and mitochondrial mass in myotubes (Figure 3B). Pretreatment with gRc prior to
H2O2 stimulation effectively recovered both cell viability and mitochondrial mass of my-
otubes to levels comparable to those of the control cells (Figure 3C). Immunofluorescence
staining showed that the myotubes expressed substantial levels of MyHC, a muscle differ-
entiation marker, with a fusion index of approximately 70%. H2O2 treatment significantly
reduced MyHC expression, the fusion index by 38.4%, and myotube length by 81.6% com-
pared to control myotubes. However, pretreatment with gRc maintained MyHC expression
at a level similar to that in the control cells, even under H2O2 stimulation. In addition,
gRc pretreatment significantly prevented the decline in the fusion index and myotube
length induced by H2O2 (Figure 3D). Western blot analysis revealed that H2O2 treatment
dramatically reduced the protein levels of MyHC and myogenic MyoD in myotubes, while
simultaneously increasing the levels of muscle-degrading proteins, including MAFbx and
MuRF1. Pretreatment with gRc significantly inhibited the H2O2-induced downregulation
of MyHC and MyoD and upregulation of MAFbx and MuRF1 (Figure 3E). Overall, these
findings indicate that gRc efficiently suppressed H2O2-induced myotube degradation.



Antioxidants 2023, 12, 1576 8 of 15

Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 16 
 

myotube length by 81.6% compared to control myotubes. However, pretreatment with 
gRc maintained MyHC expression at a level similar to that in the control cells, even under 
H2O2 stimulation. In addition, gRc pretreatment significantly prevented the decline in the 
fusion index and myotube length induced by H2O2 (Figure 3D). Western blot analysis re-
vealed that H2O2 treatment dramatically reduced the protein levels of MyHC and myo-
genic MyoD in myotubes, while simultaneously increasing the levels of muscle-degrading 
proteins, including MAFbx and MuRF1. Pretreatment with gRc significantly inhibited the 
H2O2-induced downregulation of MyHC and MyoD and upregulation of MAFbx and 
MuRF1 (Figure 3E). Overall, these findings indicate that gRc efficiently suppressed H2O2-
induced myotube degradation. 

 
Figure 3. Effects of gRc on H2O2-induced degradation of myotubes. (A) C2C12 myotubes were 
treated with gRc for 24 h and cell viability was measured. (B) Myotubes were treated with H2O2 up 
to 1 mM for 24 h. Relative cell viability and mitochondrial mass compared to vehicle-treated cells 
were expressed as the mean ± SEM (n = 3). Dots are individual values. (C) Myotubes were pretreated 
with gRc for 12 h and further incubated with H2O2. After 24 h, cell viability and mitochondrial mass 
were determined and relative values were expressed as the mean ± SEM (n = 3). Dots are individual 

Figure 3. Effects of gRc on H2O2-induced degradation of myotubes. (A) C2C12 myotubes were
treated with gRc for 24 h and cell viability was measured. (B) Myotubes were treated with H2O2 up
to 1 mM for 24 h. Relative cell viability and mitochondrial mass compared to vehicle-treated cells
were expressed as the mean ± SEM (n = 3). Dots are individual values. (C) Myotubes were pretreated
with gRc for 12 h and further incubated with H2O2. After 24 h, cell viability and mitochondrial mass
were determined and relative values were expressed as the mean ± SEM (n = 3). Dots are individual
values. (D) Myotubes were pretreated with gRc for 12 h and then treated with H2O2. After 24 h,
cells were subjected to immunofluorescence staining for MyHC (green) and DAPI (blue). Fusion
index and myotube length were quantitated and presented as the mean ± SEM (n = 7). Dots are
individual values. (E) Effects of gRc on the expression of MyHC, MyoD, MAFbx, and MuRF1 in
H2O2-treated myotubes were determined by Western blotting. * p < 0.05, ** p < 0.01, and *** p < 0.001
vs. vehicle-treated cells, # p < 0.05, ## p < 0.01, ### p < 0.001 vs. H2O2 + vehicle-treated cells; n.s.,
non-significant. Scale bar = 100 µm.
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3.4. gRc Enhances Mitochondrial Biogenesis and Reduces Oxidative Stress in C2C12 Myotubes
under H2O2 Treatment

Consistent with the findings in myoblasts (Figure 2A), H2O2 treatment markedly reduced
the promoter activity of PGC-1α as well as its protein expression in myotubes (Figure 4A).
gRc considerably increased the PGC-1α promoter activity in the myotubes and gRc pretreat-
ment prior to H2O2 stimulation almost completely blocked the reduction in PGC-1α activity
(Figure 4B). PGC-1α and its downstream nuclear transcription factor, NRF-1/2, are crucial
to the maintenance of mitochondrial function, biogenesis, and energy metabolism under
oxidative stress [31–33]. As shown in Figure 4C, Western blot analysis revealed that gRc
pretreatment significantly recovered the protein expression of PGC-1α and NRF1, which was
reduced by H2O2. In addition, we observed that H2O2 increased the protein expression of
Parkin, a mitochondrial stress marker, whereas gRc pretreatment efficiently suppressed this
H2O2-induced increase in Parkin expression. Upon treatment with H2O2, intracellular ATP
levels in the myotubes were significantly reduced to approximately 50%. In contrast, gRc
slightly increased the ATP levels in myotubes and effectively prevented the H2O2-induced
decrease in ATP levels (Figure 4D). Although H2O2 strongly induced the production of
intracellular ROS (green fluorescence) and mitochondrial superoxide (red fluorescence) in
the myotubes, their production was almost completely suppressed by gRc pretreatment
(Figure 4E). Overall, these results suggest that gRc exerts a protective effect against muscle
damage caused by oxidative stress by regulating mitochondrial biogenesis and increasing
PGC-1α activity.

3.5. gRc-Induced Transcriptome Reveals the Upregulation of Mitochondrial Biogenesis and
Muscle-Protective Pathways against Oxidative Stress

To further elucidate the mechanisms underlying the protective effects of gRc against
oxidative stress, we performed RNA-seq analysis of C2C12 myotubes treated with H2O2
and gRc. H2O2 treatment significantly upregulated the expression of genes associated
with oxidative stress-induced cell death and apoptosis (Figure 5A,B). However, pretreat-
ment with gRc prior to H2O2 treatment resulted in the downregulation of these genes,
indicating its potential to mitigate cell death caused by H2O2-induced oxidative stress.
Remarkably, gRc pretreatment significantly upregulated the expression of genes involved
in mitochondrial biogenesis, including those associated with the mitochondrial protein
complex, electron transport chain of the oxidative phosphorylation system in mitochondria,
and ATP synthesis (Figure 5A,B). In contrast, these genes were downregulated by H2O2
treatment alone. Moreover, gRc pretreatment enhanced pathways related to myogenesis
and muscle cell proliferation/differentiation, which were reduced by H2O2 (Figure 5A,B).
Collectively, these results provide strong evidence supporting the effective mitigation of
oxidative stress-induced muscle damage by gRc through the regulation of mitochondrial
biogenesis and facilitation of muscle proliferation in skeletal muscle cells.
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Figure 4. Effects of gRc on the mitochondrial biogenesis and oxidative stress in H2O2-treated myotubes.
(A) mPGC-1α promoter activity and PGC-1α protein level in myotubes were measured after treatment
with H2O2. (B) mPGC-1α promoter activity in myotubes was measured after treatment with gRc
alone or in combination with H2O2. Relative mPGC-1α activity was expressed as the mean ± SEM
(n = 3). Dots are individual values. (C) The protein levels of PGC-1α, NRF1, and Parkin in H2O2-treated
myotubes were measured by Western blotting. (D) After treatment with gRc alone or in combination
with H2O2, ATP level was determined and presented as the mean± SEM (n = 3). Dots are individual
values. (E) Myotubes were pretreated with gRc and further incubated in the presence of H2O2. After 6 h,
cellular ROS (green) and mitochondrial superoxide (red) were observed under a fluorescence microscope.
*** p < 0.001 vs. vehicle-treated cells, ### p < 0.001 vs. H2O2 + vehicle-treated cells. Scale bar = 100 µm.
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Figure 5. Transcriptome analysis of the effect of gRc in H2O2-treated C2C12 myotubes. (A) Normal-
ized enrichment score (NES) of the gene set enrichment analysis (GSEA) results of H2O2 treatment
compared to vehicle and the H2O2 + gRc treatment compared to the H2O2 treatment. The path-
way terms were sourced from Gene Ontology—Biological Process (“Regulation of Oxidative Stress
Induced Cell Death”, “Positive Regulation of Striated Muscle Cell Differentiation”, “ATP Synthe-
sis Coupled Electron Transport”, “Muscle Cell Proliferation, Cellular Respiration”, and “Positive
Regulation of Muscle Hypertrophy”), Gene Ontology—Cellular Component (“Mitochondrial Pro-
tein Containing Complex” and “Inner Mitochondrial Membrane Protein Complex”), Reactome
(“Apoptosis” and “Myogenesis”), and WikiPathways (“Electron Transport Chain Oxphos System in
Mitochondria”). * p < 0.05, ** p < 0.01. (B) The selected GSEA plots of H2O2 treatment compared to
vehicle (top) and the H2O2 + gRc treatment compared to the H2O2 treatment (bottom).

4. Discussion

Excessive production of ROS is known as oxidative stress. Oxidative stress results from
an imbalance between the production and accumulation of ROS and protective antioxidant
systems of the body. Superoxide anion (·O2−) and hydroxyl radical (·OH) are highly
unstable species with unpaired electrons and are the most active free radicals capable
of initiating oxidation and producing further ROS, including H2O2, hypochlorous acid
(HOCl), and peroxynitrite (ONOO−). Adequate ROS levels play a key physiological role
as mediators of intracellular signal transduction. However, when produced in excess,
ROS have a direct harmful effect on biological structures such as proteins, lipids, and
nucleic acids, resulting in severe damage to cells and tissues. Endogenous ROS are mainly
by-products of oxygen metabolism, whereas exogenous ROS are triggered by various
environmental stresses, including radiation, drugs, smoking, heavy metals, and chronic
inflammation [11,12,33].

Mitochondria contribute to the ATP synthesis and biosynthesis of nucleic acids, lipids,
amino acids, purines, and steroids. Furthermore, they control intracellular Ca2+ homeosta-
sis, and are involved in cell division and programmed cell death [9]. Free radicals and
superoxide anions are produced in the mitochondria during oxidative metabolism and
mitochondrial respiration. When oxidative stress caused by ROS generation overwhelms
the mitochondrial antioxidant defense system, it causes mitochondrial DNA damage and
mitochondrial dysfunction, which in turn causes biomolecular and cellular injury, cell
death, and inflammation, and may contribute to the progression of various diseases, in-
cluding neurodegenerative and cardiovascular diseases. Therefore, oxidative stress has
emerged as a potent therapeutic target for disease control [7,9,10].
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In healthy adults, skeletal muscle accounts for 40–50% of the total body mass, and a
decrease in skeletal muscle mass decreases the quality of life and increases morbidity and
mortality. Under conditions such as wasting diseases (e.g., cancer, diabetes, and sepsis), the
administration of several drugs (e.g., cancer chemotherapy, glucocorticoids, and statins),
aging, and prolonged immobilization (e.g., fractures and surgical interventions), skeletal
muscle loss proceeds through a multifactorial process [5]. Mitochondrial dysfunction is
a common denominator of skeletal muscle loss. Therefore, studies on promoting muscle
differentiation and function and suppressing muscle loss by enhancing mitochondrial func-
tion have been conducted. The fruit extract of Lycium chinense and its bioactive compound,
betaine, were found to significantly increase the expression of mitochondrial biogenesis-
regulating factors such as PGC-1α, Sirt-1, NRF-1, and TFAM. They also enhanced the
differentiation of C2C12 cells and increased ATP content and glucose uptake in C2C12
myotubes [34]. Schisandrin A, an active dibenzocyclooctadiene lignan derived from the
fruits of Schisandra chinensis, effectively blocked H2O2-induced ROS accumulation, attenu-
ated DNA damage, and prevented apoptotic cell death in C2C12 myoblasts by preserving
mitochondrial function [35]. In addition, various herbal extracts (e.g., Prunus mume fruit ex-
tract, Moringa oleifera leaf extract, and loquat leaf extract), traditional herbal medicines (e.g.,
Jakyakgamcho-Tang), and phytochemicals (e.g., morin and honokiol) exhibit beneficial
effects in alleviating muscle damage under oxidative stress [27,36–39].

Ginseng root (Panax ginseng Meyer) has long been used as an ethnomedicinal herb.
Pharmacological studies have demonstrated that ginseng possesses diverse bioactive prop-
erties, including anti-stress, anti-inflammatory, anti-cancer, anti-aging, and anti-diabetic
effects [13,16]. Ginseng contains several bioactive components including ginsenosides. To
date, more than a hundred ginsenosides have been extracted from the various parts of
ginseng. Among them, the major glycosylated ginsenosides, such as Rb1, Rb2, Rc, Rd,
Re, and Rg1, are the most abundant, constituting more than 80% of the total ginsenosides.
Several studies have demonstrated the efficacy of ginsenosides for improving mitochon-
drial function, inhibiting muscle loss, and enhancing muscle function. Rg1 was found to
promote myogenic differentiation in C2C12 cells by activating the promyogenic kinases Akt
and p38 MAPK. Additionally, Rg1 effectively prevented dexamethasone-induced myotube
degradation by activating the Akt/mTOR pathway. Rb1 and Rb2 have also been reported
to upregulate myotube growth and myogenic differentiation, suggesting that they may
prevent and treat age-related muscle atrophy [17–20,22,23,40,41]. Unlike these ginsenosides,
in our study, gRc did not promote myogenic differentiation in regard to myotube formation
and MyHC expression. Meanwhile, Rc suppressed t-BHP-induced ROS generation and
directly scavenged superoxide free radicals in HEK293 cells [42]. In addition, Rc protected
HaCaT keratinocytes against UVB-induced photooxidative damage [43].

Owing to the absence of studies on the beneficial effects of Rc on muscle cells focus-
ing on its antioxidant efficacy, we investigated the protective effects of gRc on oxidative
stress-induced mitochondrial damage, the inhibition of myoblast growth, and myotube
degradation for the first time. In C2C12 myoblasts, gRc effectively suppressed H2O2-
induced cytotoxicity and at 20 µM of gRc, cell viability was maintained at a level similar
to that of the control cells (Figure 1). Moreover, gRc dramatically suppressed the H2O2-
induced generation of intracellular ROS as well as mitochondrial superoxide, restored
PGC-1α promoter activity, and increased ATP synthesis (Figure 2). Consistent with our
data, in normal and ischemia/reperfusion-injured cardiac and neuronal models, gRc pro-
moted energy metabolism by activating the SIRT1 and PGC-1α pathway and reduced
mitochondrial oxidative stress and apoptosis [44,45]. Considering the primary localization
of PGC-1α in the nucleus and large structure of gRc, we speculate that the activation of the
PGC-1α pathway by gRc is plausibly a consequence of its antioxidant effects rather than a
direct interaction between PGC-1α and gRc. These results reinforce the protective effect
of gRc against oxidative stress through the potentiation of mitochondrial biogenesis. In
C2C12 myotubes, we also found that gRc exerted muscle-preserving effects by maintaining
mitochondrial mass and biogenesis, inhibiting muscle proteolysis, and scavenging intracel-
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lular ROS and mitochondrial superoxide (Figures 3 and 4). Furthermore, transcriptome
analysis of C2C12 myotubes confirmed the protective role of gRc against H2O2-induced
oxidative stress via these pathways in skeletal muscle (Figure 5). One notable drawback of
our study is the lack of in vivo studies. Although our in vitro investigations have provided
useful information about gRc, they cannot fully represent the complex biological systems
found in living animals. Furthermore, although we examined the overall effect of gRc
on muscle atrophy, no extensive and thorough investigation of the essential molecular
mechanisms and complicated molecular-level interactions was conducted. Therefore, to
overcome these limitations, additional research using animal models of muscle atrophy
and more comprehensive transcriptome analyses are required.

5. Conclusions

Our findings provide pharmacological evidence of gRc to protect muscle cells against
oxidative stress and enhance mitochondrial biogenesis, accompanied by the activation of
the PGC-1α pathway. In a follow-up study, we will investigate the efficacy of gRc under
various in vitro and in vivo muscle loss conditions (e.g., cancer cachexia, drug-induced
muscle atrophy, and age-related sarcopenia) to verify whether gRc may be a potential
remedy for muscle loss and muscle weakness. In addition, we plan to identify and verify
critical molecular mechanisms regulated by gRc at in vitro and in vivo levels through
further studies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antiox12081576/s1, Figure S1: Full blot images of Western blot analysis.
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