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Years of study have explored the issues caused by oxidative stress in livestock and
poultry production. This stress, which is mainly the result of an imbalance between antiox-
idants and oxidants such as ROS and RNS, is associated with diminished feed intake, a
decline in feed conversion efficiency, weakened disease immunity, and heightened mortal-
ity. Environmental factors, like inadequate management, harsh environmental stressors,
lack of proper nutrition, and rough transportation, intensify this oxidative imbalance. On a
microscopic scale, excessive ROS and RNS production harms proteins, lipids, and nucleic
acids, unsettling the cells’ equilibrium. Additionally, disruptions in mitochondrial function
boost the production of ROS/RNS, impairing energy metabolism processes. Contemporary
research also underscores the complex interplay between redox signaling and the repro-
ductive health of livestock and poultry, which is influenced by changes in gene activity and
epigenetic shifts.

Identifying nutritional substances that can alleviate oxidative stress holds signifi-
cant implications for livestock farming. These substances, which can range from natural
compounds to specific antioxidants, have the potential to improve the overall health and
productivity of livestock. This Special Issue provide novel insights into oxidative regula-
tion and health protection in livestock and poultry. For instance, the study on Rehmannia
glutinosa polysaccharides (RGP) supports its potential as a natural agent against diseases
stemming from oxidation and inflammation [1]. Another compound, Chenodeoxycholic
acid (CDCA), a primary bile acid, has been highlighted due to its pivotal role in regulating
intestinal epithelial cell function, which is crucial for overall animal health [2]. In addition,
specific amino acid mixtures were found to enhance the antioxidant status, suggesting
potential strategies to boost swine industry productivity [3]. The antioxidant properties
of α-ketoglutaric acid (AKG) further underscore the importance of dietary interventions
in enhancing livestock health [4]. 2-hydroxy-(4-methylseleno)butanoic acid (OH-SeMet)
supplementation was found to support selenoprotein expression, reduce oxidative stress,
and modulate the inflammatory response, enhancing the macrophages’ phagocytic and
killing abilities [5]. Traditional medicines, like Artemisia ordosica, which are recognized for
their antioxidant properties, offer potential as feed additives, enhancing livestock health
and resilience against oxidative stress [6]. The threat posed by mycotoxins, especially
Deoxynivalenol (DON), is another area of concern. However, emerging research on histone
modification in mycotoxin-induced cytotoxicity offers hope for potential interventions [7].
Polyphenols hold significant promise as feed additives for pigs; they may mitigate the
oxidative stress and intestinal toxicity induced by DON [8]. Interestingly, recent research
underscored the significance of redox biomarkers in assessing meat quality in lambs and
kids [9]. By using these biomarkers to make advanced predictions of these issues, timely
nutritional interventions can be carried out to ensure optimal meat quality and overall
livestock health.
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In recent years, an increasing number of studies have shown that microbes play a
role in regulating the body’s oxidative stress response. One study examined the impact
of dietary compound antioxidants on finishing pigs and revealed that these antioxidants
improved feed efficiency, antioxidant capacity, and meat quality. This enhancement was
linked to changes in gut microbiota, specifically the modulation of colonic Peptococcus
and ileal Turicibacter_sp_H121 abundance [10]. The role of probiotics, especially strains
of Lactobacillus and Bifidobacteria, in addressing conditions exacerbated by oxidative
stress, such as inflammatory bowel disease (IBD) and post-weaning diarrhea, has been
emphasized [11]. These findings suggest that integrating probiotics into livestock diets can
be a game-changer.

In conclusion, while oxidative stress undeniably poses significant challenges to live-
stock and poultry production, the research landscape is rich with potential solutions. From
natural compounds and antioxidants to probiotics, there is a plethora of strategies waiting
to be harnessed. The discovery that these measures alleviate oxidative stress in animals
offers new possibilities for improving livestock and poultry production.
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