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Abstract: Oxidative stress (OS) is a condition in which there is an excess of reactive oxygen species
(ROS) in the body, which can lead to cell and tissue damage. This occurs when there is an overproduc-
tion of ROS or when the body’s antioxidant defense systems are overwhelmed. Quercetin (Que) is
part of a group of compounds called flavonoids. It is found in high concentrations in vegetables, fruits,
and other foods. Over the past decade, a growing number of studies have highlighted the therapeutic
potential of flavonoids to modulate neuronal function and prevent age-related neurodegeneration.
Therefore, Que has been shown to have antioxidant, anticancer, and anti-inflammatory properties,
both in vitro and in vivo. Due to its antioxidant character, Que alleviates oxidative stress, thus
improving cognitive function, reducing the risk of neurodegenerative diseases. On the other hand,
Que can also help support the body’s natural antioxidant defense systems, thus being a potentially
practical supplement for managing OS. This review focuses on experimental studies supporting the
neuroprotective effects of Que in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease (HD), and epilepsy.

Keywords: oxidative stress; neurodegenerative diseases; quercetin; neuroprotective effects

1. Introduction

Excessive OS is the result of disturbing the balance between oxidation and antioxidant
systems, with a tendency to oxidize. OS can cause many reactions, such as protease stimu-
lation, neutrophil infiltration, and the explosion of oxidative intermediates [1]. In addition,
OS is thought to play a key role in the progressive degeneration and/or death of nerve cells,
especially in neurodegenerative diseases, where it acts as a mediator of the side effects of
several neurotoxic substances and as a mechanism of age-related degenerative processes [2].
The ROS scavenger is often used to counteract the effects of OS in neurons [3,4]. Numerous
studies have shown that Que, by eliminating oxygen radicals and via metal-chelating
operations, attenuates the neuronal damage mediated by OS [5,6].

To survive, aerobic multicellular organisms need molecular oxygen (O2), to the detri-
ment of oxygen, which is susceptible to radical formation due to its electronic structure.
Reactive oxygen species are the natural by-products of normal oxygen metabolism and play
significant roles in homeostasis and cellular signaling. OS increases in the cellular environ-
ment when oxygen homeostasis is not maintained. ROS are oxygen free radicals or small
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molecules derived from oxygen, such as peroxyl radical (ROO•), hydroxyl radical (•OH),
superoxide anion (•O2

−), and alkoxyl (RO−). ROS could also come from non-radicals such
as ozone (O3), hypochlorous acid (HOCl), singlet oxygen (1O2), and hydrogen peroxide
(H2O2). These non-radicals are oxidizing agents or are easily converted to radicals [7,8].

Neurological diseases are a consequence of genetics, environmental factors, and even
age [9]. During periods of environmental stress, such as ultraviolet A (UVA) and ultraviolet
B (UVB) radiation, exposure to heat, and ionizing radiation, their levels could increase
dramatically. A study by Erden et al. in 2001 [10] showed that exposure to UVA radiation
can induce ROS production, leading to damage to cellular elements, but can also induce
the benefits that antioxidant Que brings to cells, protecting them from the harmful effects
of radiation.

Neurodegeneration is characterized by progressive deterioration of the structure and
function of neurons and is accompanied by severe cognitive deficits. Aging is the main risk
factor for neurodegenerative disorders such as AD, PD, and HD. Mitochondrial dysfunction
and OS also trigger neurodegeneration. Recent studies have supported the mechanisms by
which Que supports brain health [11].

The first studies involving flavonoids to reduce OS were performed at the end of
the twentieth century [12]. Numerous in vitro and in vivo studies have reported the
neuroprotective properties of Que [11,13,14]. Thus, it has been observed to protect neurons
from oxidative damage and reduce lipid peroxidation as well (see Figure 1). On the
other hand, in addition to its antioxidant properties, Que can inhibit the formation of
amyloid-β proteins in the fibrils, counteracting cell lysis and inflammatory cascade [13].
Flavonoids, but also foods containing flavonoids, can have multiple beneficial effects on
the treatment of conditions involving OS, such as AD, PD, aging itself, atherosclerosis, and
ischemia [12,15,16].
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Figure 1. Main effects of Que [14,16,17].

Que, or 2-(3,4-dihydroxy phenyl)-3,5,7- trihydroxychromen-4-one, is commonly found
in our diet and is found in abundance as a secondary metabolite in vegetables and fruits.
According to the USDA (United States Department of Agriculture) database on flavonoid
concentration in foods [18] and Table 1, the highest Que concentrations are in capers,
dill weed, oregano, onions, cranberries, cherries, and red fruits; in addition to fruits and
vegetables, they are also found in beverages such as red wine and black tea. It has also
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been isolated and marketed as a dietary supplement, in the form of free aglycone, used in
doses of 1000 mg per day, exceeding the usual levels of food intake, which is 200–500 mg
per day in individuals who consume large amounts of vegetables and fruits [18,19].

Table 1. Que content (mg 100 g−1 or mg 100 mL−1) in selected foods and beverages [18].

Source Que References

Food Common Name Scientific Name Active Portions mg 100 g−1

Weight

Fruits Acerola Malpighia emarginata Fruits 4.74 [20]
Apple Malus domestica Fruits 19.36 [21]

Cranberry Vaccinium oxycoccus Fruits 25.0 [22]
Apricots Prunus armeniaca Fruits 1.63 [23]

Blackberries Rubus spp. Fruits 3.58 [24]
Blueberries Vaccinium spp. Fruits 7.67 [24]

Cherries Prunus avium Fruits 17.44 [25]
Cranberries Vaccinium macrocarpon Fruits 14.84 [24]
Grapefruit Citrus paradisi Fruits 0.50 [26]

Grapes Vitis vinifera Fruits 3.7 [26]
Vegetables Capers, raw Capparis spinosa Flower buds 233.84 [27]

Onions, raw Allium cepa Bulbs 34.8 [26]
Dill weed, fresh Anethum graveolens Leaves 74.5 [28]

Oregano Origanum vulgare Leaves 42.00 [29]
Tarragon, fresh Artemisia dracunculus Leaves 10.00 [26]

Chicory Cichorium intybus Leaves 25.2 [30]
Beverages mg 100 mL−1

Black tea 2.50 [31]
Red wine 3.16 [32]

Source: Phenol Explorer and USDA Database for the Flavonoid Content of Selected Foods.

Que is a more potent antioxidant than other antioxidant nutrients, such as vitamin C,
vitamin E, and β-carotene [33]. Due to the five hydroxyl groups present in its structure that can
bind to ROS, Que has a higher antioxidant potential than many other flavonoids [34,35]. In addi-
tion to its antioxidant activity, Que has anti-cancer effects [36–40]; anti-inflammatory [34,41–43],
antiviral [44–46], and antibacterial properties [47–51]; cardioprotective effects [52]; and neuro-
protective effects vs. brain ischemia [53,54].

In many studies, Que is also reported to have adverse effects, such as the induction of
mutations, chromosomal aberrations, and single-stranded deoxyribonucleic acid (DNA)
ruptures in various eukaryotic cell systems in vitro [55].

Que is less toxic than curcumin or gallic acid due to the LD50 value of 484 µg mL−1,
while the LD50 value for curcumin is 135 µg mL−1 and that for gallic acid is 304 µg mL−1 [56].

This review focuses on the preventive and therapeutic capacity of Que in neurological
and neurodegenerative diseases along with its potential mechanisms of action. Furthermore,
we also summarized the biological sources and other pharmacological activities of this
antioxidant compound.

Que acts as a protector of neurons against severe OS, but also against free radical
attack by easily intercalating its molecules in DNA, thus forming a protective barrier against
stronger intercalators and/or ROS attack [57].

2. Methodology

Search Strategy
The current systematic review was conducted following the Preferred Reporting Items

for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [58], employing several
electronic databases (Science Direct, PubMed, and Google Scholar) and using the follow-
ing keywords: ((quercetin[Title/Abstract]) AND (Alzheimer’s disease[Title/Abstract]))
AND (amyloid[Title/Abstract]); (quercetin[Title/Abstract]) AND (Parkinson’s disease [Ti-
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tle/Abstract]); (quercetin[Title/Abstract]) AND (Huntington’s disease[Title/Abstract]);
(quercetin[Title/Abstract]) AND (pentylenetetrazol [Title/Abstract]). Inclusion criteria
included experimental studies (in vivo and in vitro) until May 2023 in English, which eval-
uated the antioxidant properties of quercetin in potential alternative therapeutic options
for neurodegenerative diseases.

Exclusion Criteria
We applied the following exclusion criteria: (1) conference abstracts, books, book

chapters, and unpublished results; (2) non-English papers; (3) reviews, systematic reviews,
meta-analyses, and letters.

Data Extraction
Among the initial 868 reports that were collected through electronic search, 554 were

omitted due to duplicated results, 47 were ruled out because of the article type, and 190
review articles were omitted and were deemed irrelevant based on abstract and/or title
information. Additionally, 1 was excluded because it was not in the English language.

Data Synthesis
Finally, 43 articles were included in this study, as demonstrated in a diagram of the

literature search and selection process (see Figure 2). It was thought that the studies would
be too heterogeneous to be combined. Therefore, a narrative synthesis was performed. The
results are summarized according to the type of neurodegenerative disease (AD, PD, HD,
and epilepsy) and the test (in vivo, in vitro).
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3. Oxidative Stress

OS is a condition in which there is an imbalance between the production of ROS and
the body’s ability to neutralize them, causing damage to lipids, proteins, and DNA. ROS
are naturally produced by the body as a by-product of normal metabolism but can also be
produced by environmental factors such as exposure to pollution, radiation, and certain
chemicals. In the context of neurological disease, OS has been shown to play a role in the
development and progression of several conditions.
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Recent studies have shown that Que can protect against OS-induced cell death by
inhibiting the activity of caspase-3 [59] and increasing the body’s antioxidant capacity by
regulating glutathione (GSH) levels [60]. Que has also been shown to reduce inflammation
and OS and improve wound healing in animal models of Alzheimer’s disease [43] and
reduce inflammatory pain by inhibiting OS pathways [61] (see Figure 2). These findings
suggest that Que may be beneficial in reducing OS and inflammation in humans [62].

In AD, OS has been shown to accelerate the formation of amyloid plaques in the brain,
which are a hallmark of the disease. Also, in PD, OS can cause the death of dopaminergic
neurons, leading to loss of motor function. In HD, stress can increase levels of the glutamate
neurotransmitter in the brain, which can lead to neuron death and worsening symptoms.
Thus, in Figure 3, we highlight the enzymes that have the role of protecting the body from
OS and have neuroprotective effects in the case of neurodegenerative diseases.
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3.1. Alzheimer’s Disease

Alzheimer’s disease is the most common neurodegenerative disease, accounting for
about two-thirds (60–80%) of all cases of dementia, and it affects mainly the elderly (aged
65 or older) [63]. The pathogenesis of AD is commonly associated with the extracellular
accumulation of amyloid-β (1–40, 1–42) aggregates and the hyperphosphorylation of tau
proteins, leading to neurofibrillary tangles (NFT) and synaptic dysfunction [13,64–66]. An
estimated 44 million people worldwide are affected by AD or a related form of dementia,
with a prevalence rate of 4.6 million new cases each year. The prevalence rate of AD
increases with age: the rate doubles every 5 years from the age of 60 [67,68].

OS plays an important role in AD, which, through ROS generation, can amplify or
initiate the disease (Table 2). The reduction reaction of hydrogen peroxide results in the
production of reactive oxygen species, thus damaging brain tissue and disrupting brain-cell
repair [69–71]. Thus, the administration (ad) of Que before the treatment decreases the
damage to the cell membrane induced by the OS caused by H2O2 [70].

AD is characterized by neuronal loss, which is preceded by the extracellular accumula-
tion of Aβ1–40, and Aβ1–42. Antioxidants such as Que increase the resistance of neurons to
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OS by modulating cell-death mechanisms. Thus, Que protects the mouse hippocampal cell
line HT-22 from glutamate-induced oxidative toxicity and lipid peroxidation by blocking
the production of free radicals [69]. Also, pretreatment of primary hippocampal cultures
with Que significantly attenuated Aβ1–42-induced cytotoxicity, protein oxidation (protein
carbonyl, 3-nitrotyrosine), lipid peroxidation (protein-bound 4-hydroxy-2-nonenal), and
apoptosis. There were also observed protective effects against Aβ1–42 toxicity by modulat-
ing OS at lower concentrations (5 and 10 µM), while in the cases of higher concentrations
(20 and 40 µM), the effects were not only non-neuroprotective, but toxic [13].

However, recent research shows that the more hydroxyl groups the structure of the
molecule contains, the stronger the anti-amyloidogenic activity. Therefore, one of the
potential benefits of Que is its ability to act as an anti-amyloidogenic agent due to its five
hydroxyl groups (see Figure 1), which means it can prevent the formation of amyloid
plaques in the brain [72,73].

Numerous studies demonstrate anticancer and apoptosis-inducing effects in vitro on
a variety of cancer cell lines, including murine neuroblastoma HT-22 cells or human-brain
microvascular endothelial cells [69,74–76]. Que was found to be non-cytotoxic and strongly
protected HT-22 cells from fibril formation [76]. In addition, Ishige et al. in 2001 [69], using
the HT-22 mouse hippocampal cell line, found three distinct mechanisms of flavonoid
protection in cell death, including increased intracellular GSH, a direct decrease in ROS
levels, and the prevention of Ca2+ influx.

In a study on the stable cell line of the Swedish mutant of amyloid precursor protein
(APP695-transfected SH-SY5Y), no effects of Que were observed in the middle-late stage of
AD; instead, effects were observed in the mid-early stage, when the reduction in β-amyloid-
converting enzyme 1 (BACE1) activity was recorded [73].

The optimal concentration of Que required for the effective destabilization of Aβ

fibrils has been found to be in the range of 0.1–1 µM [74,77]. Thus, in a study using neurons
of the rat hippocampal region, optimal doses of Que administration were beneficial for
protecting against Aβ25–35-induced amnesic injury by reducing lipid peroxidase, ROS, and
GPx [77]. In another study on pheochromocytoma (PC12) cells, Que was found to increase
the survival rate of H2O2-damaged cells, decrease lipid peroxidation and GSH level, and
provide mitochondrial protection mechanisms [70]. On the other hand, Yu et al. in 2020 [78]
showed that Que has beneficial effects, so it can increase the PC12 cell-survival damaged
by Aβ25–35, antagonize the toxicity of Aβ, promote cell proliferation, and provide some
neuroprotective effects.

Also, in a study involving homozygotic transgenic mouse line B6.129S7-Sod2tm1Leb/J,
where Que was administered orally at a dose of 50 mg kg−1 body weight (b.w.) twice a
week for four weeks, the results showed that Que had a protective effect against hydrogen
peroxide- and paraquat-induced OS in the mice [71]. In addition, Que has the effect of re-
ducing anion superoxide levels that increased with H2O2 and Aβ treatment in hippocampal
neurons or human-brain microvascular endothelial cells (hBMECs) [71,75].

Quercetin-3-glucuronide (Q3G), a glucuronide conjugate of Que, has been identified
as a potential intervention for AD due to its ability to target the brain. Thus, several studies
have shown that Q3G may be able to alleviate neuroinflammation and reduce OS in nerve
cells, both of which are associated with AD [79,80]. Additionally, Q3G has been found
to specifically localize in human brain tissue, suggesting that it may be able to cross the
blood–brain barrier (BBB) and reach areas of the brain affected by AD [79]. The mechanism
by which Que can cross the BBB is through passive diffusion; this is a process that allows
small molecules to move across the BBB from an area of high concentration to an area of
low concentration [81]. Thus, Ho et al. in 2013 [82] observed that Q3G significantly reduced
the generation of β-amyloid peptides using cultures of primary neurons generated by the
mouse model Tg2576 AD.

A high concentration of Que was found in Ginkgo biloba, thus showing that Ginkgo biloba
extract (EGb761) and its constituents, Que and ginkgolide B, have protective effects against
the cytotoxic action of Aβ1–42 via intraperitoneal administration (i.p.), thereby ameliorating
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the oxidative phosphorylation deficits, and mitochondrial dysfunction in AD [83]. Another
plant used in pharmacotherapy and in which Que is found is Acanthopanax henryi, which
can potentiate cholinergic activity by inhibiting acetylcholinesterase (AchE) [84].

Table 2. Protective effects against OS, neuroinflammation, and Aβ accumulation induced by Que
in vitro.

Types of Que Concentration of Que Model Exposure Effects Ref.

Que
Dosage: 2.2 µM;
Duration: 24 h;

HT-22 mouse
hippocampal cell H2O2

↓ lipid peroxidation,
↑ intracellular GSH, ↓

ROS
[69]

Dosage: 10–100 µmol L−1;
Duration: 10 min;

PC12 cells H2O2

↓ lipid peroxidation,
↓ GSH,

mitochondrial
protection

mechanisms

[70]

Dosage: 50 mg; kg−1 b.w.;
Duration: 2 times a week for

4 weeks;

homozygotic
transgenic mouse

line B6.129S7-
Sod2tm1Leb/J

H2O2 and Aβ

↓ ROS levels,
improved the typical

morphology of
mitochondria,

prevented
mitochondrial
dysfunction

[71]

Dosage: 10 µM; APP695-transfected
SH-SY5Y cells Aβ25–35

↓ ROS, ↓ BACE, ↓
Aβ, ↓ GSH, ↓ lipid

peroxidation
[73]

Dosage: 10 and 50 µM;
Duration: 7 days; hek cells Aβ1–42 or Aβ1–40

↓ Aβ peptides, ↓ the
performed mature

fibrils
[74]

Dosage: 5 or 10 mg kg−1 b.w.;
Ad: p.o.;

Duration: once daily;
hBMECs fAβ1–40 ↓ SOD, ↓ LDH [75]

Dosage: 2.4 µg mL−1;
HT-22 murine

neuroblastoma cells Aβ25–35

↓ amyloidogenic Aβ
peptides,

inhibited Aβ fibril
formation.

[76]

Dosage: 10, 20, 40, and
80 µmol L−1;

Duration: 24 h, 48 h, and 72 h;
PC12 cells Aβ25–35

↑ the survival rate of
PC12 injured by

Aβ25–35, promoted
cell proliferation, and

antagonized the
toxicity of Aβ, ↓ ROS

[78]

Q3G Dosage: 25 µmol L−1;
Tg2576 AD primary

neuron cultures Aβ1–40, Aβ1–42

↑ neuronal survival,
↑ c-Jun N-terminal

kinases, ↓
stress-induced
impairments

[82]

Que/Ginkgo biloba Dosage: 1.5–6 µg mL−1;
SHSY5Y human

neuroblastoma cells Aβ1–42

↓ Akt signaling
pathways, ↓ Aβ

toxicity, ↓
platelet-activating

factor

[83]

Que/
Acanthopanax henryi

Dosage: 2.5, 5, 10, 20, and
40 µg mL−1; cell-free system ↓ AchE activity, ↑

antioxidant activity [84]

Abbreviations: ↑, increase; ↓, decrease; Aβ, amyloid beta-peptide; AchE, acetylcholinesterase; BACE, β-amyloid-
converting enzyme 1; b.w., body weight; CAT, catalase; GPx, superoxide dismutase; GSH, glutathione; hBMECs,
human-brain microvascular endothelial cells; hek, human embryonic kidney; LDH, lactate dehydrogenase; OS,
oxidative stress; PC12, pheochromocytoma; Q3G, quercetin-3-glucuronide; Que, quercetin; ROS, reactive oxygen
species; SOD, superoxide dismutase.

In mitochondria, the first free radical to form is the superoxide radical, which is
catalyzed by superoxide dismutase (SOD) and can cause irreversible damage to nucleic
acids, proteins, phospholipids, and/or signaling pathways, thus contributing to apoptosis
and intoxication [85].

In vivo studies (Table 3) in triple transgenic mice models of AD (3xTg-AD) have
shown that Que can disaggregate amyloid fibrils, such as extracellular amyloid β-peptide,
tauopathy astrogliosis, and microgliosis in the hippocampus and amygdala, and improves
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their spatial memory and learning [86,87]. Additionally, the results showed that Que tended
to improve active behaviors of 3xTG-AD mice and decreased neurodegeneration markers
in mice [87]. Additionally, in the case of APPswe/PS1dE9 transgenic mice, it was observed
that long-term Que consumption prevents memory loss, Aβ-induced neurotoxicity, and
mitochondrial dysfunctions [88].

Furthermore, Hayakawa et al. in 2015 [89] showed that Que has memory-enhancing ef-
fects in older mice and delays the deterioration of memory in the early stages of Alzheimer’s,
since it reduces eIF2a and ATF4 expression by inducing GADD34 in the brain. Also, Que
can partially block the effect of other genes that play an important role in Alzheimer’s dis-
ease, such as tumor necrosis factor-alfa (TNF-α), interleukin 1 beta (IL-1β), and interleukin
6 (IL-6) [90].

On the other hand, oral (p.o.) treatment with 500 mg kg−1 b.w. Que for 10 days can
significantly increase brain apoE levels and reduce insoluble Aβ levels in the cortex of
5xFAD amyloid-model mice [91].

Interestingly, this memory impairment was markedly ameliorated by oral treatment
with Que nanoencapsulated in zein nanoparticles (25 mg kg−1 every 48 h for 2 months),
while the administration of free Que was not able to reverse the faulty behavior, despite a
higher administration frequency [92]. Also, pretreatment with Que decreases the effects
induced by Aβ1–42 in adult male Sprague Dawley rats [93].

Scopolamine administration causes short-term and long-term memory loss because
it blocks muscarinic cholinergic receptors in the brain and interferes with learning and
memory [94,95]. There are studies that have found that Que alleviates scopolamine-induced
memory deficits by protecting against neuroinflammation and neurodegeneration by in-
hibiting OS and acetylcholinesterase activity, reverses synaptic loss in the cortex and
hippocampus of the brain of adult mice, and suppresses memory impairment [94,95].

Aluminum is a toxic metal that has neurological effects, including Alzheimer’s disease,
by generating ROS [96]. Increased production of reactive oxygen species leads to the
disruption of cellular antioxidant defense systems and to the release of cytochrome c
from the mitochondria into the cytosol, resulting in apoptotic cell death [96,97]. Thus, the
administration of 10 mg kg−1 b.w Que reduces the effects induced by aluminum, thus
reducing OS. In addition, it prevents cytochrome c translocation [96].

In addition, Hou et al. in 2010 [98] showed that flavonols can antagonize the toxicity
of Aβ and improve the expression of brain-derived neurotrophic factor (BDNF) in the
hippocampus of double transgenic mice.

Table 3. Protective effects against oxidative stress, neuroinflammation, and Aβ accumulation induced
by Que in vivo.

Types of Que Concentration Model Exposure Effects Ref.

Que

Dosage: 25 mg kg−1 b.w.;
Ad: i.p.;

Duration: every 2 days for
3 months;

3xTg-AD mice
↓ tauopathy, ↓ β-amyloidosis, ↑

memory, ↑ learning, ↓
microgliosis, ↓ astrogliosis

[86]

Dosage: 100 mg kg−1 b.w.;
Ad: gavage;

Duration: every 48 h for
12 months;

3xTg-AD mice ↓ neurodegeneration, ↓
β-amyloidosis [87]

Dosage: 20 and 40 mg kg−1 b.w.;
Ad: p.o.;

Duration: 16 weeks;
adult male C57BL mice ↑MMP, ↑ ATP levels, ↓ ROS [88]

Dosage: 20 mg;
Ad: p.o.;

Duration: 5 weeks;
APP23 AD mice model Aβ

↓ eIF2α, ↓ ATF4, ↓ GADD34, ↑
memory in aged mice, ↓

memory deterioration in the
early stage of AD, ↓memory

dysfunction, ↓ OS

[89]
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Table 3. Cont.

Types of Que Concentration Model Exposure Effects Ref.

Dosage: 1% in mouse chow;
Ad: p.o.;

Duration: from 3 to 13 months;

double transgenic female
mice

↓ neuroinflammation,
↓ neurodegeneration, ↓ IL-1β [90]

Dosage: 25 mg kg−1;
Ad: p.o.;

Duration: 2 times a week for
2 months;

SAMP8 mice ↑ the cognition and memory
impairments, ↓ astrogliosis [92]

Dosage: 100 mg kg−1 b.w.;
Ad: p.o.;

Duration: 22 days;

adult male Sprague
Dawley rats Aβ1–42

↑ expression of Nrf2/HO-1 in
rat brains, ↓ Aβ1-42 level, ↓

antioxidant activity
[93]

Dosage: 12.5 and 25 mg kg−1; mice Scopolamine ↓ OS, ↓ AchE activity [94]

Dosage: 30 mg kg−1 b.w.;
Ad: i.p.;

Duration: every day for 8 days;
male albino Wistar rats Scopolamine

abridged transfer latency, ↓
avoidance response, ↓ 3,4-

methylenedioxyamphetamine,
acetylcholinesterase levels, ↑

CAT, ↑ GSH levels

[95]

Dosage: 10 mg kg −1 b.w.;
Ad: p.o.;

Duration: every day for 12 weeks;
male albino Wistar rats aluminum

↓ ROS production,
↑mitochondrial superoxide

dismutase activity
[96]

Que/ginkgo
flavonols

Dosage: 4.8% in extract, all based
on weight;

double transgenic
(TgAPP/PS1) mice - reversed the spatial learning

deficit [98]

Abbreviations: ↑, increase; ↓, decrease; Aβ, amyloid beta-peptide; AchE, acetylcholinesterase; ATP, adenosine
triphosphate; b.w., body weight; CAT, catalase; GPx, glutathione peroxidase; GSH, glutathione; hBMECs, human-
brain microvascular endothelial cells; hek, human embryonic kidney; IL-1β, interleukin 1 beta; i.p., intraperitoneal;
LDH, lactate dehydrogenase; MMP, matrix metalloproteinases; OS, oxidative stress; PC12, pheochromocytoma;
Q3G, quercetin-3-glucuronide; Que, quercetin; ROS, reactive oxygen species; SOD, superoxide dismutase.

3.2. Parkinson’s Disease

Parkinson’s disease is the second most common neurodegenerative disorder world-
wide, affecting 1% of the global population aged 65 years and older; it has significant
morbidity and mortality [99]. An increasing percentage of research indicates the associ-
ation of PD with microglial activation, resulting in an increase in various inflammatory
mediators and neuroinflammation [100,101]. 1-Methyl-4-phenylpyridinium (MPP+) is the
ultimate toxic agent formed by the metabolism of MPTP and can activate glial cells to
induce neuroinflammation [102]. Research has shown that MPP+ induces microglial acti-
vation and the degeneration of dopaminergic neurons (Table 4), as well as the generation
of ROS in dopaminergic neurons [103]. On the other hand, Que administration protects
microglia cells against MPP+-induced increases in the mRNA and protein levels of IL-1,
IL-6, and TNF-α, due to its antioxidant action [102]. In addition to the loss of dopaminergic
neurons in the substantia nigra pars compacta, PD is also characterized by the abnormal
accumulation and aggregation of α-synuclein (α-Syn) in the form of Lewy bodies [104,105].
Thus, the formation of α-Syn fibrils can be inhibited by Que and oxidized by Que through
their 1:1 covalent binding [105].

Table 4. Protective effects against oxidative stress and neuroinflammation induced by Que in vitro in
the case of Parkinson’s disease.

Types of Que Concentration Model Exposure Effects Ref.

Que
Dosage: 0.1 µM

Microglial
(N9)-neuronal

(PC12) cells
MPP

↓ iNOS gene expression, ↓
ROS, ↓ cellular death, ↓

DNA fragmentation,
↓apoptosis, ↓ nuclear

translocation of
apoptosis-inducing factor, ↓

caspase-3 activation

[102]
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Table 4. Cont.

Types of Que Concentration Model Exposure Effects Ref.

Dosage: 10 mM PC12 cells α-Synuclein ↓ Aβ fibrillation [105]

Isoquercetin Dosage: 10, 50, and
100 µM PC12 cells 6-OHDA ↓ ROS, ↑ SOD, ↑ GSH, ↑

CAT, ↑ GPx [106]

Quercetin glycoside Dosage: 10, 50, and
100 µM PC12 cells 6-OHDA ↑ antioxidant activity, ↑

GSH, ↑ GPx [107]

Abbreviations: ↑, increase; ↓, decrease; 6-OHDA, 6-hydroxydopamine; Aβ, amyloid beta-peptide; CAT, catalase;
DNA, 6-hydroxydopamine; GPx, glutathione peroxidase; GSH, glutathione; iNOS, inducible nitric oxide synthase;
MPP, 1-methyl-4-phenylpyridinium; LDH, lactate dehydrogenase; MMP, matrix metalloproteinases; OS, oxidative
stress; Q3G, quercetin-3-glucuronide; Que, quercetin; ROS, reactive oxygen species; SOD, superoxide dismutase.

Another neurotoxic synthetic organic compound used by researchers to selectively de-
stroy dopaminergic and noradrenergic neurons is 6-hydroxydopamine (6-OHDA) [106,107].
It is a hydroxylated analogue of dopamine and is a benzenetriol with hydroxyl groups on
the phenyl ring at positions 2, 4, and 5. Isoquercetin, a flavonol derived from Que, has also
been found to have protective effects against 6-OHDA-induced oxidative damage in a rat
model of PD. They observed that antioxidant enzymes, catalase (CAT), SOD, GPX, and GSH
levels, which were previously attenuated by 6-OHDA, increased significantly [106,107].

In vitro studies have shown that Que can improve mitochondrial quality control,
reduce OS, and increase levels of antioxidant enzymes (Table 5) [102,105–107]. Instead,
in vivo studies in mice and 6-OHDA-induced PD rat models demonstrated that Que can
improve locomotor and muscle activity, increase striatal dopamine levels, and protect
neurons from mitochondrial dysfunction [108–112].

Table 5. Protective effects against oxidative stress and neuroinflammation of Que in vivo in the case
of Parkinson’s disease.

Types of Que Concentration Model Exposure Effects Ref.

Que

Dosage: 25 mg kg−1

Ad: p.o.
Wistar rats Haloperidol MPTP

↓ cataleptic score, ↑
actophotometer activity score, ↑

GSH, ↓ lipid peroxidation, ↓
ROS

[108]

Dosage: 25 and 50 mg kg−1

Ad: intragastrically
Duration: 14 days

Wistar rats MPTP ↓ TNF-α, ↓ IL-1β and ↓ IL-6, ↓
glutamate level, [109]

Dosage: 50, 100, and
200 mg kg−1

Ad: p.o.
Duration: 14 days

adult male
C57BL/6 mice MPTP

↓ striatal dopamine depletion, ↓
level of acetylcholine, ↑ AchE

activity, ↑motor deficits, ↑ GPx,
↑ SOD

[110]

Dosage: 100, 200, and
300 mg kg −1

Duration: 14 days
Wistar rats 6-OHDA

↑ spatial memory, ↓ OS, ↓ AchE
activity, ↑ antioxidant activity, ↓

neuronal damage
[111]

Dosage: 20 mg kg−1

Ad: i.p.
Duration: 1 month

Wistar rats 6-OHDA

↓ neuroplastic changes in
neural circuits, ↓ excitability in
neurons involved in epilepsy, ↓
NMDA receptor functionality

[112]

Dosage: 25–75 mg kg−1

Duration: 12 h intervals for
4 days

Wistar rats Rotenone

↓ nigral GSH depletion, ↓ ROS,
↓ striatal DA loss, ↑

mitochondrial complex, ↓
neuronal death

[113]

Dosage: 50 mg kg−1

Ad: p.o.
Duration: 14 days

Wistar rats Rotenone ↑ AchE activity, ↑ SOD, ↓ GPx,
↓ CAT [114]

Que + fish oil
Dosage: 25 mg kg−1

Ad: p.o.
Duration: 28 days

Wistar rats Rotenone ↑mitochondrial functions, ↑
GSH, ↑ antioxidant defenses [115]

Abbreviations: ↑, increase; ↓, decrease; 6-OHDA, 6-hydroxydopamine; AchE, acetylcholinesterase; CAT, catalase;
DNA, deoxyribonucleic acid; GPx, glutathione peroxidase; GSH, glutathione; iNOS, inducible nitric oxide
synthase; i.p., intraperitoneal; MPP, 1-methyl-4-phenylpyridinium; MMP, matrix metalloproteinases; NMDA,
N-methyl-D-aspartate; OS, oxidative stress; p.o., oral; Q3G, quercetin-3-glucuronide; Que, quercetin; ROS, reactive
oxygen species; SOD, superoxide dismutase.
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Studies have shown that Que has neuroprotective effects against MPTP-induced
neurotoxicity in Wistar rats and adult male C57BL/6 mice [108–110]. Que was found to
reduce OS and neuroinflammatory cytokines in rats [108,109], as well as restore motor
and non-motor symptoms (depression and cognitive impairment) of PD in rats injected
with rotenone [113,114]. Additionally, Que supplementation was found to improve striatal
cholinergic function and reduce rotenone-induced OS in rats [114].

On the other hand, the administration of fish oil can attenuate rotenone-induced
oxidative impairments and mitochondrial dysfunctions in rat brains [115]. Combined oral
supplementation with fish oil and Que has been found to enhance neuroprotection in a
chronic rotenone rat model, suggesting potential relevance for PD [115].

3.3. Huntington’s Disease

Along with AD and PD, HD is a major health problem worldwide, with a major
financial impact [116]. HD is an autosomal dominant inherited disorder, the treatment of
which is clinically available but provides only symptomatic relief. These drugs are available
by prescription and have side effects such as anxiety and depression.

For an experimental model of HD, 3-nitropropionic acid (3-NPA) was administered,
which altered the mitochondrial metabolism, decreased cellular ATP level, and included
nerve-cell death by increasing OS.

In a study by Sandhir and Mehrotra [117] in which female Wistar rats were used as
model organisms and in which Que was orally administered at a dose of 25 mg kg−1 for
21 days, for 17 of these 21 days concomitantly with 3-NPA, an attenuation of motor deficits
was observed which were assessed using the narrow-beam walking test and fingerprint
analysis. Furthermore, molecular changes induced by 3-NPA acid were observed, which
were reversed, thus increasing the level of OS and lowering the ATP concentration [117].

On the other hand, a study by Chakraborty [118] failed to confirm the beneficial effect
of Que on the 3-NP-induced striatal neuronal lesion (Table 6). However, the conditions
of the two studies varied little. Chakraborty used male rats as model organisms, the
duration of administration of 3-NP and Que was 4 days, and the concentration was higher
(25–50 mg kg−1) than that which was administered by Sandhir and Mehrotra [117], where
the dose was administered subchronically (25 mg kg−1). Although Que had no effects
on 3-NP-induced striatal neuronal injury, it significantly attenuated neurotoxin-induced
anxiety, decreased microglial proliferation, and increased the number of astrocytes in the
lesion core [118].

Table 6. Protective effects against oxidative stress and neuroinflammation induced by Que in vivo in
the case of Huntington’s disease.

Types of Que Concentration Model Exposure Effects Ref.

Que
Dosage: 25 mg kg−1

Ad: p.o.
Duration: 21 days

Wistar rats 3-NPA

↑ ATP, ↑ activity of complex
II and V enzyme of

respiratory chain complex, ↓
ROS, ↑ SOD, ↑ CAT, ↓ lipid

peroxidation,

[117]

Dosage: 25–50 mg kg−1

Ap: i.p.
Duration: 4 days

Sprague Dawley
rats 3-NPA

↓ gait despair, ↓microglial
proliferation, ↓ anxiety, ↑
astrocyte numbers in the

lesion core, ↓motor
coordination deficits, ↓
serotonin metabolism

[118]

Que + lycopene Dosage: 50 mg kg−1

Duration: 14 days
Wistar rats 3-NPA ↓ anxiety, ↓ depression [119]

Que + fish oil Dosage: 25 mg kg−1 Wistar rats 3-NPA ↓ OS, ↑motor function [120]
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Table 6. Cont.

Types of Que Concentration Model Exposure Effects Ref.

Que + sesamol

Dosage: 25, 50, and
100 mg kg−1

Ad: i.p.
Duration: 14 days before

and 14 days after QA
administration

Wistar rats QA

↓ behavioral, biochemical,
and neurochemical

alterations in the rat brain, ↑
antioxidant effects, ↑

anti-inflammatory activity

[121]

Abbreviations: ↑, increase; ↓, decrease; 3-NPA, 3-nitropropionic acid; CAT, catalase; GSH, glutathione; i.p.,
intraperitoneal; MPP, 1-methyl-4-phenylpyridinium; OS, oxidative stress; p.o., oral; QA, quinolinic acid; Que,
quercetin; ROS, reactive oxygen species; SOD, superoxide dismutase.

In addition, Que in combination with other antioxidants, such as lycopene, decreases
anxiety and depression [119]. Furthermore, the use of dietary antioxidants as adjuvants
with n-3 fatty acids is increasingly being used, as they offer a higher degree of protection.
Thus, the efficacy of Que in combination with fish oil was observed in a rat model previously
treated with 3-NPA, where it decreased OS and improved motor function [120].

Quinolinic acid (QA) is also a paradigm of HD, and co-administration of antioxi-
dants such as Que with sesamol minimizes neurochemical, behavioral, and biochemical
alterations in rat brains [121]. However, these data appear inconsistent and unequivocal
conclusions cannot be drawn.

3.4. Epilepsy

Epilepsy is a neurological disorder characterized by recurrent spontaneous seizures
(Table 7), being caused by an imbalance in excitatory and inhibitory neurotransmission [122].
Glutamate and γ-amino butyric acid (GABA) are the major excitatory and inhibitory
neurotransmitters in the CNS [123]. A GABA receptor antagonist is pentylenetetrazol
(PTZ), which is used to create a chemically induced seizure model in animals [123]. The
frequency and severity of these recurrent seizures can vary. Thus, a low dose of Que
(25 mg kg −1) can reduce the number and duration of spike-wave discharges in WAG/Rij
rats [124]. In addition, a reduction in the levels of TNF-alpha, IL-6, and NO was observed
compared with the control group.

Table 7. Protective effects against oxidative stress and neuroinflammation induced by Que in the case
of epilepsy.

Types of Que Concentration Model Type of Test Exposure Effects Ref.

Que Dosage: 5, 10, 20, and
40 mg kg−1 Albino rats in vivo PTZ ↑ antiseizure effect, ↑

anticonvulsant effect [123]

Dosage: 25, 50, and
100 mg kg−1

Ad: i.p.
Wistar rats in vivo PTZ

↑ anticonvulsant
effects, ↓ seizure
severity, ↓ lipid
peroxidation, ↑

antioxidant effect, ↑
memory retrieval in

the passive
avoidance task

[125]

Dosage: 10, 20, and
40 mg kg−1

Ad.: p.o.
Duration: 15 days

Swiss albino
mice in vivo PTZ ↑ immobility time, ↓

seizure severity [126]
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Table 7. Cont.

Types of Que Concentration Model Type of Test Exposure Effects Ref.

Que/
Anisomelesma

labarica

Dosage: 25 and
50 mg kg−1

Ad: i.p.
Wistar rats in vivo PTZ

↓ locomotor activity
and motor

activity performance
[127]

Dosage: 6.25 and
12.5 mg kg−1

Ad: i.p.
Duration: 1 week

Wistar rats in vivo PTZ

potentiating the
GABAergic system,

inhibition of the
NMDA receptor and

Na+ channels.

Abbreviations: ↑, increase; ↓, decrease; GABA, glutamate and γ-amino butyric acid; i.p., intraperitoneal; NMDA,
N-methyl-D-aspartate; p.o., oral; PTZ, pentylenetetrazol; Que, quercetin.

In a study using PTZ-induced seizure model rats, Que administration at 10 mg kg−1

intraperitoneally 30 min before PTZ injection significantly prolonged the onset and re-
duced the severity of the seizure, but, at an increased concentration of 40 mg kg−1, Que
failed to prevent the effects of PTZ [123]. Also, Nassiri-Asl et al. [125] showed that the
administration of 35 mg kg−1 PTZ after 50 mg kg−1 Que reduces seizure severity during
kindling and improves performance in a passive avoidance task in kindled rats. Also,
supplementation of levetiracetam with quercetin improved depression that is associated
with epilepsy, led to decreased immobility time and reduced seizure severity. [126]. In
addition, Choudhary et al. in 2011 [127] isolated and evaluated the antiepileptic potential
of both the acute and chronic flavonoid fractions of Anisomeles malabarica leaves. Toxic
effects were observed In the acute treatment (25 and 50 mg kg−1, i.p.) while for the chronic
treatment for one week (6.25 and 12.5 mg kg−1, i.p.) a significant antiepileptic effect was
observed, without causing neurotoxic side effects [127].

4. Conclusions

Research on Que’s neuroprotective effects suggests that it can be used to protect against
various neurodegenerative diseases. Que has been shown to reduce OS and inflammation,
which are both associated with neurodegeneration. It has also been found to reduce
hippocampal tau phosphorylation, which is a marker of AD.

In addition, Que has been found to act through numerous mechanistic targets to
provide neuroprotection, including the modulation of receptor pathways. It has also
been found to have protective effects when combined with vitamin C, lycopene, fish oil,
or sesamol.

Overall, research suggests that Que may be an effective agent for the prevention of
progressive age-related neurodegenerative diseases such as AD, PD, HD, and epilepsy,
respectively. However, more research is needed to draw more concrete conclusions about
the efficacy of Que in these disorders.
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