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Abstract: Metasequoia glyptostroboides, Hu and W. C. Cheng, as the only surviving relict species
of the Taxodiaceae Metasequoia genus, is a critically endangered and protected species in China.
There is a risk of extinction due to the low vigor of M. glyptostroboides seeds, and the physiological
mechanism of seed aging in M. glyptostroboides is not yet clear. In order to investigate the physiological
and molecular mechanisms underlying the aging process of M. glyptostroboides seeds, we analyzed
the antioxidant system and transcriptome at 0, 2, 4, 6, and 8 days after artificial accelerated aging
treatment at 40 ◦C and 100% relative humidity. It was found that the germination percentage of
fresh dried M. glyptostroboides seeds was 54 ± 5.29%, and significantly declined to 9.33 ± 1.88%
after 6 days of aging, and then gradually decreased until the seed died on day 8. Superoxide
dismutase (SOD) activity, ascorbic acid (AsA), glutathione (GSH) content and superoxide anion
(O2
·−) content and production rate significantly decreased, while malondialdehyde (MDA) and

hydrogen peroxide (H2O2) content and glutathione peroxidase (GPX) and catalase (CAT) activity
gradually increased during the aging process. A total of 42,189 unigenes were identified in the whole
transcriptome, and 40,446 (95.86%) unigenes were annotated in at least one protein database. A total
of 15,376 differentially expressed genes (DEGs) were obtained; KEGG enrichment analysis results
revealed that seed aging may be mainly involved in the protein-processing pathways in endoplasmic
reticulum, oxidative phosphorylation, and ascorbate and aldarate metabolism. Weighted gene co-
expression network analysis (WGCNA) revealed that the dark magenta, orange, and medium purple
modules were highly correlated with physiological indicators such as SOD, CAT, and GSH and
further identified 40 hub genes such as Rboh, ACO, HSF, and CML as playing important roles in the
antioxidant network of M. glyptostroboides seeds. These findings provide a broader perspective for
studying the regulatory mechanism of seed aging and a large number of potential target genes for
the breeding of other endangered gymnosperms.
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1. Introduction

Seed vigor refers to the potential to determine the rapid and neat emergence of seeds
and the normal growth of seedlings under field conditions; this was the main indicator
used to measure seed quality and an important factor in determining yield [1]. Seed vigor
reached its peak at late physiological maturity, after which it gradually and irreversibly
declined during storage and transport, a change known as aging or deterioration [2]. Dur-
ing seed aging, a series of harmful changes occurred inside the seed, such as a decrease in
the mechanical resistance of the seed coat, cell membrane damage, protein denaturation,
DNA damage and mutation, and disruption of nucleic acid synthesis systems [3–6], uncon-
trolled reactive oxygen species’ (ROS) generation, and inefficient antioxidant machinery [7],
resulting in a decline in germination percentage, seedling growth percentage and plant
performance. The higher the degree of seed aging, the greater the vigor loss. Due to the
long natural aging time of orthodox seeds, artificial accelerated aging or controlled deterio-
ration treatment (CDT) is usually used in research to quickly obtain aging seeds through
high temperature and humidity [8] or by breaking the balance of the seed cytoplasmic
vitrification state (control temperature, water content, oxygen and other conditions) [9,10].

Recent advances in genomics and transcriptomics have provided new insights into
the molecular mechanisms of seed aging. Multi-omics analysis has been used to identify
genes related to seed vigor or aging resistance and their molecular mechanisms. Wang
et al. identified that the transcription factor bZIP23 bound to the genetic factor PER1A of
peroxidase in rice through metabolome and transcriptome technologies, and was involved
in the clearance of reactive oxygen species during seed aging [11]. Zhang et al. performed
strand-specific RNA sequencing on rice embryonics of fresh-dried seeds (96% germina-
tion percentage) and aged seed samples (50% germination percentage; aged for 6 days at
43 ◦C and 85% relative humidity) and detected four upregulated lncRNAs that predomi-
nantly regulated target genes involved in base repair, either in cis or trans -regulated target
genes [12]. Gu et al. conducted an integrated analysis of proteomics and genomics on 20 dif-
ferent rapeseed varieties with varying oil contents, identifying 165 differentially expressed
proteins (DEPs), and 31 unique genes showed significant differences in the germination
process between high- and low-oil-content seeds, with 13 of these genes potentially being
related to seed germination vigor [13]. Rency et al. used QTL technology to discover eight
genes related to the seed longevity mechanism, involved in functions such as reducing
oxidative stress and repairing damaged DNA [14]. It was reported that acetaldehyde
dehydrogenase 7 (OsALDH7) [15], Lipoxygenase 3 (LOX3) [16], OsGRETCHENHAGEN3-2
(OsGH3-2) [17], and protein repair L-isoaspartyl methyltransferase 1 (OsPIMT1) [18] were
all associated with seed vigor and longevity in rice. Furthermore, research has shown
that OsHSP18.2 can protect and stabilize the structure and function of enzymes in cells by
limiting the accumulation of ROS, thereby preventing irreversible damage [19]. Although
there have been many advances in seed aging research in recent years, a large proportion of
studies have focused on crop seeds, with less research being conducted on the mechanisms
of seed aging in wild plants [20].

Metasequoia glyptostroboides was a plant species in the Cupressaceae family of the
Metasequoia genus. It was a Quaternary glacial relic and was known as a “living fossil” in
the plant kingdom [21]. The ancient history of M. glyptostroboides made it significant for
studying ancient biology, climate, geology, and the systematic evolution of gymnosperms.
However, wild populations of M. glyptostroboides had low genetic diversity and faced
difficulties in natural regeneration. The age structure of the population was in an inverted
pyramid shape, indicating a declining trend that showed no signs of improvement in its
endangered status [22]. In recent decades, researchers have conducted much research on
the physiological ecology of M. glyptostroboides seeds [23]. According to Li et al., the germi-
nation percentage of freshly harvested M. glyptostroboides seeds was only (32.9 ± 3.3)% [24],
suggesting that the vigor of M. glyptostroboides seeds was relatively low, and under con-
ditions of accelerated aging, the loss of seed vigor was exceptionally rapid compared to
other plant species [25]. Liu et al. speculated that the low vigor and poor vigor retention
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ability of M. glyptostroboides seeds may be an important reason for the natural difficulty
in updating its original population [25]. Therefore, it is imperative to further clarify the
physiological mechanism underlying the loss of vigor in M. glyptostroboides seeds from a
physiological perspective. This will facilitate a better understanding of the endangered
mechanism of M. glyptostroboides and enable us to implement more effective measures to
protect this species.

Despite the rapid advances in sequencing technology, a genome map of M. glyp-
tostroboides has not yet been published. The lack of high-quality genomic maps greatly
limits research into plants with large genomes [8]. Full-length transcriptome sequencing
belongs to the third-generation sequencing technology, which has advantages such as
offering a comprehensive transcriptome analysis, improved gene annotation, precise quan-
tification of transcripts, and spatial–temporal expression analysis [26]. For species without
a reference genome, SMRT sequencing technology can significantly reduce the number
of generated transcripts and provide a better understanding of the pathways related to
whole transcriptomes, tissue development, and the secondary metabolism [8]. Therefore,
this study, using full-length transcripts, explored the possible physiological mechanisms of
the low vigor and rapid loss of vigor in M. glyptostroboides seeds. This will help us better
understand the endangered mechanism of M. glyptostroboides, so as to better protect it, and
may provide a reference for the protection of other endangered gymnosperms.

2. Materials and Methods
2.1. Artificial Aging Treatment

During October 2020, fresh and mature seeds of M. glyptostroboides were collected in
Lichuan, Hubei Province (E: 108◦55′45.561′′, N: 30◦17′52.3′′). After air-drying for 7 days,
the seed water content was measured to be 10.06 ± 0.09% (n = 4) and the thousand-seed
weight was 2.89 ± 0.06 g. Artificial aging treatment was conducted as in the work of
Barreto and Garcia et al. [27] with minor modifications. The seeds were then placed in mesh
bags and spread out in a constant-temperature and -humidity chamber with 40 ◦C and
100% relative humidity for 2 days (S2), 4 days (S4), 6 days (S6), and 8 days (S8). The aged
seeds were frozen with liquid nitrogen and stored at −80 ◦C for subsequent experimental
measurements. Fresh-dried and untreated seeds were used as the control (S0).

2.2. Germination Parameters Tests

Germination tests were conducted according to International Seed Testing Association
(ISTA, 2018) criteria, and 3 replicates were used, with around 50 seeds per biological
replicate [28]. The seeds were evenly seeded in a petri dish (diameter: 9 cm) covered with
2 layers of filter paper, and then placed in a 25 ◦C constant-temperature light incubator
(12 h light/12 h dark, PPFD = 121 µmol m−2s−1) with distilled water added [29]. A seed
was considered to be germinated if it developed into a normal seedling. Germination
percentage was the normal seedling percentage at the final day (day 16). Leaf length (LL),
root length (RL) and seedling fresh weight (FW) were also measured on 14th day. Seeds
with primary roots of at least 2 mm long were recorded every day until the 10th day to
calculate mean germination time (MGT) using Equation (1):

MGT = ∑NT/∑N (1)

Vigor index (VI) was calculated according to Equation (2):

VI = ∑(GT/T) × FW (2)

where T is the number of days counted from the beginning of germination, N is the
number of seeds germinated on day T, and GT is the number of germinated seeds per day
corresponding to T. The data were calculated and presented as the mean ± SD of three
biological replicates, and subjected to ANOVA to determine significant differences.
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2.3. Physiological Analysis

According to the detection protocol provided by Suzhou Keming Biotechnology
Co., LTD. (Suzhou, China) (www.cominbio.com, accessed on 15 February 2023), The an-
tioxidant enzyme activities of seeds’ superoxide dismutase (SOD, EC 1.15.1.1), glutathione
peroxidase (GPX, EC 1.11.1.9), ascorbic acid peroxidase (APX, EC 1.11.1.11), catalase (CAT,
EC 1.11.1.11)] were detected by kits. EC 1.11.1.11)], as well as the contents of O2

·−, malon-
dialdehyde (MDA), H2O2, glutathione (GSH), L-ascorbic acid (AsA) and O2

·− production
rate. The data were calculated and presented as mean ± SD of three biological replicates,
then subjected to ANOVA to determine significant differences.

2.4. RNA Quantification and Qualification

The RNA for Pacbio full-length transcriptome sequencing was extracted from a mixed
sample of M. glyptostroboides root, stem, leaves, and seeds, while the RNA sample for
Illumina sequencing was obtained from M. glyptostroboides seeds at different stages of
aging. The Plant Total RNA Purification Kit (TSINGKE, Beijing, China) was used to extract
RNA from M. glyptostroboides tissues, and then the RNA integrity was measured using
Agilent 2100 Bioanalyzer (Supplementary Figure S1) (Agilent Technologies, Santa Clara,
CA, USA) and the RNA concentration was estimated using Qubit Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA).

2.5. cDNA Construction and PacBio Iso-Seq

Following the PacBio Isoform Sequencing protocol, cDNA synthesis and library con-
struction were performed using the Clontech SMARTer PCR cDNA Synthesis kit (Clontech,
Mountain View, CA, USA). The full-length cDNA Iso-Seq templates of 2 SMRT were
sequenced after purification, size selection, re-amplification and SMRTbell template prepa-
ration. The cDNA library was size-selected using BluePippin (Sage Science, Beverly,
MA, USA) to include only cDNAs larger than 4 kb. Both cDNAs larger than 4 kb and
non-selected cDNAs were combined in equal amounts to form the Iso-Seq library for
SMRT sequencing.

2.6. Iso-Seq Data Processing with Standard Bioinformatics Pipeline

The raw sequencing data underwent processing using SMRTlink4.0 software, fol-
lowing the standard Iso-Seq protocol. Initially, reads of insert (ROIs) were generated by
liminating adapters and artifacts from subreads. These ROIs were then classified into
two groups, full-length nonchimeric (FLNC) reads and non-full-length (nFL) reads, by
detecting primer and polyA tail with ‘pbclassify.py’. Clustering of the FLNC reads was
carried out using the iterative clustering for error correction (ICE) algorithm. Subsequently,
the consensus sequences obtained were polished and categorized using the nFL reads with
the Quiver algorithm, followed by error correction using the ‘proofread (2.13.12)’ tool and
an Illumina RNA-seq dataset. Finally, redundancies were eliminated using CD-hit to obtain
the final set of non-redundant full-length transcripts.

The obtained unigenes were subjected to annotation analysis by mapping them to
seven databases. For nucleotide database (Nt) analysis, we utilized the BLAST software
with an e-value threshold of ‘1 × 10−5’. In the protein family database (Pfam) analysis,
the Hmmscan software was employed. The non-redundant protein database (Nr), Kyoto
Encyclopedia of Genes and Genomes (KEGG), cluster of orthologous group (KOG), and
Swiss-Prot, and Gene Ontology (GO) databases were annotated using BLASTX with a
cut-off e-value of ‘1 × 10−5’.

2.7. Illumina Library Construction and Sequencing

Seeds that underwent aging treatment were collected and subjected to total RNA
extraction. The extracted RNAs were then sequenced using the Illumina HiSeq 2500 plat-
form (Illumina Inc., Foster City, CA, USA) with three biological replicates. The resulting
sequences were aligned to the reference full-length transcript of M. glyptostroboides con-

www.cominbio.com
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structed in this study. The number of fragments mapped to each transcript was tallied to
determine the relative expression level of each transcript. The expression levels of genes
were normalized using the fragments per kilobase of transcript per million mapped reads
(FPKM) method. Genes exhibiting a fold change ratio of≥2, with a corrected p-value < 0.05,
were identified as DEGs.

2.8. Weighted Correlation Network Analysis

Weighted gene co-expression network analysis (WGCNA) was carried out with the
WGCNA package (v1.72-1) in R [30]. The co-expression analysis was conducted on 15 sam-
ples. The DEGs were assigned to 15 modules using WGCNA. Correlations between each
module and seed-aging stress were calculated. Genes at different expression levels were
assigned to various modules via a dynamic tree cut. There were at least 30 genes per
co-expression module. Certain modules were similar. Correlations among various modules
were calculated using 0.25 as the similarity threshold. Module-trait associations were
estimated from the correlations between the module eigengene and various seed-aging
stages or enzyme activity levels. Each node represented one gene connected to several
others. The node size was proportional to the number of genes to which a specific gene was
linked. The total connectivity and intramodular connectivity (function soft connectivity),
modular membership (kME), and kME p values were calculated for the DEGs.

2.9. Quantitative (q)RT-PCR Validation

The RNA samples isolated above were used as templates and were reverse-tran-scribed
with a PrimeScript™ RT reagent Kit (Takara, Beijing, China). The primers used in this study
were designed via Primer 5 with RefSeq and are listed in Supplementary Table S1. The
expression of the beta-actin gene was used as an internal control. qRT-PCR was performed
with Luna® Universal qPCR Master Mix (NEB, Beijing, China) on a QuantStudio™ 5 device
(Thermo Fisher, USA) according to the manufacturercs’ protocol. Relative gene expression
levels were evaluated according to the 2−∆∆CT method [31].

3. Results
3.1. Germination Percentage and Physiological Changes during Artificial Seed Aging

The germination percentage of M. glyptostroboides seeds was investigated after artificial
aging treatment. The results showed that the germination percentage after 2 days of aging
treatment was 70.67 ± 3.68%, which was significantly different from the control group,
at 58.00 ± 5.71%. Then, the germination percentage exhibited a continuous downward
trend, and was almost zero after 8 days of aging (Figure 1A). The water content of M. glyp-
tostroboides seeds showed an initial increase followed by a decreasing trend (Figure 1B).
The water content of fresh seeds without aging treatment was 10.06 ± 0.13%. The seeds
aging for 2 and 4 days significantly increased the water content to 19.15 ± 1.04% and
19.49 ± 0.76%, respectively. However, with further aging, the seed water content began to
significantly decrease at 6 days of aging and decreased to 11.54 ± 0.20% at 8 days of aging.
The germination potential and germination index of M. glyptostroboides seeds decreased
with the increase in aging time, and the vigor index, root length, seedling height, fresh
weight, and dry weight showed the same trend as the germination percentage (Table 1).
Root length, seedling height, and fresh weight showed no significant difference from the
control group after 2, 4, and 6 days of aging. Dry weight also showed no significant dif-
ference from the control group after 2 and 4 days of aging, and only showed a significant
decrease after 6 days of aging.
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during artificial aging treatment. (A) Changes in seed germination percentage with artificial aging
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letters on top of each bar indicate statistically significant differences (p < 0.05).

Table 1. Changes of germination potential, germination index, vigor index, root length, seedling
height and seedling dry/fresh weight with artificial aging treatment time.

Aging
Time
(d)

Germination
Percentage

(%)

Germination
Potential

(%)

Germination
Index
(%)

Vigor
Index
(%)

Root
Length
(mm)

Seedling
Height
(mm)

Fresh
Weight

(mg)

Dry
Weight

(mg)

0 58.00 ± 5.71 b 54 ± 5.29 a 12 ± 1.32 a 59.54 ± 7.40 a 12.79 ± 1.55 a 36.63 ± 1.08 a 18.55 ± 0.50 a 2.01 ± 0.02 a

2 70.67 ± 3.68 a 48 ± 3.46 a 11.46 ± 0.53 a 63.16 ± 4.63 a 17.90 ± 1.15 a 37.09 ± 0.58 a 20.13 ± 0.71 a 2.04 ± 0.06 a

4 33.33 ± 4.11 c 10 ± 2.31 b 4.64 ± 0.84 b 22.86 ± 4.63 b 12.59 ± 1.13 a 36.39 ± 0.52 a 20.59 ± 0.54 a 1.94 ± 0.02 ab

6 9.33 ± 1.88 d 0 c 1.23 ± 0.33 c 5.55 ± 1.41 c 12.03 ± 1.31 a 33.84 ± 1.12 a 21.51 ± 1.22 a 1.82 ± 0.04 b

8 0 e — — — — — — —

Note: “—” means no normal seedling. There are no significant differences between data marked with the same
lowercase letters in the same column (p > 0.05).

The artificial aging treatment had a significant effect on the content and produc-
tion rate of superoxide anion radicals (O2

·−) in M. glyptostroboides seeds. With the in-
crease in aging time, the content and production rate of O2

·− showed a decreasing trend,
with a faster decline rate at the beginning and a slower rate later (Figure 2A,B). The
content of malondialdehyde (MDA) in seeds was gradually upregulated with the in-
crease in aging time, and the difference was significant at the S8 stage compared with the
S0 stage (Figure 2C). The H2O2 content did not change significantly with the treatment time
(Figure 2D). The activities of the four main antioxidant enzymes, superoxide dismutase
(SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX),
showed significant changes. SOD activity decreased rapidly to a lower level after 2 d aging
and then remained relatively stable at a low level (Figure 2F); CAT activity showed a trend
of first decreasing and then increasing with aging (Figure 2E); APX activity showed a trend
of “increase-decrease-increase” with aging time (Figure 2G); GPX activity continued to
increase with aging time (Figure 2H). As for non-enzymatic antioxidants, the ascorbic
acid (AsA) content, showed a “decrease-increase-decrease” trend. The AsA content in the
control group reached its maximum value and was not significantly different from that
of the 4d aging group, but was significantly higher than that of other aging timepoints
(Figure 2I). In addition, the glutathione (GSH) content showed an “increase-decrease” trend
(Figure 2J). On the 8th day, the GSH content in the seeds was not significantly different
from that of the control group, while the GSH content in the seeds under other treatments
was significantly higher than that of the control group.
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Figure 2. Determination of different physiological indices of the M. glyptostroboides seeds under aging
treatment, (A) O2

·− content, (B) O2
·− production rate, (C) MDA content, (D) H2O2 content, (E) CAT

activity, (F) SOD activity, (G) APX activity, (H) GPX activity, (I) AsA content, (J) GSH content. The
data are shown as the means ± SDs of three independent experiments. Note: Different letters on top
of each bar indicate statistically significant differences (p < 0.05).

3.2. Functional Annotation of M. glyptostroboides Transcriptome

The NGS transcriptome sequencing generated a total of 636,418,458 raw reads and
613,316,468 clean reads (96.37%, 91.25 Gb), with an average Q30 value of 93.70% and an
average GC content of 45.54% (Table S2). The SMRT transcriptome sequencing generated
11,487,282 subreads (32.18 Gb in size), with an average length of 2802 bp and an N50 value
of 3108 bp. Among these subreads, 289,659 full-length nonchimeric (FLNC) reads were
obtained, with an average length of 3084 bp, which were corrected using the NGS data
(Figure 3A). A total of 330,124 circular consensus sequences (CCSs) were obtained after
filtration of the subreads. The FLNC sequences of the same transcript were clustered,
and redundancies were removed using the hierarchical n*log(n) algorithm, resulting in
77,558 consensus sequences. CD-HIT was used to remove redundancies in the consen-
sus sequences, ultimately obtaining 42,189 unigenes with an average length of 2814 bp
(Figure 3A).

To determine the possible functions of unigenes in M. glyptostroboides, a total of
42,189 unigenes in the SMRT transcriptome were functionally annotated using five databases
(the NR, GO, KEGG, KOG, and SwissProt databases). All the unigenes had an approxi-
mately 95.86% annotation rate in at least one database (NR (39,148, 92.79%), GO (29,270,
69.38%), KEGG (38,375, 90.96%), KOG (27,975, 66.31%), and SwissProt (35,423, 83.96%))
(Figure 3B, Supplementary Table S3). To determine the conservation level of the unigene
sequences of M. glyptostroboides in other plant species, the unigene sequences in M. glyp-
tostroboides were queried in the NCBI NR database (Figure 3C). The unigene sequences
in M. glyptostroboides displayed the highest similarity to sequences from Picea sitchensis
(10,532, 26.95%), followed by those from Amborella trichopoda (6113, 15.65%), Nelumbo nu-
cifera (3546, 9.08%), Anthurium Amnicola (1641, 4.20%) and Marchantia polymorpha (1370,
3.51%). All the M. glyptostroboides unigenes were subsequently queried against the KOG
database (Figure 3D). A total of 27,975 sequences were annotated, with 26 functional cate-
gories. ‘Posttranslational modification, protein turnover, and chaperones’ (3018, 12.22%);
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‘general function prediction only’ (2593, 16.64%); and ‘signal transduction mechanisms’
(1941, 7.86%) were the top three categories. Furthermore, ‘Cell motility and Extracellular
structures’ (4, 0.0094%) was the smallest category with the fewest unigenes. A total of
29,270 unigenes were annotated in the GO database (Supplementary Table S4), which
were successfully clustered into 53 functional groups, of which 25 categories belonged to
biological processes (BPs), 18 belonged to cellular components (CCs), and 10 belonged to
molecular functions (MFs). We also conducted an analysis based on KEGG pathways to ob-
tain key information, including intracellular metabolic pathways and biological functions of
genes in M. glyptostroboides (Supplementary Table S4). A total of 38,375 unigene sequences
were clustered into 19 KEGG pathway categories. Moreover, the most significant category
among these pathways was ‘Signal transduction’ (2250; 5.86%), followed by ‘translation’
(1882; 4.90%) and then ‘carbohydrate metabolism’ (1767; 4.60%).
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Figure 3. Overview of SMRT sequencing results and annotation of unigenes. (A) Distribution
of full-length reads. (B) Overlap between the number of all unigenes according to five databases.
(C) Distribution of unigene annotations based on the NR database for the species distribution statistics.
(D) KOG functional classification of all unigenes.

3.3. Global Analysis of the Time-Course Transcriptome Data from Different Samples

We performed expression quantification analysis using RSEM software with uni-
genes as reference sequences, based on five stages of RNA-seq with three replicates,
generating a total of 36–47 million clean reads, and aligned to 46.75–84.23% unigenes
(Supplementary Table S5). Then, we calculated Fragments Per Kilobase Million (FPKM)
for each gene based on its length and performed a PCA analysis on 15 samples based on
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FPKM, revealing good repeatability among replicates and significant differences among
different groups (Figure 4A). A total of 40,096 unigenes with FPKM > 0.3 were detected
in all 15 samples (Figure 4B). By comparing the expression levels of five aging stages of
seeds, we found that the gene expression in M. glyptostroboides seeds on the 8th day
of aging was significantly lower than that in the CK group, with a large number of
genes rapidly decreasing to near zero, indicating seed death and DNA degradation
(Supplementary Figure S2). Differential expression analysis revealed that the largest
number of DEGs in M. glyptostroboides seeds was observed in the S2 vs. S0 group, the
S6 vs. S4 group had the fewest DEGs, and all the DEGs were downregulated in the S8 vs. S6
group (Figure 4C).
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In order to investigate the expression pattern and functions of these DEGs during seed
aging, the DEGs were analyzed by k-means clustering. The k-means clustering analysis
revealed 10 distinct clusters, named C1–C10. The results of different gene clusters showed
different trends over time (Figure 5A). Functional enrichment analysis of different cluster
modules showed that gene clusters C1, C3, and C4 were gradually upregulated with
seed aging, and their gene functions were involved in the oxidation-reduction process,
tryptophan metabolic process, carbohydrate metabolic process, and other functions. These
genes may play important roles during seed aging. Gene clusters C5 and C10 were
gradually downregulated with seed aging, and their gene expression functions were
involved in mRNA methylation, RNA processing, and other functions. Gene clusters C2, C6,
and C9 showed upregulation followed by downregulation, and their gene functions were
involved in protein folding, sucrose metabolic process, and other biological functions. The
functions of gene clusters C8 and C7 were involved in rRNA processing, DNA integration,
microtubule motor activity, etc.

3.4. GO and KEGG Functional Enrichment Analysis

GO and KEGG enrichment analysis of DEGs showed that in the S2 stage (S2 vs. S0), a total
of 3416 GO terms were enriched; among them, 266 GO terms were significantly enriched such
as oxidoreductase activity (GO:0016491), carbohydrate metabolic process (GO:0005975), and
response to oxidative stress (GO:0006979). (Figure 6A, Supplementary Table S6). In the S4 stage
(S4 vs. S2), 142 GO terms such as the regulation of protein modification process (GO:0031399),
phospholipid catabolic process (GO:0009395), oxidoreductase activity (GO:0016491), and DNA-
directed RNA polymerase complex (GO:0006366) were significantly enriched (Figure 6B,
Supplementary Table S7). In the S6 stage (S6 vs. S4), 22 GO terms such as DNA-templated
transcription (GO:0006353), regulation of cytokinesis (GO:0032465), and beta-galactosidase
complex (GO:0004565) were significantly enriched (Figure 6C, Supplementary Table S8). In the
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S8 stage (S8 vs. S6), 95 GO terms such as protein–tetrapyrrole linkage (GO:0017006), regulation
of developmental process (GO:0050793), unfolded protein binding (GO:0051082), protein kinase
CK2 complex (GO:0005956), ubiquitin–protein transferase activity (GO:0004842), and oxidore-
ductase activity (GO:0016307) were significantly enriched (Figure 6D, Supplementary Table S9).
The KEGG enrichment analysis of DEGs showed that in the S2 stage (S2 vs. S0) and S8 stage
(S8 vs. S6), the DEGs were mainly enriched in pathways such as protein processing in
endoplasmic reticulum, and plant hormone signal transduction. (Figure 6E,H). In the
S4 stage (S4 vs. S2), the DEGs were significantly enriched in pathways such as oxidative
phosphorylation, RNA degradation, and limonene and pinene degradation. (Figure 6F). In
the S6 stage (S6 vs. S4), the DEGs were significantly enriched in pathways such as ascorbate
and aldarate metabolism, and fatty acid degradation. (Figure 6G).
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Figure 6. GO and KEGG functional annotation of DEGs at different stages. (A–D) The results
of the GO term enrichment analysis of the group S2 vs. S0, S4 vs. S2, S6 vs. S4 and S8 vs. S6.
DEGs were presented in the ‘TreeMap’ view of REVIGO. Each rectangle represents a single cluster
representative, and the representatives are grouped into ‘superclusters’ of loosely related terms,
visualized with different colors. The size of the rectangles was adjusted to reflect the p-value.
(E–H) The results of KEGG enrichment analysis of the group S2 vs. S0, S4 vs. S2, S6 vs. S4 and
S8 vs. S6. DEGs are presented.

3.5. Expression Analysis of Genes Associated with the Protein Processing in Endoplasmic
Reticulum Pathway

A total of 348 DEGs related to endoplasmic reticulum stress (ERS) were found by func-
tional annotation (Figure 7, Supplementary Table S10), among which BiP (binding protein)
is an important molecular chaperone protein and a member of the heat shock protein (HSP)
70 family. The expression of BiP was significantly upregulated under artificial aging treat-
ment, suggesting that ERS occurred, and the number of unfolded and misfolded proteins
increased during the aging process. Among the DEGs related to ERS, four calnexin (CNX)
genes were significantly upregulated, and the glucose-regulated protein 94 gene (GRP94),
which encoded a molecular chaperone, was also upregulated during S2 and S8 phases. It
was also found that DEGs involved in protein processing in the endoplasmic reticulum
pathway were mainly concentrated in the endoplasmic reticulum-associated degradation
(ERAD) pathway. A total of 201 DEGs were detected to participate in three processes of
ERAD pathway, including substrate protein recognition, transport, and ubiquitination,
followed by proteasomal degradation. Among them, nine mannosyl-oligosaccharide alpha-
1,2-mannosidase (ERManl) genes and six transitional endoplasmic reticulum ATPase (p97)
genes were upregulated in the S8 phase. In the transport process, the expression of pro-
tein disulfide-isomerase (PDI) and ER degradation enhancer (EDEM), which promoted
substrate release, were upregulated, and the genes encoding related enzymes that trans-
fer substrate proteins to the ubiquitin ligase complex, such as protein OS-9 (OS-9) and
ERO1-like protein alpha (ERO1), were also upregulated. Hsps belonged to the molecular
chaperone protein family that bound to unfolded or misfolded proteins to promote the
correct folding of nascent proteins. There were 134 HSP family members, among which
105 HSP family members were highly expressed in the S2 phase and then gradually de-
creased. It was worth noting that there were 13 members of HSP70 and 5 members of
HSP40 family proteins, with the highest expression in the S8 phase, which participated in
the ubiquitin ligase complex. There were 21 DEGs encoding components of the ubiquitin
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ligase complex, and the expression levels were generally upregulated after 2 days of aging,
with some genes such as p97, peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase
(PNG), and Ubiquitin C (UBC) showing the highest expression levels in the S8 phase.
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3.6. Expression Analysis of Genes Associated with the Oxidative Phosphorylation Pathway

Mitochondria were the main site of energy metabolism in eukaryotes, playing an
important role in physiological and pathological activities such as free radical production,
cell apoptosis, and aging, and were an important target organelle of oxidative stress. In
this study, a total of 93 DEGs were identified in the oxidative phosphorylation pathway
during seed aging in M. glyptostroboides (Figure 8, Supplementary Table S11). Among
them, cyclooxygenase (COX), a marker of seed stress, was expressed at low levels in
non-aged seeds, but was significantly upregulated from S2 to S4, and downregulated as
aging progressed. ATPase was the most abundant with 35 genes of 9 types, and the overall
expression trend was significantly upregulated after 2 days of aging. Four kinds of NADH-
Ubiquinone oxidoreductase chain and six kinds of NADH dehydrogenase (ubiquinone)
Fe-S genes are identified in complex I on the mitochondrial electron transport chain, and
their expression trend was generally upregulated after seed aging.

3.7. Effects of Aging Stress on the Antioxidant Responses

During seed storage, the accumulation of ROS led to lipid damage, DNA and protein
degradation, resulting in reduced germination percentage and loss of seed vigor [32]. The
ROS scavenging system in higher plants is mainly composed of the ascorbate–glutathione
(AsA-GSH) cycle pathway, the glutathione peroxidase GPX pathway, the catalase CAT
pathway, and the peroxiredoxin/thioredoxin (PrxR/Trx) pathway [33] (Figure 9A). There-
fore, DEGs related to these pathways were analyzed (Figure 9B, Supplementary Table
S12). A total of 32 DEGs were detected in the ROS scavenging system, including 15 CAT,
2 APX, 9 POD, 2 SOD, 1 GPX, and 3 GST. Among them, the expression of 10 CAT was
downregulated with aging and 5 were upregulated, showing an overall downregulation
trend. The expression of 9 POD was upregulated with aging time. In the antioxidant
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system, GR was gradually downregulated with the duration of aging, while other genes
such as PDI and THRX were gradually upregulated. Lipoxygenase (LOX), a key enzyme
in lipid peroxidation, was significantly downregulated after aging. Combined with the
upregulated expression of most TRX, GST, and GSH genes in M. glyptostroboides seeds
after aging, and the downregulated expression of most LOX genes after aging treatment, it
can be seen that the antioxidant system of M. glyptostroboides seeds alleviated the process
of lipid peroxidation to some extent, so the MDA content showed an upward trend but
did not change significantly. In combination with the fact that most TRX, GST, and GSH
genes were upregulated in expression after aging treatment, while most LOX genes were
downregulated in expression after aging treatment, it was evident that, to some extent, the
antioxidant system of M. glyptostroboides seeds alleviated the lipid peroxidation process;
thus, the MDA content did not change significantly, although it showed an increasing trend.
It is worth noting that the changes in the expression levels of APX, CAT, and GSH genes
are consistent with the results of the physiological indicators mentioned earlier, except for
the GPX gene.
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tostroboides seeds.

3.8. Co-Expression Network Analysis of DEGs by WGCNA

WGCNA can be used to explore the biological relevance between modules and target
traits, and to identify core genes in the network. In order to investigate the molecular
mechanisms underlying M. glyptostroboides seed aging, WGCNA was used to cluster and
analyze gene expression data from 15 samples. After filtering out low-expressed genes,
10,882 genes were selected to determine the core genes that respond to seed aging. The
aging response co-expression network was constructed by setting a threshold value of
15 and a merge cut height of 0.1851 in combination with the physiological indexes of
different periods measured in the previous period. The network consisted of 15 modules:
each branch represented a gene and each color represented a module. The smallest module
contained 68 genes (royal blue), the largest module contained 6753 genes (turquoise), and
427 genes were classified as gray modules. The correlation analysis between modules and
aging-related physiological indicators genes showed that the dark magenta module was
highly correlated with GSH, orange with CAT, H2O2, and medium purple 3 with SOD, O2

·−
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(correlation > 0.8, p < 0.001) (Figure 10B). Therefore, GO functional enrichment analysis was
performed on the above three core modules. The medium purple 3 module (3643 DEGs) was
significantly enriched in the phosphorelay signal transduction system, peptide catabolic
process, and programmed cell death (Figure 10C). The orange module (156 DEGs) was
significantly enriched in the G-protein-coupled receptor signaling pathway, lipid catabolic
process, and other processes (Figure 10D). The dark magenta module (938 DEGs) was
significantly enriched in the regulation of protein modification process, amine metabolic
process, ATP metabolic process, and other processes (Figure 10E).
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Figure 9. Production and elimination of reactive oxygen species during seed aging. (A) Production
and elimination of ROS. (B) The identified candidate genes involved in ROS scavenging system in
response to seed aging.

Based on the eigengene connectivity (KME) values, the top 20 and 10 genes in the
medium purple 3, orange and dark magenta modules were selected to construct co-
expression subnetworks using Cytoscape_v.3.8.1 to identify potential candidates with
significant contributions. The respiratory burst oxidase homologue (Rboh) gene, which
encoded a protein involved in ROS production, had the highest KME value in the medium
purple 3 module (Figure 10F). In addition, several genes related to plant hormone biosyn-
thesis, signal transduction, and transcription factors, such as GRF, AP2/ERF, PP2C, AAO3,
and PIF3, were also identified in the hub gene network. Gene ACO, which encoded an en-
zyme involved in ethylene biosynthesis, had the highest KME value in the orange module
(Figure 10G), which also contained a CAT gene. Additionally, several other genes, such as
EEF2, EIF4A, GCAT, HSP70-1, metK, NDUFS1, and PGD, were identified in this module.
The heat shock transcription factor (HSF) gene had the highest KME value in the dark
magenta module, which also contained other important genes such as GLOS and CML
(Figure 10H). Six core genes were selected for qRT-PCR verification, and the results were
consistent with the transcriptome data (Supplementary Figures S3 and S4), indicating that
the transcriptome data accurately reflected transcript abundance in this study.



Antioxidants 2023, 12, 1353 15 of 25

Antioxidants 2023, 12, x FOR PEER REVIEW 15 of 26 
 

consistent with the transcriptome data (Supplementary Figures S3 and S4), indicating that 
the transcriptome data accurately reflected transcript abundance in this study. 

 
Figure 10. WGCNA of the identified genes during M. glyptostroboides seeds aging. (A) Gene den-
drogram obtained by clustering the dissimilarity based on consensus topological overlap, with each
tree branch constituting a module and each leaf representing one gene. Each colored row indicates
a color-coded module that contains a group of highly interconnected genes. (B) Module eigengene
physiological indexes and sample correlations. (C–E). The results of the GO term enrichment analysis
of the medium purple 3, orange and dark magenta module genes visualized by the ‘TreeMap’ view
of REVIGO. Each”rect’ngle is representative of a single cluster. The representatives are joined into
‘superclusters’ of loosely related terms, visualized with different colors. The size of the rectangles is
adjusted to reflect the p-value. (F–H) The co-expression subnetworks of the top 10–20 hub genes of
the medium purple 3, orange and dark magenta modules.



Antioxidants 2023, 12, 1353 16 of 25

4. Discussion
4.1. Physiological Parameters of Seed Aging in M. glyptostroboides

Studies have found that seed vigor is a crucial factor in the difficult natural regen-
eration of M. glyptostroboides populations [34–36]. The study found that the germination
percentage of fresh-dried M. glyptostroboides seeds was (58 ± 8.08)%, which increased to
(70.67 ± 5.21)% after 2 days of aging. However, the germination percentage rapidly de-
clined after 4 days of aging and died after 8 days of aging. Similar to the results of Liu et al.,
M. glyptostroboides seeds exhibited low vigor and a limited ability to sustain vigor [37].
Numerous studies have shown that, following the artificial aging treatment, there was
a discernible downward trend in seed germination percentage, germination potential,
germination index, and vigor index [38,39]. In this study, the germination percentage, ger-
mination potential, and vigor index of aged M. glyptostroboides seeds showed a significant
decline, but there was no significant effect on seedling growth, which may suggest that
seed germination limitations is not the main reason for the rare occurrence of undergrowth
seedlings. It is noteworthy that after a short-term aging treatment (2 days), the mean
germination percetage of M. glyptostroboides seeds were significantly higher than the control
group (Figure 1A). Similar results were obtained for aged Pyrus pyrifolia seeds after a brief
artificial aging treatment [40]. It may be that high-temperature and high-humidity condi-
tions can promote the physiological post-ripening of M. glyptostroboides [41,42], and when
the dry seeds absorb swelling under a high-humidity environment, a certain inducing effect
is produced, causing an increase in antioxidant enzyme activity and thereby enhancing
seed vigor and stress resistance [43], i.e., causing a seed priming effect. However, as the
degree of aging further deepened, the seeds eventually lost all vigor and died [32].

Seed aging was a gradual and complex physiological and biochemical process involv-
ing numerous reactions [32]. The seed aging mechanism depended on temperature and
humidity conditions, and it was believed that the seed aging mechanism was different at
a low humidity and high temperature and high humidity. The cytoplasm enters a glassy
state under low-humidity conditions, in which other processes lead to decreased vigor, and
the biochemical characteristics were similar to seeds stored in a seed bank [9,10]. Under
high-temperature and high-humidity conditions, the aging of forest plant seeds in the
natural state can be simulated to a certain extent [44]. In the study of aging mechanism,
most of the high-temperature and high-humidity conditions were used to accelerate the
aging of seeds, and it is widely believed that the accumulation of ROS in aging seeds led
to damage to phospholipids, lipid peroxidation, decreased antioxidant enzyme activity,
inhibited RNA and protein synthesis, DNA degradation, and ultimately complete loss of
seed vigor [45]. ROSs mainly include O2

·−, H2O2, and ·OH, with O2
·− being generated in

the process of electron leakage in the transfer chain and then being dismutated by SOD
to generate H2O2 [32]. The imbalance of ROS content could have toxic effects on plants,
while the antioxidant system of seeds could effectively remove excess ROS and harmful
substances such as MDA, protecting cells from oxidative damage [32]. SOD is generally
recognized as an important part of the first line of defense system against reactive oxygen
species (ROS) [46–48]. In this study, SOD activity significantly decreased after aging treat-
ment and remained at a low level, and the O2

·− content and production rate decreased
significantly in the early stages of aging. This indicated that the first line of defense (SOD)
of M. glyptostroboides seeds’ antioxidant system has strong antioxidant defense capabilities,
dismutating O2

·− to generate H2O2 and gradually increasing the H2O2 and MDA content.
There are three pathways for H2O2-centered ROS clearance, with CAT directly catalyzing
the production of H2O and O2, APX clearing H2O2 through the AsA-GSH cycle, and GPX
completely clearing it through the cycle [49]. CAT is a key enzyme in the antioxidant
system. The main function of CAT is to remove ROS from plants. It is responsible for
clearing H2O2 and regulating related signal pathways and mainly occurs in peroxisomes
and glyoximes [50]. Liu et al. found that CAT played a protective role in the early stages
of aging [25]. In this experiment, CAT and APX activity increased after 8 days of aging,
which may have complementary or interactive effects on reducing oxidative damage [51].
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However, APX had a higher affinity for H2O2 and was mainly responsible for fine-tuning
its regulation [52]. MDA was a product of lipid peroxidation, while GPX was the main
enzyme used to repair lipid peroxidation damage. Both can serve as important biological
markers for oxidative stress and are used to measure the degree of membrane damage
under stress [53–55]. The results showed that GPX activity gradually increased with the
prolongation of seed aging time, similar to the trend of MDA content, indicating that
severe damage is caused to lipids during seed aging. The AsA-GSH cycle is crucial for
maintaining membrane protein structure stability during oxidative stress [56]. The GSH
and AsA content of M. glyptostroboides seeds increased after 4 days of aging and then slowly
decreased. At the same time, the MDA and H2O2 content gradually increased. Therefore, it
was speculated that the failure of the AsA-GSH cycle system was a key factor in the process
from seed aging to death.

4.2. Full-Length Sequences Identified by SMRT Sequencing in M. glyptostroboides Provided
Resources for Studies of the Aging Stress Response

In the past decade, next-generation sequencing (NGS) technology has been widely
used for gene discovery and research [57], and RNA-seq has become an important tool
for evaluating the entire RNA expression pattern [58]. However, the sequencing fragment
length of NGS is usually between 50 and 300 bp, which produces hundreds of thousands
of transcripts for large genome species such as M. glyptostroboides that lack a reference
genome [59], greatly limiting the physiological and genetic mechanism studies of this
species. Single-molecule real-time sequencing technology is a third-generation sequencing
technology used to obtain longer transcripts. Full-length sequencing could identify the
complete structure of single transcripts, especially lncRNA, which uniquely reveals the
complexity of the transcriptome and effectively compensates for the shortcomings of
second-generation sequencing technology [60]. In this study, a total of 32.18 Gb of raw
data were obtained using SMRT and, after cluster analysis, FLNC sequence correction
and redundant sequence removal, we obtained 42,189 unigenes with an average length
of 2814 bp. This is far superior to previous transcriptome studies of loquat that only
used second-generation sequencing technology. Our research results were similar to those
of studies in Fragaria vesca [61], Medicago sativa [62], and Rhododendron lapponicum [63],
which showed that SMRT sequencing was an effective way to obtain reliable full-length
transcriptome sequence information in plants. Although M. glyptostroboides was not a model
plant, a functional annotation of the 42,189 unigenes was obtained in this study based on
existing databases of reference plants. A total of 40,443 genes were annotated in 5 databases,
accounting for 95.86% of the annotated genes, and 21,397 genes were simultaneously
annotated in all 5 databases, accounting for 50.71% of the total. The annotation of the NR
database revealed a close kinship between M. glyptostroboides and North American spruce.
In the analysis of gene structure, the predicted CDS results showed that the longer the
transcript sequence, the fewer the copies in the cell, which was consistent with previous
results in other species analyzed by full-length transcriptome [63,64]. In this study, we used
third-generation sequencing technology to conduct full-length transcriptome sequencing
analysis of M. glyptostroboides, which enriched the transcriptome database of this species
and provided data support for research on its growth and development mechanisms,
metabolic regulation, key functional gene screening, and genetic diversity analysis.

4.3. DEGs in Response to Aging Stress

Aging is a complex network regulation process, and the physiological and biochemical
changes in the early stages of seed aging involve the expression regulation of thousands of
genes [65]. However, with futher aging, gene expression regulation network interactions
significantly decrease. In this study, it was found that as the seed aging progressed, the
number of genes with FPKM ≤ 0.3 gradually increased, which was similar to the results
of most transcriptome and proteomic studies on seed aging [66–68]. When plants were
subjected to stress, a large number of genes were upregulated or downregulated in response
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to internal physiological changes [69,70]. In this study, the identified DEGs gradually
decreased, and the significant DEGs in S4 vs. S6 were much less than those in S4 vs. S2,
indicating that the period between S4 and S6 is a critical period for seed resistance to aging.
In addition, all DEGs were divided into 10 clusters through K-mer analysis, and these gene
clusters participated in multiple functions with temporal and spatial expression specificity.

Mitochondria are important organelles that produce adenosine triphosphate (ATP)
during cellular respiration; they are also the main sites of ROS production during seed ag-
ing [71]. Studies have found that seed aging affects the respiratory pattern of mitochondria,
exhibiting a complex and variable respiratory pattern, including COX, alternative oxidase
(AOX), and uncoupling protein (UCP) pathways [45]. The release of cytochrome c may
be a major reason for the inhibition of the mitochondrial electron transport chain, further
increasing ROS accumulation, and causing changes in cellular components that damage
cells and accelerate seed aging [72]. In this study, it was found that cytochrome c oxidase, as
a marker of mitochondrial respiratory enzymes, was gradually upregulated during aging,
indicating that the inhibition of electron transport and respiration occurs due to the release
of cytochrome c, resulting in the accumulation of ROS. AsA and GSH play important roles
in regulating the mitochondrial redox state. AsA is involved in regulating gene expression,
enzyme activity, and cell signaling in redox regulation [32]. Changes in mitochondrial AsA
synthesis may regulate communication between the plastid and mitochondria [73]. A lack
of GSH in the mitochondria causes mitochondrial damage, changes the synthesis of thiol
proteins, and alters mitochondrial redox regulation [74]. GSH is mainly synthesized in the
cytoplasm and plastid; the level of mitochondrial GSH depends on the transport of GSH
into the mitochondria [75]. The level of mitochondrial GSH is highly dependent on the
activity of glutathione reductase (GR), which reduces GSH to its oxidized form, glutathione
disulfide (GSSG) [76]. In the antioxidant system of this study, the expression of CAT and
POD genes is very active, while the trend of AsA and GSH levels and the expression of
GR, APX, and MDHR genes are similar, with all gradually decreasing, further confirming
the failure of the AsA-GSH cycle and ultimately leading to the accumulation and overflow
of ROS. The accumulation of ROS induces membrane lipid peroxidation, which, in turn,
reduces the integrity of the cell membrane [77]. Phospholipase D (PLD) is a key enzyme
that catalyzes the hydrolysis of membrane phospholipids, and lipoxygenase (LOX) fur-
ther catalyzes the generation of ROS and oxygen free radicals from the degradation of
membrane phospholipids by PLD, ultimately leading to the destruction of the membrane
phospholipid bilayer structure [78]. In this study, most PLD genes were upregulated in the
late aging period after aging treatment, while most of the LOX genes were only significantly
expressed in the control group. It is probable that most genes are expressed in the early
stages of aging. The ROS content did not increase significantly, but the upregulation of
PLD gene expression led to membrane lipid degradation and damage. In addition, the
physiological indicators showed that the content of MDA continuously increased with age,
indicating that lipid peroxidation caused oxidative damage.

It has been demonstrated that seed-aging-induced oxidative stress led to the accumu-
lation of protein misfolding and organelle dysfunction, ultimately resulting in programmed
cell death [8]. Chen et al. found that the artificial aging of pea seeds can induce ERs, as evi-
denced by the upregulation of the ERs’ marker protein BiP2 [79]. In this study, we observed
a significant upregulation of BiP expression in M. glyptostroboides seeds after two days of
aging, indicating the occurrence of ERs during the aging process. The proper formation
of disulfide bonds was crucial to protein maturation and stability [80]. In eukaryotic cells,
the ER oxidoreductase family, including PDI and ER protein 72 (ERp72), catalyzed protein
oxidation and folding, with PDI acting as an enzymatically active molecular chaperone [81].
Protein folding and refolding on the ER were energy-intensive processes, and the misfolding
of proteins consumed ATP, which may stimulate mitochondrial oxidative phosphorylation.
We detected the upregulation of four differentially expressed PDIs and ATPases during
seed aging, which increased ATP and ROS production. Accumulation of unfolded proteins
in the ER can promote the release of Ca2+ into the cytoplasm and increase ROS production
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in the mitochondria [82]. Interference with mitochondrial respiration significantly reduced
ROS accumulation induced by unfolded proteins [83]. Mitochondrial ROS production may,
in turn, enhance the ERs response, leading to the further accumulation of mitochondrial
ROS. This represented a potential signaling mechanism for the interplay between ERs-
induced ROS and mitochondrial dysfunction [84]. We speculated that ROS production and
accumulation during seed aging alter the oxidoreductive environment of the ER, leading to
ERs. During the process of promoting proper disulfide bond formation in unfolded and
misfolded proteins, the ER may also generate large amounts of ROS. ERs signaling affects
mitochondria, further exacerbating mitochondrial ROS production and leading to further
increases in ROS levels in the cell.

It has been reported that Arabidopsis alleviated ERs by upregulating potential yeast
mammalian homologs of ERAD components [85]. Liu et al. demonstrated that, under salt
stress, unfolded proteins rapidly accumulate in the ER and induce the UPR. Defects in
HRD3A, a component of the HRD3/HRD1 complex in the ERAD pathway, led to changes
in the UPR and retention of ERAD substrates in plant cells, increasing plant sensitivity
to salt stress [86]. In this study, significant expression changes were observed in UbcH5,
E3 ubiquitin ligase Hrd1, and Doa10, indicating that the ERAD pathway can respond
to artificial aging treatment in M. glyptostroboides seeds. The ERAD pathway required
the participation of numerous proteins with different functions, and ER mannosidase I
(ERManI) and ER degradation-enhancing α-mannosidase-like protein (EDEM) played im-
portant roles in substrate recognition [84]. EDEM was a transmembrane protein localized
in the ER and served as a protein receptor and oligosaccharide-binding site, releasing mis-
folded proteins from the Calnexin/Calreticulin cycle and promoting their degradation [87].
Decreased levels of EDEM in cells led to the accumulation of misfolded proteins in the
ER, affecting the efficiency of normal protein folding and assembly [88]. In this study,
the downregulation of EDEM expression was detected during seed aging, which may
delay the release of misfolded proteins from the Calnexin/Calreticulin cycle, inhibit the
ERAD pathway, and cause the accumulation of misfolded proteins in the ER, leading to
cell damage and decreased seed vigor. UbcH5 was found to be significantly upregulated in
this study, but further research was needed to determine its role as a major component of
the ERAD complex. HRD1, a ubiquitin ligase, was an important component of the ERAD
pathway in plants and was responsible for the degradation of bri1-5 and bri1-9 proteins [89].
This study showed that 8 Hrd1 and Doa10 genes were differentially expressed, with the
highest expression observed on day 2 of aging, indicating that the ERAD complex actively
responded to protein ubiquitination in the early stages of seed aging. The ATPase P97,
together with auxiliary factors such as Ufd1 and Npl4, promoted the ubiquitination and
dissociation of substrate proteins from the ER membrane structure. Ubiquitinated proteins
were then transported to the proteasome with the help of radiation-sensitive protein RAD23
and Dsk2 protein [90]. The upregulation of P97 was detected in this study, indicating the
accumulation of misfolded proteins during the transport and release process, while the
downregulation of UBX and DUB affected the process of substrate proteins entering the
26S proteasome.

In summary, a large number of DEGs participated in the recognition, transport, and
degradation of misfolded proteins during seed aging. Although the ERAD pathway
responded actively to ER stress, the downregulation of the key gene EDEM may reduce
the degradation rate of misfolded proteins, leading to their accumulation and damage to
cells. The repair of misfolded proteins required the oxidative phosphorylation pathway to
provide a large amount of energy, which further increased ROS production. The failure
of the AsA-GSH cycle exacerbated ROS leakage, leading to the further accumulation of
misfolded proteins and ultimately resulting in programmed cell death through nucleic
acid degradation. Therefore, it is suggested that the obstruction of the ERAD pathway, the
release of COX enzymes, and the failure of the AsA-GSH cycle may be key factors leading
to the loss of seed vigor, which requires further experimental validation.
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4.4. Identification of Hub-Genes Associated with Scavenging ROS in Seeds

WGCNA was a powerful tool widely used in physiological mechanism research [91,92].
Genes that were highly connected within a module were considered to be central genes,
which were believed to constitute the backbone of the network and play a crucial role in
specific physiological processes [93]. To establish the association between genes and traits
and further analyze the regulatory mechanism, WGCNA combined DEGs and physiologi-
cal indicators of seed aging, identifying 15 modules, among which dark magenta, medium
purple 3, and orange modules were considered key modules. In the medium purple 3 mod-
ule, the expression of repiratory burst oxidase homologue (Rboh) was highly correlated
with the content and production rate of SOD and O2

·−. Rboh catalyzed the production of
ROS by O2

·− and NADPH [94]. Studies have shown that Rbohs plays an important role
in plant biotic and abiotic stress, mainly by producing ROS to induce host defense genes
and phosphorylate protein kinases, activate transcription factors, and activate ion transport
systems [94]. ROS plays a dual role in plant stress response, acting as a toxic substance
causing oxidative damage and as a signaling molecule mediating numerous biological
processes [95]. In this module, the expression pattern of Rbohs gradually decreased with the
aging process. The genes in this module were significantly enriched in GO functions such
as the phosphorelay signal transduction system, peptide catabolic process, and programed
cell death, indicating that the phosphorelay signal transduction systems that are dependent
on Rbohs, such as AP2/ERF, PP2C, and PIF3, were inhibited. Rbohs were identified as hub
genes related to the content and production rate of SOD and O2

·−, further demonstrating
the reliability of the hub-genes screened by WGCNA in this study.

During seed aging, changes in endogenous hormones such as a decrease in GA3 and
IAA levels and an increase in ABA levels accompanied the process, leading to hormonal
imbalances, an important factor affecting seed aging and deterioration [96]. Among them,
an increase in ethylene release played an important role in reducing the degree of seed
aging [96]. As a key enzyme in the ethylene biosynthesis pathway, 1-aminocyclopropane-
1-carboxylic acid (ACC) was widely used as a representative of ethylene, and almost all
plant tissues can easily convert this into ethylene [97]. In addition, studies have shown
that an increase in ethylene expression often increases CAT activity [98]. In this study, the
orange module was highly correlated with CAT activity, and ACO was identified as the
hub gene in this module, with CAT being identified as one of the top 10 hub genes. This
suggests that ethylene may play a significant role in seed aging by regulating antioxidant
enzyme activity.

HSPs act as molecular chaperones and play an important role in protein stability by
participating in peptide folding to protect against oxidative damage [99]. Overexpression
of small HSPs (sHSPs) in plants has been shown to enhance stress resistance [100]. For ex-
ample, overexpression of the NnHSP17.5 gene in lotus in Arabidopsis thaliana enhanced seed
germination and seedling heat tolerance, indicating that HSPs may be involved in oxidative-
stress-related respondes during germination [101]. Heat shock transcription factor (Hsf )
is a transcription factor that recognizes heat shock elements in the upstream promoter
regions of Hsp genes and transcribes them following activation by heat stress [102]. The
overexpression of Hsf in Arabidopsis seeds increases the expression of HSPs and enhances
anti-aging ability [103]. Therefore, Hsf participates in the stress response by regulating
the expression of heat shock proteins. In addition, the calcium–calcium-binding protein
(Ca2+-CaM) pathway plays a critical role in signal perception, transduction, transcriptional
regulation, and functional protein expression. Aging stimuli caused an increase in in-
tracellular Ca2+ concentration through an unknown receptor, which activates Ca2+-CaM
or promotes the expression of CaM genes to activate HSF, which, in turn, activates the
expression of heat shock genes [104]. The accumulation and expression of HSP structures
protects against damage caused by stress, thereby reducing the damage to plant seeds
caused by aging stress. In this study, we found that the genes in the dark magenta module
were significantly enriched in the “regulation of protein modification process” GO term,
and HSF was identified as the hub gene of this module. We also found three CaM-like
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(CML) genes as hub genes, which showed consistent expression trends with HSF. The
significant enrichment of the “regulation of protein modification process” GO term in the
dark magenta module indicates that CML and HSF play an important role in repairing
protein oxidative damage caused by seed aging by regulating the accumulation of HSPs.
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