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Abstract: During inflammatory processes, immunocompetent cells are exposed to substantial amounts
of free radicals and toxic compounds. Glutathione is a cysteine-containing tripeptide that is an im-
portant and ubiquitous antioxidant molecule produced in human organs. The intracellular content of
GSH regulates the detoxifying capacity of cells, as well as the inflammatory and immune response.
GSH is particularly important in the liver, where it serves as the major non-protein thiol involved
in cellular antioxidant defense. There are numerous causes of hepatitis. The inflammation of the
liver can be caused by a variety of infectious viruses. The relationship between oxidative stress and
the hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus
(HEV) infection is not fully known. The aim of this study was to examine the relationship between
hepatotropic viruses and glutathione status, including reduced glutathione (GSH) and oxidized
glutathione (GSSG), as well as antioxidant enzymes, e.g., glutathione peroxidase (GPx), glutathione
reductase (GR) and glutathione-S-transferase (GST) in liver diseases.

Keywords: glutathione; viral hepatitis; hepatitis A virus; hepatitis B virus; hepatitis C virus; hepatitis
E virus; liver; glutathione peroxidase; glutathione reductase; glutathione-S-transferase

1. Introduction

Viral hepatitis is a significant global public health concern. Each year, 1.4 million
individuals succumb to cirrhosis and liver cancer related to viral hepatitis [1]. Regrettably,
the majority of the infected population remains unaware of their condition [2]. Despite the
implementation of infection control measures over the several past decades, eradication
or substantial disease reduction remains elusive [1]. Viral hepatitis is caused by a variety
of unrelated hepatotropic viruses, such as the hepatitis A virus (HAV), hepatitis B virus
(HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV) [3].
Additionally, numerous non-hepatotropic viruses can lead to liver dysfunction. This group
of viruses includes human herpesviruses, such as the Epstein–Barr virus; cytomegalovirus;
herpes simplex virus-1 (HSV-1) and -2; varicella-zoster virus; human herpesvirus-6, -7, and
-8; parvovirus B19; rubella virus; measles virus; Zika virus; dengue virus; and severe acute
respiratory syndrome coronavirus 2 [4–7].

In recent years, the role of oxidative stress in diseases of viral etiology has increas-
ingly been indicated [8]. Oxygen consumption, which is essential for life, contributes
to the generation of reactive oxygen species (ROS) within cells [9]. These ROS, gener-
ated under physiological conditions, are a natural byproduct of cellular metabolism. The
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mitochondrial electron transport chain plays a significant role in ROS generation, with
mitochondria and NADPH oxidases (NOXs) serving as the primary cellular sources [10].
The liver, an organ with a high concentration of mitochondria, is particularly involved in
ROS production [11]. ROS encompass both free oxygen radicals and non-radical species,
including major molecules, such as superoxide anion radical (O2

•−), hydrogen peroxide
(H2O2), hydroxyl radical (•OH), and nitric oxide (•NO), with the latter being classified as
a reactive nitrogen species [12]. Oxidative stress occurs when the balance between ROS
generation and antioxidant defense mechanisms is disrupted in favor of oxidants [13]. This
imbalance can potentially lead to molecular-level cell damage, including the oxidation
of proteins, DNA, and lipids [14]. Prolonged oxidative stress has been linked to vari-
ous pathological conditions, such as chronic inflammation, neurodegenerative diseases,
cardiovascular disorders, and cancer [15–17]. Antioxidant enzymes, such as superoxide
dismutases, catalase, and glutathione peroxidases (GPx) are essential for maintaining the
delicate balance between ROS production and scavenging, thus protecting cells from the
harmful effects of oxidative stress [18]. In addition to endogenous antioxidant defenses,
exogenous antioxidants found in various foods, such as polyphenols, vitamin C, vitamin E
and carotenoids, can also help neutralize ROS and support cellular health [19]. Viral
infections may lead to elevated levels of ROS and weakened antioxidant defenses, result-
ing in oxidative stress [20]. Understanding the role of oxidative stress in the context of
viral infections may provide valuable insights into potential therapeutic strategies and
interventions for mitigating virus-induced cellular damage. Among non-enzymatic antioxi-
dants, reduced glutathione (GSH) plays a particularly important role in ensuring the redox
balance [21]. Research results indicate that GSH and oxidized glutathione—glutathione
disulfide (GSSG)—may affect the course of viral liver diseases [22,23]. This publication
offers an extensive analysis of the latest scientific literature sourced from multiple databases,
such as PubMed, Google Scholar, and Web of Science. The aim of this review article is to
investigate the recent studies on the roles of oxidative stress and GSH as molecules with an
antioxidant potential in the development and progression of viral liver diseases.

2. Glutathione and Its Antioxidant Properties and Implications for Health

The tripeptide γ-l-glutamyl-l-cysteinyl-glycine, known as glutathione, is the main
antioxidant in aerobic cells [24,25] and is considered the most prevalent non-protein thiol
in mammalian cells [26]. Its intracellular concentration equals from 1 to 15 mM [27,28].
It occurs in the form of GSH and GSSG [29]. Glutathione is generated in the process of
synthesis as a reduced form, which can generate GSSG, with which it equilibrates and
determines the redox environment [30].

GSH is synthesized in the cytoplasm of animal cells from glutamic acid, cysteine,
and glycine [31], with the participation of two enzymes: glutamate–cysteine ligase and
glutathione synthetase [32]. Simultaneously, the degradation of GSH to its constituent
amino acids may occur with the participation of a γ-glutamyl cyclotransferase, among
others [33]. Part of the generated GSH, depending on the needs, can be transported from
the cytoplasm to cellular organelles, e.g., the cell nucleus, mitochondrion, endoplasmic
reticulum, or GSH may also be effluxed out of the cell into the extracellular medium [34]. An
extracellular pool of GSH may also be used for transport between different organs [34]. The
major producer and exporter of GSH is the liver [35]. GSH may also be of exogenous origin.
Contained in the diet, it may be partly absorbed from the small intestine [36]. De novo
synthesis of GSH is controlled by the nuclear factor erythroid 2-related factor 2 (Nrf2), as it is
a major regulator of oxidative stress signaling [37,38]. This transcription factor participates
in the protection of cells against oxidative stress by upregulating the expression, among
others, of genes involved in the antioxidant GSH pathway [39,40]. Among the factors
activating the pathway regulated by Nrf2 is NADPH oxidase-4 (NOX4) [41].

GSH participates in disposing of ROS both indirectly and directly by neutralizing
H2O2, O2

•−, and •OH, among others [42,43]. Antioxidant functions performed by GSH are
connected with the presence of the –SH group (sulfhydryl group; thiol group) belonging to
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cysteine residue. It constitutes a source of reducing equivalents to scavenge ROS [44,45].
The antioxidant properties of GSH result from the fact that it serves as a cofactor for the
GPx, among others [46]. GPx participates in disposing of H2O2 and lipid hydroperoxides
(LOOH), reducing them to H2O and nontoxic lipid alcohols (LOH), respectively [29]. In
the course of these reactions, GSH is oxidized to GSSG [47,48]. Generated GSSG is then
reduced to GSH by glutathione reductase (GR), which constitutes another source of GSH.
NADPH participates in this reaction, which, in turn, is oxidized to NADP+, creating a
redox cycle, which prevents distortions of the oxidant–antioxidant balance [29,49]. GSH is
also directly used in the detoxification of products of oxidative stress and xenobiotics in
reactions catalyzed by glutathione-S-transferase (GST) [33,50]. These are mainly reactions
of the elimination of electrophiles, such as 4-hydroxy-2-nonenal, which is the product of
lipid peroxidation [24]. GSH may also react with other non-enzymatic antioxidants. It is
used, for instance, as a substrate in the reaction of the reduction in oxidized vitamin C [24].

The GSH/GSSG ratio in the cell has been used as an index of cellular redox status [26,51].
Under appropriate conditions, this ratio exceeds 10:1, and its decrease is connected with
the increase in oxidative stress in the cell [26,52]. GSH deficiency may therefore play a
significant role in the process of aging and in the pathogenesis of numerous diseases [35].
Intracellular GSH depletion leads to cell death by ferroptosis [53]. A distortion in the
GSH/GSSG balance toward the oxidizing state activates signaling pathways, leading to a
decrease in cell proliferation and the enhancement of apoptosis [54]. It has been proven that
a GSH redox imbalance (resulting from deficits of GSH and GSH-related enzymes) may be
the primary cause of the many neuropsychiatric and neurodegenerative disorders [55]. In
the case of malignant tumors, it has been indicated that GSH metabolism may play both ben-
eficial and pathogenic roles. It has been confirmed that an elevated level of GSH promotes
metastasis, which has been shown in liver and melanoma cancer among others [56,57]. At
the same time, GSH participates in the removal and detoxification of carcinogens [33,57].
Disturbances in GSH homeostasis have also been indicated in patients with cystic fibrosis,
metabolic, cardiovascular, immune, and inflammatory diseases [28,58,59]. GSH depletion
and intracellular redox status alterations also accompany certain viral infections [60–62].
Figure 1 shows the main routes of glutathione transport and its functions.

Antioxidants 2023, 12, x FOR PEER REVIEW 4 of 26 
 

 
Figure 1. The glutathione redox cycle: transport and functions. ER: Endoplasmic reticulum; GPx: 
glutathione peroxidase; GR: glutathione reductase; GSH: reduced glutathione; GSSG: oxidized glu-
tathione. 

The antioxidant defense and regulation of the redox state affect the continuous pro-
cess of converting the default form of GSH into its oxidized and reduced forms. Acute 
oxidative stress can reduce the cell’s ability to convert GSSG back into GSH. 

3. The Role of Glutathione and Pro-Glutathione Compounds in the  
Immune Response 

During viral infection, the sulfur-containing amino acids (methionine and cysteine) 
may be preferentially used for the synthesis of acute-phase proteins instead of GSH pro-
duction. The relationships between GSH and immune system functions were previously 
described [63–69]. Innate immunity, which is the first line of antiviral defense before the 
development of adaptive immunity (T cell responses and antibodies), involves the pro-
duction of ROS and cytokines, which enhance the host response by recruiting and activat-
ing other immune cells [67]. Their metabolic activity is dictated by the specific functions 
and counteracts the redox imbalance caused by the viral production of ROS. For example, 
in proinflammatory macrophages the pentose phosphate pathway reduces glutathione to 
ensure cellular antioxidant capacity. Further, the antigen-stimulated T cells proliferate 
and produce lymphokines being controlled by redox-sensitive transcription factors [70]. 

There are two types of T cell responses, namely T helper (Th) cell type 1 associated 
with cellular immunity (production of interleukin IL-12, IL-2, IFN-γ) and Th cell type 2 
related to humoral immunity (production of IL-4, IL-5, IL-6, IL-13, and antibodies). It has 
been demonstrated that the redox potential of GSH, in contrast to antioxidants without 
sulfhydryl groups (e.g., vitamin C) [71], modulates Th1/Th2 immune response in T cells 
as well as in the antigen-presenting cells, i.e., macrophages, dendritic cells, and B cells 
[65,71,72]. Nevertheless, vitamin C was also claimed to participate in the immune re-
sponse during an early phase of virus infection through the production of type I interfer-
ons [73]. The high level of GSH in the antigen-presenting cells correlates with the in-
creased production of IL-12 favoring Th1 response [68], and probably reduces the disul-
fide bonds of an antigen, which is a crucial step of antigen processing. It also seems that 
the redox potential of GSH may increase the activity of thiol proteases essential in antigen 

Figure 1. The glutathione redox cycle: transport and functions. ER: Endoplasmic reticulum; GPx: glu-
tathione peroxidase; GR: glutathione reductase; GSH: reduced glutathione; GSSG: oxidized glutathione.



Antioxidants 2023, 12, 1325 4 of 23

The antioxidant defense and regulation of the redox state affect the continuous process
of converting the default form of GSH into its oxidized and reduced forms. Acute oxidative
stress can reduce the cell’s ability to convert GSSG back into GSH.

3. The Role of Glutathione and Pro-Glutathione Compounds in the Immune Response

During viral infection, the sulfur-containing amino acids (methionine and cysteine)
may be preferentially used for the synthesis of acute-phase proteins instead of GSH pro-
duction. The relationships between GSH and immune system functions were previously
described [63–69]. Innate immunity, which is the first line of antiviral defense before the
development of adaptive immunity (T cell responses and antibodies), involves the produc-
tion of ROS and cytokines, which enhance the host response by recruiting and activating
other immune cells [67]. Their metabolic activity is dictated by the specific functions and
counteracts the redox imbalance caused by the viral production of ROS. For example, in
proinflammatory macrophages the pentose phosphate pathway reduces glutathione to
ensure cellular antioxidant capacity. Further, the antigen-stimulated T cells proliferate and
produce lymphokines being controlled by redox-sensitive transcription factors [70].

There are two types of T cell responses, namely T helper (Th) cell type 1 associated with
cellular immunity (production of interleukin IL-12, IL-2, IFN-γ) and Th cell type 2 related to
humoral immunity (production of IL-4, IL-5, IL-6, IL-13, and antibodies). It has been demon-
strated that the redox potential of GSH, in contrast to antioxidants without sulfhydryl
groups (e.g., vitamin C) [71], modulates Th1/Th2 immune response in T cells as well as
in the antigen-presenting cells, i.e., macrophages, dendritic cells, and B cells [65,71,72].
Nevertheless, vitamin C was also claimed to participate in the immune response during an
early phase of virus infection through the production of type I interferons [73]. The high
level of GSH in the antigen-presenting cells correlates with the increased production of
IL-12 favoring Th1 response [68], and probably reduces the disulfide bonds of an antigen,
which is a crucial step of antigen processing. It also seems that the redox potential of GSH
may increase the activity of thiol proteases essential in antigen processing and the cleaving
of invariant chains from major histocompatibility complex class II, the main role of which
is presenting processed antigens to CD4(+) T-lymphocytes [74,75].

The intracellular and plasma level of GSH has been found to be depleted during
infections (such as human immunodeficiency virus (HIV) [76], influenza viruses [77],
rhinovirus [78,79], hepatotropic viruses [80–82], and HSV-1 [83]) according to mechanisms
and kinetics specific to the virus and host cell type [70]. In effect, an oxidative intracellular
environment may impair the function of Na+/H+ antiporters, decreasing the intracellular
pH and favoring an early phase of viral replication [84]. In a later phase of viral replication,
GSH depletion may be a result of preferential incorporation of cysteine to viral proteins [85].
However, the viral replication can be inhibited by the replenishment of glutathione, prefer-
ably in the form of its precursor or ester derivatives. Such an effect may be achieved by
administration of N-acetyl-L-cysteine (NAC), which is a source of thiols for GSH synthesis.
Similarly, this goal may be achieved by the supplementation of pro-glutathione com-
pounds, which easily permeate into the cell, e.g., glutathione monoethylester (GSH-OEt),
I-152 (which is a codrug of NAC and S-acetyl-β-mercaptoethylamine), S-acetylglutathione,
N-butanoylglutathione, and GSH-C4 [60,65,70]. It has been confirmed that GSH increases
the proliferation of T cells, secretion of IL-2, synthesis and turnover of IL-2 receptors [86–88],
and the replenishment of intracellular GSH with NAC, which restores IL-2 production
through T cells [89]. Moreover, NAC decreases the production of IL-4 and increases the
production of IFN-γ supported by the same Th1 predominance [90]. The plasma level of
anti-Tat IgG1 (typical of Th2 response) as well as the levels of anti-Tat IgG2a and IgG2b
measured by ELISA assay were lowered and increased, respectively, among Tat-immunized
mice pretreated with GSH-C4 or I-152, implying the Th1 response [66,70,91]. On the other
hand, GSH loss in murine macrophages decreases the secretion of IL-12 and leads to
switching Th1-associated cytokines production towards the Th2 immune response [72].
Furthermore, NAC and GSH-OEt enhance the GSH/GSSG ratio and the expression of IL-12
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mRNA [92]. For the promotion of viral replication, viruses are able to manipulate the host’s
redox-sensitive pathways, such as Nrf2 or nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB). Nrf2 is a transcription factor that controls the expression level
of genes encoding proteins that ensure the intracellular redox homeostasis components of
glutathione- and thioredoxin-based antioxidant systems or GST among others [93]. Mean-
while, NF-κB (consisting of c-Rel, RelA (p65), RelB, p50/p105, and p52/p100) together
with an inhibitor of NF-κB kinase (IKK) proteins regulates many physiological processes,
such as inflammation, innate- and adaptive-immune responses, and cell death [94,95]. The
proposed role of GSH molecule to cope with the viral infection could be the inhibition
of NF-κB activation. That precludes further signal transduction events facilitating virus
(HIV, HSV-1) replication [96–98] by ROS scavenging and interference with IKK or with the
translocation of NF-κB into the nucleus [70,99]. Additionally, the modification of p50 may
inhibit DNA from binding to NF-κB consensus sequences [70].

The role of GSH and pro-GSH compounds in the immune response is summarized in
Figure 2.
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Figure 2. Possible modulation of adaptive immune response (cellular, Th1 and humoral, Th2) by redox
potential of GSH in antigen-presenting cells. APC: Antigen presenting cell; GSH: reduced glutathione;
GSH-C4: N-butanoylglutathione; GSH-OEt: glutathione monoethylester; I-152: explanation in the
text; IL: interleukin; NAC: N-acetyl-L-cysteine; ROS: reactive oxygen species.

4. The Alteration of GSH Homeostasis in Viral Hepatitis

Viral hepatitis is a major public health problem in all parts of the world. Acute viral
hepatitis (AVH) is a systemic illness that mainly affects the liver. HAV, HBV, HCV, HDV
and HEV are the viruses that cause instances of acute viral hepatitis [100–102]. A persistent
HBV, HCV, HDV or HEV infection can progress to chronic hepatitis (CH), which in turn
can evolve into liver cirrhosis (LC), hepatocellular carcinoma (HCC) and other extrahepatic
manifestations [100–104]. A significant portion of HBV-infected patients is in the inactive
carrier state (ICS). This phase is characterized by normal transaminase levels, little viral
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replication and minimal liver necroinflammatory activity [105]. HDV can only infect
simultaneously with HBV. In the case of HDV and HBV coinfection, most often an acute
self-limited hepatitis occurs [100]. HAV and HEV are mainly transmitted via the fecal–oral
route, but in the developed countries, hepatitis E is predominantly a zoonosis [100]. HEV
infection can cause fulminant hepatitis failure, especially in pregnant women, with a
mortality rate of up to 30%, and the virus can be vertically transmitted from infected
mothers to their infants [106]. HBV, HCV and HDV infections are transmitted parenterally,
mainly as a result of tissue disruption [100,101]. After penetrating into hepatocytes, viruses
replicate and then, through a direct cytopathic mechanism or a secondary immune response,
lead to hepatocyte damage and necrosis [107–111].

4.1. Hepatitis B Virus (HBV)

The HBV virus belongs to the Hepadnaviridae family. It is a partially double-stranded,
capsid virus composed of lipids and surface proteins that form an antigen (HBsAg). The
viral genome also encodes a number of other important proteins, such as polymerase, regu-
latory protein X (HBx), and core protein, including its secreted variant HBeAg [112–114].
The epidemiology of HBV infections has revealed distinct geographic and ethnic dis-
tributions of 10 HBV genotypes (A-J) [113,114]. HBx, HBsAg, and HBV core antigens
are described as viral proteins that participate in ROS formation. HBV infection is able
to change the levels of antioxidant enzymes in an Nrf2-/antioxidant response element
(ARE)-dependent and -independent fashion [115]. Increased Nrf2-activation may either
impair virus elimination or prevent the elimination of an HBV-associated hepatocellular
carcinoma [112].

ROS are useful for HBV assembly via heat shock protein-90 (HSP-90) interaction with
the core protein [26,115]. HSP-90 facilitates HBV capsid assembly, which is an important
step for the packing of viral particles [116]. Kim et al. [116] suggest that the low GSH and
high ROS level following an HBV infection may cause HBV capsid assembly to be facilitated.
The presence of GSH changes HSP-90 conformation, abrogating HBV capsid assembly by
42%. The levels of GSH are lower in patients with chronic hepatitis than those in healthy
individuals [117–125]. An observation of markedly enhanced oxidative injury in infected
patients with chronic HBV infection was made, which is not only related to a decrease in
the levels of GSH but also to significantly increased levels of GSSG [120]. Tsai et al. [123]
have reported the redox status in patients with HBV-associated hepatocellular carcinoma
who had been HBV carriers for 20 years. This study showed a significantly higher increase
in the GSSG level, and a decrease in the GSH level and the ratio of GSH/GSSG in the study
group when compared to the controls. Alavian et al. [126] suggest that this implies that
compensatory mechanisms, which are mostly active at the beginning of the disease, start to
fail as the disease course progresses. Therefore, findings within GSH levels may change as
the disease progresses and becomes more severe and/or chronic. Severi et al. [127] have
shown that induction of HBV replication did not influence the total level of GSH in the
cells, but the GSSG/GSH total ratio has been observed to triple after 72 h of HBV induction,
indicating that GSH depletion occurred in favor of its oxidized form. In the GSH redox
cycle, antioxidant enzymes also play a significant role in maintaining the oxidative balance
in the cell.

Controversies have been seen in GPx activity. For example, some researchers have re-
ported decreased activity of GPx [119,120,124], while another study found an increase [128],
or no significant changes [123]. The decline in GSH level may lead to a decrease in enzyme
activity [122]. Abel et al. [125] observed reduced GPx activity in the hepatocellular carci-
noma tissue. They stated that the lower enzyme activity in the HBV-infected carcinoma
tissue resulted from a further disruption in the antioxidant defense system (double insults
of hepatocellular carcinoma and HBV infection). Shaban et al. [122] showed that GPx levels
were decreased significantly when compared to the control in the following sequence:
HCC < LC < CH < AVH < ICS. The levels of hepatic GSH were severely depleted, where
the GR activity was enhanced in patients in the inactive carrier state, and in the acute
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viral hepatitis, chronic hepatitis, liver cirrhosis and hepatocellular carcinoma groups when
compared to the control group. Studies have also shown increased activity of GR in ery-
throcyte in acute viral hepatitis, chronic hepatitis [129] and in the blood of patients with
HBV infection in hepatocellular carcinoma [123]. Table 1 summarizes studies that reveal
the glutathione status in patients with viral hepatitis.

Table 1. Selected results of glutathione status in patients with the most common types of viral hepatitis.

Name of
Virus/Genome Patients Sample Site

Parameters
Refs.

Compared to HC Additional Analysis/Information

Hepatitis B virus
(HBV)/DNA

n1 = 69 CHB
n2 = 20 HC

Erythrocyte

↓ level of GSH
↓ activity of GPx - [119]

n1 = 50 CHB
n2 = 50 HC ↓ level of GSH - [130]

n1 = 54 HCC
n2 = 57 HC

↓ level of GSH
↓ ratio of GSH/GSSG
↑ level of GSSG

No statistically significant changes
compared to GPx
↑ activity of GR

- [123]

n1 = 50 CHB
n2 = 50 CHC
n3 = 50 HC

↑ activity of GPx ↑ activity of GPx in CHC patients [128]

n1 = 132 CHB
n2 = 195 HC

n3 = 114 CHC

Plasma

↓ level of GSH in CHB and CHC
↑ level of GSSG
↓ activity of GPx

↑ level of GSSG in CHB patients compared
to HCV infection patients

↓ activity of GPx in CHB patients
compared to HCV infection patients

[120]

n1 = 30 AHB
n2 = 10 CHB
n3 = 25 HC

↓ level of GSH in CHB
↓ level of GSH at the beginning of AHB

The normalization of GSH level of GSH
after 10 weeks in AHB [117]

n1 = 54 CHB
n2 = 31 LC
n3 = 20 HC

↓ level of GSH in CHB and LC
↑ level of GST in CHB and LC
↓ activity of GPx in CHB and LC

- [124]

n1 = 54 CHB
n2 = 51 IHBC
n3 = 109 HC

Serum

↓ level of GSH in CHB and IHBC - [118]

n1 = 78 CHB
n2 = 67 NCBI
n3 = 53 AHB
n4 = 65 LC

n5 = 60 HCC
n6 = 150 HC

↓ level of GSH in the following sequence:
HCC < LC < CHB < AHB < NCBI

↓ activity of GST in the following sequence:
HCC < CHB < LC < AHB < NCBI

↓ activity of GPx in the following sequence:
HCC < LC < CHB < AHB < NCBI

↑ activity of GR in the following sequence:
HCC > LC > CHB > AHB > NCBI

- [122]

n1 = 5 HCC
including HBV+

n1 = 8 HCC
including HBV−

Liver tissue -

↓ level of GSH in HBV and HBV tissues
compared with the corresponding

surroundings
(↑ GSH level in the HBV-infected

surrounding tissue compared with the
non-infected surrounding)

Level of GSSG had no significant
interaction

↓ GPx in HBV tissues compared with the
corresponding surroundings

↑ GPx in HBV tissues compared with the
corresponding surroundings

↑ GSH/GSSG ratio in HBV tissues
compared with the corresponding

surroundings
↓GSH/GSSG ratio in HBV tissues
compared with the corresponding

surroundings

GSH was calculated by subtracting GSSG
from the tGSH

[125]

- HepAD38 cells
significantly ↑ the ratio GSSG/GSH total in

HepAD38 cells after induction of HBV
replication

[127]
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Table 1. Cont.

Name of
Virus/Genome Patients Sample Site

Parameters
Refs.

Compared to HC Additional Analysis/Information

Hepatitis C virus
(HCV)/RNA

n1 = 19 CHC
n2 = 28 HC Erythrocyte ↓ activity of GPx

↑ activity of GPx in CHC patients
compared to CHC pretreatment patients

Therapy pegylated interferon alfa-2b and
ribavirin

[131]

n1 = 24 CHC
n2 = 27 HC

Plasma

No correlation between level of GSH or
GPx activity and the histological diagnosis,

serum ALT, AST, or HCV RNA level
- [132]

n1 = 5 AHC
n2 = 37 CHC
n3 = 25 HC

↓ level of GSH - [117]

n1 = 160 CHC
n2 = 160 HC Serum

↓ level of GSH in patients infected with
genotypes 1a/b, 4, 2a/c, 2b and 3a

(group 3a highest and 1a/b lowest values,
respectively)
↑ level of GSSG

GSSG level was significantly different in
diverse HCV genotypes Patients with

infection genotype 1a/b had the highest
levels of serum GSSG

- [133]

n1 = 18 CHC
n2 = 18 HC ↑ activity of GPx - [134]

n1 = 9 VHC
without antiviral

treatment
n2 = 11 VHC with
antiviral treatment

n3 = 12 HC

Whole blood

↓ level of GSH in patients with VHC (n1,
n2) before the antioxidant supplementation
↑ levels of GSH after the supplementation
↑ activity of GPx in patients with VHC (n1,
n2) before the antioxidant supplementation
↓ activity of GPx in patients with VHC (n2)

after the antioxidant supplementation
↑ activity of GR in patients with VHC (n2)
before the antioxidant supplementation,
which were ↓ after the supplementation
↑ activity of GST in patients from n2 before

the antioxidant supplementation

Treatment—pegylated interferon
combined with ribavirin

Supplementation (vitamin E 800 mg, C 500
mg and zinc 40 mg)

↑ activity of GST in patients with n2 before
the antioxidant intervention compared to

patients with n1

[135]

n1 = 49 CHC
n2 = 59 HC

Peripheral blood
mononuclear

cells

Absence of statistical significance levels of
GSH and GSSG,

similar activity of GPx and GR

↑ GSH synthetic capacity in patients with
CHC, especially in those who did not

respond to IFN therapy
[136]

n1 = 21 CHC
n2 = 7 HC Liver tissue ↑ activity of GPx - [137]

n1 = 130 CHC
n2 = 23 HC Liver tissue,

plasma,
lymphocytes

↓ level of GSH - [138]

n1 =75 CHC
n2 = 22 HC ↓ level of GSH - [139]

-

Huh-7.5 cells

-

↑ in vitro level of GPx4 mRNA in CHC
patients compared with control

liver biopsies
Upon viral eradication, GPx4 transcript

levels returned to baseline in vitro and also
in the liver of patients

[140]

-
↑ expression of GPx in the HCV-positive

samples from patients with CHC as
compared with the control

[141]

-

↓ GSH level content in infected cells in the
acute phase of HCV infection (The GSH

accompanied by high rates of viral
replication and apoptotic cell death)

↑ GSH level content in infected cells in the
chronic phase of HCV infection

The GSH content was obtained by
subtracting the GSSG from the tGSH

[43]

Huh-7.5 cells
HepG2-derived

C34 and E47
cell lines

-

↓ GSH level correlated with the level of
HCV core protein expressed

↑ GSSG level correlated with the level of
HCV core protein expressed

↑ GSH level correlated with the of
HCV-NS proteins expressed

The GSH content was obtained by
subtracting the GSSG from the tGSH

[142]
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Table 1. Cont.

Name of
Virus/Genome Patients Sample Site

Parameters
Refs.

Compared to HC Additional Analysis/Information

Hepatitis E virus
(HEV)/RNA

n1 = 30 P-AVH
n2 = 30 NP-AVH

n3 = 30 CH
(pregnant women) Serum

↓ level of GSH - [143]

n1 = 59 AVH
n2 = 17 FHF
n3 = 303 HC

↓ level of GSH ↓ level of GSH are lower in the FHF cases
compared to AVH cases [144]

Hepatitis A virus
(HAV)/RNA

n1 = 17 AHA
n2 = 25 HC Plasma ↓ level of GSH - [117]

n1 = 19 AHA
n2 = 29 HC

Whole blood
↓ level of GSH - [145]

n1 = 50 AHA
n2 = 50 HC ↓ level of GSH - [146]

Abbreviations: AHA—acute hepatitis A; AHB—acute hepatitis B; AHC—acute hepatitis C; AVH—acute viral hep-
atitis; FHF—fulminant hepatic failure; GPx—glutathione peroxidase; GR—glutathione reductase; GSH—reduced
glutathione; GSSG—oxidized GSH; GST—glutathione S-transferase; HC—healthy controls (patients without
known liver disease); HCC—hepatocellular carcinoma; IHBC—inactive hepatitis B carriers; LC—liver cirrho-
sis; NCBI—normal carriers HBV infection; NP.-AVH—non-pregnant hepatitis-E-positive jaundiced women;
P-AVH—jaundiced women in the third trimester of pregnancy with HEV infection; tGSH—total intracellular
glutathione (including GSH and GSSG); VHC—viral hepatitis C.

4.2. Hepatitis C Virus (HCV)

HCV is a small-enveloped virus with one single-stranded positive-sense RNA in the
Flaviviridae family. The structural proteins (Core, E1, and E2) are essential components of
the HCV virions, whereas the non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A
and NS5B) are not associated with virions but are involved in RNA replication and virion
morphogenesis [147]. Structural core and nonstructural protein 5A (NS5A) are considered
to be the main activators that induce mitochondrial dysfunction and NOXs expression in
hepatocytes, producing large amounts of ROS and LOOH [147,148]. The replication of
HCV takes place in the membrane compartment associated with the cellular endoplasmic
reticulum [147]. This virus is classified into seven different genotypes, which affects
the response to different HCV treatments and the progression of liver failure [149,150].
Genotypes 1, 2, 3, 4 and 6 are further subdivided into a series of subtypes [150]. Oxidative
stress contributes to insulin and interferon resistance, disorders of iron metabolism, liver
cirrhosis and hepatocellular carcinoma [151]. Liver iron accumulation is associated with
HCV infection [152]. An increase in serum ferritin has been described in patients with
chronic hepatitis [138].

HCV-core protein and HCV-nonstructural protein induce different antioxidant defense
response in hepatocytes [142,151,153]. As a result of the expression of the HCV core protein,
hepatocyte cell lines experience increased oxidative stress and reduced GSH levels. At the
same time, the overexpression of the NS5A protein causes an increase in GSH [142]. It
was determined that the acute phase of HCV infection is characterized by an increase in
the level of ROS, while the chronic phase, on the contrary, is characterized by a decrease
in the level of ROS. An agent that can inhibit HCV replication may be Nrf2. This protein
was called an oxidative stress factor. It induces the expression of cytoprotective genes, e.g.,
inhibits replication by upregulating hemeoxygenase-1 [43,147,148,154].

In the early phase of HCV infection, ROS-induced mitogen-activated protein kinase/c-
Jun N-terminal kinase (JNK) or protein kinase C signaling mediates the activation of
Nrf2- and Nrf2-activated antioxidant genes [115]. The acute HCV infection is associated
with an early induction of proteins functioning in cellular stress responses, including the
Nrf2-mediated oxidative stress response [43]. Carvajal-Yepes et al. [141] have reported an in-
hibitory effect on Nrf2 signaling due to the binding of Maf proteins to NS3, an integral part
of the replication complex. In HCV-positive cells, the virus interferes with the Nrf2/ARE
signaling pathway, resulting in a lack of activation of cytoprotective genes, elevating ROS
levels and autophagy, and thus releasing HCV particles [155]. In constitutively infected cell
lines to replicate HCV RNA (Huh-7.5 cells), GSH levels remain constant throughout the
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first 5 days of infection points to a sufficient reductive capacity of the infected cell in the
early stage of infection [140]. In the early phase of the disease, which occurs between the
2nd week and the 6th month after infection, infected cells can activate Nrf2, which provides
protection against oxidative stress. Then, when the activity of Nrf2 becomes unfavorable
for the virus, i.e., in the later phase of infection, the activity of this factor decreases [153].
Increased iron storage is believed to contribute to increased production of oxygen free
radicals and a significant reduction in glutathione (GSH) levels. This reduction is associated
with an increased percentage of oxidized glutathione (GSSG), indicating increased GSH
turnover [138]. According to research by Lima et al. [132], the rate of viral replication affects
GSH production. In the acute phase of infection, HCV replicates rapidly, leading to exten-
sive apoptosis in infected cells [43]. This phase is characterized by pronounced oxidative
stress, caused primarily by the activity of NOX4, accompanied by a reduced level of GSH
and a reduced GSH/GSSG ratio [43]. Conversely, chronic HCV infection is characterized by
lower levels of both HCV replication and apoptosis. ROS production returned to baseline,
GSH levels were replenished and the GSH/GSSG ratio increased [43]. Roe et al. [156]
report a significant rise of GSSG and a significant decrease in the levels of glutathione
metabolites, S-methylglutathione and cysteinylglycine, in the HCV-infected human hep-
atoma cell line Huh-7.5. However, the increased GSH concentration has been demonstrated
by de Mochel et al. [157] using the same in vitro infection system. It is suggested that the
elevation of GSH occurs in the transient adaptation to sublethal oxidative stress. In contrast
to the research of de Mochel et al. [157], several clinical studies reported the decreased
hepatic GSH content in HCV chronically infected, untreated, chronic HCV infected pa-
tients, which was found both in serum, plasma and hepatic tissue [117,120,133,135,138,139]
(Table 1). The increased activity of γ-glutamylcysteine ligase limits the rate of de novo
GSH synthesis [80]. Antioxidant drugs have also been shown to increase GSH levels and
therefore counteract the progression of liver diseases [135].

NS5A is identified as the viral protein that mediates glutathione peroxidase 4 (GPx4)
induction in a phosphatidylinositol-3-kinase-dependent manner pathway activation, pro-
tecting HCV-infected cells against lipid peroxidation [140]. GSH is used by GPx4 to reduce
LOOH to its alcohol form, which is a crucial step in preventing ferroptosis. The effect of
the downregulation of Nrf2 is the inhibition of GPx4, in which case LOOH accumulates,
worsening the damage and causing ferroptosis [158]. Studies show that the activity of GPx
in erythrocytes and serum is lower in patients with chronic hepatitis than in the healthy
control group [159,160]. GPx activity is also reduced in the tumor tissue compared to
the control liver tissue [161]. It is considered that decreases in selenium and GPx levels
may participate in the impairment of an antioxidant defense and may trigger the process
of hepatic fibrosis [131,160]. On the other hand, Ismail et al. [137] and Yalcin et al. [134]
reported increased GPx activity in patients with chronic hepatitis and liver cirrhosis, re-
spectively. The GPx concentration was higher in the blood of patients responding to the
treatment [128,131,159]. Czeczot et al. [161] and Villegas et al. [162] observed an increase
in GR activity in liver cirrhosis and hepatocellular carcinoma compared to the control
tissue. Villegas et al. [162] have drawn the conclusion that GR is an essential enzyme
involved in the reduction in oxidative stress produced during liver transplantation among
cirrhotic patients.

HCV genotypes exhibit varying abilities to induce oxidative stress. Among patients
with chronic hepatitis, diminished glutathione (GSH) content was observed in both serum
and liver tissue. Specifically, patients with genotype 1b displayed a significant decrease in
glutathione levels in the liver, plasma, and lymphocytes when compared to patients with
genotypes 2a/2c and 3a, as well as the control group [138]. Ansari et al. [133] observed that
genotypes 3a and 1a/b have the highest and lowest values of GSH, respectively. However,
it should be noted that patients infected with diverse HCV genotypes had lower GSH levels
in serum than the healthy controls. GSSG level was significantly different in diverse HCV
genotypes, the highest being in the infected patients with genotype 1a/b.
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4.3. Hepatitis E Virus (HEV) and Hepatitis A Virus (HAV)

HEV is a single-stranded RNA virus that belongs to the Hepeviridae family [102]. HEV
is classified into eight major genotypes, where genotypes 1 and 2 infect only humans. In the
developed countries, hepatitis E is predominantly a zoonosis caused by genotypes 3 and
4 [106]. One of the factors promoting viral replication by affecting regulatory elements is the
increase in the level of sex steroid hormones, which occurs during pregnancy. HEV infection
aggravates oxidative stress during pregnancy [163]. Lower GSH levels are observed in
pregnant women with an HEV infection having preterm delivery and low birthweight
newborns compared to healthy pregnant women [143,144]. It is suggested that the GSH
level may be used for risk stratification in HEV infection during pregnancy [163].

HAV is a small, nonenveloped RNA-virus of the Picornaviridae family [102]. HAV
replicates very slowly and does not cause apparent cytopathic effects in cell culture. In old
patients with chronic hepatitis, at the beginning of the disease, a marked depletion of GSH
is observed [117]. Additionally, Cemek et al. [145] and Popovic-Dragonjic et al. [146] found
decreased GSH levels in children with chronic hepatitis.

In conclusion, hepatitis can be caused by various etiological agents, including HBV,
HCV, HEV, and HAV. Depending on the etiological factor, the disease can vary in terms
of clinical course and rate of progression. In summary, our results demonstrate that
pathological processes associated with infection by hepatotropic viruses are accompanied
by a lower GSH level and an increase in GSSG level. Data on the activity of GSH-dependent
enzymes are still limited and contradictory.

5. Glutathione S-Transferase (α-GST, GST-A) as a Marker of Hepatocellular Damage

Detoxicant enzymes, such as GST, metabolize toxic electrophiles and are also con-
sidered to be secondary antioxidant enzymes [122]. These enzyme in cells are located in
microsomes, mitochondria, and in the cytoplasm. In hepatocytes, the largest amounts are
found in the cytoplasm [164]. GST isoenzymes are found in the liver, nervous system, heart,
pancreas, kidneys, spleen, lungs, testes, placenta and erythrocytes [164,165]. GST flows out
of the hepatocyte cytoplasm when the cell is damaged [166,167]. GST regulates enzymatic
antioxidants and performs protective functions against free radicals.

The level of GST decreases significantly in the cytoplasm during toxic damage to
hepatocytes. In the initial period of hepatotoxicity action, an increase in the amount of GST
is observed, which causes the activation of the Nrf2, which in turn is activated in response
to stress, and a cascade of antioxidant factors is activated, such as superoxide dismutase,
heme oxygenase, GPx, GST and NF-κB. In addition, Nrf2 regulates the expression of GST,
GPx and GR genes [167,168]. GST has an inhibitory effect on the JNK and NF-κB factor.
The interaction between macrophage-like cells and also between the liver and nitric oxide
synthase (iNOS) has been proven. The increase in the amount of GST during toxic damage
causes a decrease in the amount of iNOS in immunocompetent cells [169].

In the case of acute liver injury, an increase in GST was observed on the first day,
whereas a decrease was observed three days after the cessation of hepatocyte toxicity [170].
A greater increase in GST than alanine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST) was observed in patients with toxic liver damage. Valeeva et al. [171] assessed
defective alleles of GST in patients with acute toxic liver damage and chronic hepatitis.
It has been proven to be useful in identifying patients at risk of rapid conversion to liver
cirrhosis [171]. The increase in GST was assessed in patients with drug-induced liver
injury as a consequence of anesthesia. It was proven that the degree of increase in GST
during surgical procedures with anesthesia was dependent on the gene’s polymorphism.
Patients with the GSTA1*A allele have been shown to be more susceptible to drug-induced
damage [166]. GST was measured in patients with drug-induced liver damage caused by
cisplatin and paracetamol. In addition to GST, IL-6 and IL-10 were measured, and their
levels also significantly increased [172]. Changes in GST in the course of drug-induced
liver failure also correlate with an increase in skeletal-muscle-specific mi-RNA: miR-122
and miR-192 [173]. In a double-blind randomized study reported by Zhang et al. [174],
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GST was measured in patients with ischemic hepatic failure. The highest amounts were
noted in patients with obstruction, and prompt reconstructive intervention of vena re-
sulted in a significant and rapid decrease in plasma GST. However, if the decline did not
occur after 24 h, GST concentration correlated with a poor prognosis and was associated
with the detection of progressive hepatocyte necrosis [174]. There was an increase in GST
activity or concentration in patients with hepatic steatosis. It was estimated that the in-
crease in the concentration of GST slowed down the progression to non-alcoholic fatty
liver disease [175]. The level of GST in patients was measured to assess liver rejection
after transplantation [176]. The growth of the GST concentration was rapid, but a better
correlation and growth rate was noted for the interleukin-2 receptor. GST has been also
proven to be an important marker of biliary epithelial cell injury, autoimmune hepatitis
and de novo autoimmune hepatitis after transplantation [176].

In patients with chronic HBV, HCV infections, and acute infection caused by hepatitis
A, B and C viruses, there was an increase in GST, and GST increased faster than ALT and
AST [165,177], and values correlated with the degree of hepatocyte damage [124,135,165,177,178].
There are conflicting results concerning GST activity. Shaban et al. [122] presents studies
that reveal the depression of GST activity in different stages of HBV infection (Table 1).
They concluded that the decrease in the level of GSH and the activity of GST indicated that
the liver had a lower ability to detoxify the ROS, resulting in an increased availability of
potentially carcinogenic molecules.

GST levels can be an indicator of ongoing liver damage because of its low molecular
weight, uniform hepatic distribution, high cytosolic concentration, and short half-life (the
plasma turn-over is 60 to 90 min) [170,174,176–179].

6. The Potential of N-Acetyl-L-Cysteine (NAC) and Pro-GSH Molecules in the Viral
Infection Treatment

The immune response of the body plays a significant role in liver damage during
hepatitis infection [180,181]. HBV and HCV can activate the immune system, leading to the
production of tumor necrosis factor α (TNF-α), which induces the synthesis of significant
amounts of IL-6 and IL-8 [182–186]. Consequently, this can promote hepatitis and damage
liver cells. Viral liver diseases are associated with failure to maintain normal GSH levels. In
patients with chronic hepatitis C, the presence of systemic GSH depletion may be a factor
underlying resistance to interferon therapy [80]. The limitation in the use of GSH as a ther-
apeutic agent is its unfavorable biochemical and pharmacokinetic properties, such as short
lifetime in human plasma and difficulty in penetrating cell membranes [187]. However,
Qian et al. [22] showed a link between the therapeutic effect of glutathione on chronic hep-
atitis B. Intravenous GSH (1200 mg) was effective in lowering serum transaminases, TNF-α,
IL-6, and IL-8 compared to the control group. Thus, treatment with GSH can improve liver
function and suppress inflammation and liver fibrosis in HBV infections. Jabeen et al. [188]
conducted in vitro studies on HBV-infected cell lines HepAD38 and HepG2/pHBV1.3
treated with NAC, which showed an increase in the expression of FAM26F glycoprotein,
IRF3 transcription factor, and interferon beta, and thus the inhibition of viral replication.
Analogous inhibition of HBV replication was obtained by Hosel et al. [189] in the study of
the effect of NAC on HBV-infected HepG2 and HepG2-H1.3 cell lines. It turned out that
under the influence of NAC (an ROS inhibitor), there was a decrease in the activity of the
signal transducer and activator of transcription 3 protein (STAT3). This protein is activated
by proinflammatory cytokines, i.e., IL-6 or TNF-a in response to viral infection, which
increases viral replication, and reduces apoptosis and oxidative stress. Waris et al. [190]
had previously come to similar conclusions. In in vitro studies on the HBV-infected HepG2
cell line, they showed that antioxidants, such as NAC and pyrrolidine dithiocarbamate,
similarly to GSH, inhibit STAT3. In a study by Weiss et al. [191], a 50-fold reduction in viral
DNA was achieved within 48 h of the HBV-infected cell line HepG2-4A5 being treated with
NAC. In a study on the role of the mitochondrial protein SIRT3 in oxidative stress during
HBV infection, it was shown that overexpression of this protein leads to a decrease in the
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level of ROS. In addition, NAC was shown to inhibit HBV replication in an in vitro study
on HepG2.2.15 and HepAD38 cell lines [192].

In the untreated HCV patients, the depletion of GSH levels is restored after treatment
with an antioxidant or a combination of antioxidants containing vitamin E, C, and zinc.
In addition, signs of improved GPx activity have also been shown after antioxidant sup-
plementation [135]. It seems that the methods of increasing GSH levels also include the
use of compounds that promote the availability of cysteine, such as NAC, methionine,
S-adenosyl-L-methionine, L-2-oxothiazolidine-4-carboxylate, alpha-lipoic acid, pyrrolidine
dithocarbamate, and GSH ethyl ester [190,193–198]. In clinical trials, it was suggested
that in patients with chronic HCV and HBV infection, NAC alone or in combination with
other antioxidants significantly affects plasma GSH concentration and GPx activity of
erythrocytes [199,200]. It has also been shown that as a result of oxidative stress, the NS5A
encoded by the human HCV RNA genome induces the activation of the transcription
factors NF-κB and STAT3. NAC and pyrrolidine dithiocarbamate significantly reduced
the activation of these NS5A-induced transcription factors [190]. It has been suggested
that there is a possible increase in GSH biosynthesis after NAC supplementation, with
this increase being possible in lymphocytes without GSH normalization in the serum of
HCV patients [81]. The incorporation of cysteine from NAC into GSH can be suppressed
by limiting the GSH export from the liver as a result of liver damage during the course
of the disease. In addition, interferon-treated patients have not found consistent thera-
peutic benefits of NAC, which is explained by the pro-oxidative properties of NAC in the
presence of metal ions [196–198,201]. Pro-oxidant properties have also been demonstrated
for pyrrolidine dithiocarbamate due to an increase in the intracellular level of ferrous or
cuprous ions [194,195]. It has been suggested that GSH ethyl ester may be more effective
than NAC in restoring proper GSH levels in the liver [196–198,201]. The analysis of correla-
tions between antioxidants, oxidative stress, and HCV titer is complicated by the fact that
observations are made in in vivo and in vitro studies. Differences in these observations
may result from changes in HCV titer in vivo and thus from the excessive induction of
oxidative stress compared to in vitro studies. The effects of NAC on patients with viral
hepatitis caused by serotypes other than B and C were also studied. Patients infected with
HAV usually do not receive treatment related to the presence of the virus, but protective
drugs for the liver are introduced. In a study of fifty children aged 1 to 17 years, NAC
application was shown to lower liver transaminases levels in less time than in the untreated
patients. NAC therefore helps protect the liver [202]. These studies confirm previous pilot
studies on a small group of 12 patients with HAV [203].

The result of HEV infection may be acute liver failure manifested by hepatic encephalopa-
thy, jaundice, and coagulation disorders, among others. The study by Nabi et al. [204] in a
group of 18 patients with HEV showed an improvement in the overall survival in patients
with acute liver failure who were administered NAC compared to the control group of
patients with acute liver failure caused by factors other than HEV. In addition, the hospital
stay was shortened. Mumtaz et al. [205] administered NAC to a group of 24 patients and
compared it with a control group of 16 patients who did not receive NAC. A decrease in
mortality was observed in patients treated with NAC. It was concluded that not using
NAC is a predictor of mortality. The use of NAC is safe, increases survival time, and
is additionally recommended for use in centers without the possibility of performing
liver transplants.

Since orally administered GSH is considered to be digested in the human gastroin-
testinal tract and unable to pass through cell membranes or cross the blood–brain barrier
efficiently, it is not therapeutically useful. Instead, non-toxic cysteine precursors can be
utilized to increase GSH levels. Several articles have demonstrated the clinical applica-
tion of NAC in viral liver diseases. Oral NAC has proven to be successful as a drug in
patients with viral hepatitis A who develop liver failure and a fulminant form of hepatic
encephalopathy [203]. NAC is also used in clinical practice for dengue-fever-associated
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hepatitis and as a therapeutic agent in patients with asymptomatic HIV, hepatitis B virus,
and hepatitis C virus infection, including cases of drug-induced liver injury [206,207].

7. Conclusions

Increased ROS levels are thought to play a significant role in the pathogenesis of liver
failure. The evaluation of oxidative stress in samples can be exploited as important tools
in the assessment of disease status in humans. Multiple mechanisms may contribute to
systemic changes of GSH levels in hepatitis virus infection. During infection with hepa-
totropic viruses, the long-term production of Il-6, IL-8, and TNF-α leads to the generation
of free radicals. This cycle of high production of free radicals can lead to GSH depletion. It
is not only the inflammatory process via cytokine activation that is important in disease
progression, but also cytopathic effects of viruses. For example, in genotype 3 HCV in-
fection, hepatic steatosis can result from the direct viral cytopathic effect. In the works
on glutathione status during HCV infection, it has been suggested that genotype 1b has
greater intrinsic cytopathy action and may activate a more intense inflammatory process.
It was noticed that more severe oxidative stress might be associated with more serious
disease in HCV genetic subtype 1a/1b in contrast to subtype 3a. However, the association
between glutathione status and background genotyping has been described only in few
studies. To our knowledge, unlike in the case of primary hepatotro0pic viruses, there are
no data concerning the effects of non-hepatotropic viruses on liver dysfunction associated
with glutathione status. In most cases of HBV, HCV, HAV, and HEV infection, we will see
lower GSH levels in patients with liver diseases, which is associated with the decreased pro-
duction and decreased influx of GSH from the liver. In in vitro studies, contradictory data
have been reported about the effect of HCV on intracellular GSH metabolism. The decrease
in the GSH level as well as the increase in the GSSG level and GR activity are consistently
revealed in most of the research. GSH and GSSG levels help monitor the progression and
treatment of liver failure associated with these viral infections. More research is needed
to determine the precise dependence between GPx activity and HBV/HCV/HAV/HEV.
According to the available literature, the measurement of increased levels of GST could be
considered as a useful confirmatory test for hepatocellular damage. In conclusion, GSH,
GSSG and GST levels, and GPx, GR activity may be considered as useful biomarkers for
determining the progression of liver damage in infections with hepatotropic viruses.
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Abbreviations

ALT Alanine aminotransferase EC 2.6.1.2
AST Aspartate aminotransferase EC 2.6.1
AVH Acute viral hepatitis
CH Chronic hepatitis
GPx Glutathione peroxidase EC 1.11.1.9
GR Glutathione reductase EC 1.6.4.2
GSH Reduced glutathione
GSH-C4 N-butanoylglutathione
GSH-OEt Glutathione monoethylester
GSSG Oxidized glutathione, glutathione disulfide
GST Glutathione-S-transferase EC 2.5.1.18
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HAV Hepatitis A virus
HBsAg HBV surface antigen
HBV Hepatitis B virus
HBx HBV X protein
HCC Hepatocellular carcinoma
HCV Hepatitis C virus
HDV Hepatitis D virus
HEV Hepatitis E virus
HIV Human immunodeficiency virus
HSP-90 Heat shock protein-90
HSV-1 Herpes simplex virus-1
ICS Inactive carrier state
IKK Inhibitor of NF-κB kinase
IL Interleukin
JNK c-Jun N terminal kinase
LC Liver cirrhosis
LOOH Lipid hydroperoxides
NAC N-acetyl-L-cysteine
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NOX4 NADPH oxidase-4
NOXs NADPH oxidases
Nrf2 Nuclear factor erythroid 2-related factor 2
NS5A HCV nonstructural protein 5A
ROS Reactive oxygen species
Th T helper
TNF-α Tumor necrosis factor α
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