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Abstract: Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered
one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes
mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs
associated with microvascular alterations limited to the advanced disease stages. In response to
the low resolution and limitations of the DR treatment, there is an urgent need to develop more
effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the
reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence
has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various
diseases by modulating multiple cell signaling pathways and gene expression, contributing to
the improvement of several chronic diseases, including metabolic and neurodegenerative diseases.
However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a
lack of data, especially from human studies, on the therapeutic potential of these substances. This
review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on
the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory
nature, through evidence from experimental studies. Finally, the review highlights the potential of
dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further
clinical studies approaching the efficacy of these substances in DR management.

Keywords: diabetes; retina; polyphenols; cell death; antioxidant effects; neuroprotection

1. Introduction

Diabetic retinopathy (DR) is the most common complication of diabetes mellitus
(DM) and the leading cause of blindness, affecting approximately 95% of patients with
type 1 DM and more than 60% of patients with type 2 DM. DR is a public health and
socioeconomic burden that could be prevented or reduced by implementing interventions,
such as glycemic control, healthy lifestyle behaviors, and dietary modification [1–3].
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According to data from the International Diabetes Federation (IDF) [4], 537 million
people aged 20 to 79 years were diagnosed with diabetes worldwide in 2021, an increase of
16% over the previous two years, and projections for 2030 point to 643 million cases. The
alarming global evolution of DM and the increasing development and progression of DR
suggest early diagnosis and more effective, accessible, and cost-effective prophylactic and
therapeutic measures.

Poor glycemic and blood pressure control and duration of diabetes are significant risk
factors for developing DR, and rigorous control of these parameters promotes long-term
benefits in delaying or preventing DR [5–12]. Pregnancy and puberty [13–16], kidney
disease [17,18], and a high body mass index (BMI) [19] are also risk factors for DR. Even
when these risk factors are under control, some patients still develop diabetic macular
edema (DME), the major vision-threatening late complication of DR [20,21].

The nutritional profile is also a determining factor for DR [22,23]. The correlation be-
tween the consumption of different dietary components (macro- or micronutrients) [24–26]
or even specific dietary patterns (e.g., Mediterranean diet) has been investigated in this
context [27,28]. Despite the growing body of evidence linking dietary intake and DR,
current data are inconclusive, for example, on which dietary components are associated
with the protection or susceptibility to DR [22].

Although clinical protocols and nutritional recommendations are well established
in treating DM, there is still a lack of specific dietary recommendations for DR [29,30].
In this sense, the development and implementation of specific nutritional protocols and
therapies with bioactive compounds may represent an attractive, accessible, and cost-
effective strategy in the management of DR [31–33].

Despite remarkable progress in understanding the molecular and pathophysiological
mechanisms of DR, some gaps remain, including those related to the early stages of DR.
Currently, therapeutic strategies, including glycemic and blood pressure control, laser
photocoagulation, intravitreal injections of anti-inflammatory or VEGF neutralizing agents,
and vitreoretinal surgery are limited to late stages of the disease, reducing the chances of
preventing vision loss [34–38]. In addition, not all patients respond satisfactorily to current
clinical therapies, suggesting that developing effective strategies for the prevention and
treatment of DR is critical [36,38].

Polyphenols are a diverse group of bioactive molecules derived primarily from plant
foods, such as fruits, vegetables, whole grains, coffee, nuts, and red wine. These com-
pounds exert health benefits primarily due to their antioxidant and anti-inflammatory
properties [39,40]. Experimental and clinical studies on the effects of a polyphenol-rich
diet have shown significant modulatory effects on the pathophysiological mechanisms
involved in chronic diseases, such as diabetes and cardiovascular and neurodegenerative
diseases, suggesting a significant prophylactic and therapeutic potential [41,42]. Given the
increase in pro-inflammatory markers and reactive oxygen species (ROS) in DR, dietary
intervention or supplementation with polyphenols may be a promising strategy to manage
the pathology.

This review aims to comprehensively describe and clarify the effects of dietary polyphe-
nols on the pathophysiological mechanisms involved in DR, especially those related to
oxidative and inflammatory mechanisms, as well as to discuss evidence from animal mod-
els on the effects of dietary polyphenols as a prophylactic and therapeutic strategy in
DR management.

2. Retina

The retina transduces and preprocesses the information via an intraretinal circuit
and sends it via the optic nerve to the visual nuclei of the brain [43]. The mature ver-
tebrate retina is organized into layers [44,45], such as (i) the outer nuclear layer (ONL),
composed of the cell bodies of rod and cone photoreceptors, located closest to the reti-
nal pigmented epithelium (RPE); (ii) the inner nuclear layer (INL), composed of the cell
bodies of interneurons-horizontal, bipolar, amacrine, and displaced ganglion cells-located
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between the ONL; and (iii) the ganglion cell layer (GCL). The GCL is located near the
vitreous body of the retina and consists of ganglion cells, displaced amacrine cells, and
some light-sensitive ganglion cells. Interspersed between these nuclear layers are the outer
plexiform layer (OPL) and the inner plexiform layer (IPL), where synaptic contacts occur.
Ganglion cells are the projection neurons, and their axons form the nerve fiber layer (NFL)
within the retina and give rise to the optic nerve as they exit the retina [44,46].

Photoreceptors communicate with the rod- or cone-specific bipolar cells and horizontal
cells in the OPL. Bipolar cells synapse with ganglion cells in the IPL. This circuit is named
the vertical/radial pathway, and all cells use glutamate as a neurotransmitter [44,47].
Horizontal and amacrine cells may modulate the radial pathway in the OPL and IPL
and mediate the processing of light/image stimuli, contrast, and detection of movement
direction [48].

The retinal vasculature consists of the choroidal and intraretinal blood vessels re-
sponsible for the blood supply of the outer and inner retina, respectively. In humans, the
inner retina presents a peripapillary plexus in the innermost part of the NFL, accompanied
by inner (in the GCL) and outer (in the IPL, INL to OPL) intraretinal beds. Interestingly,
the specialized region for high visual acuity in primates, the fovea, is avascular, which
minimizes light distortion [49].

In addition to neurons, the retina contains three types of glial cells, Müller cells,
astrocytes, and microglia. Müller glia, which comprises 90% of retinal glial cells, have
a cell body in the center of the INL and radial processes that extend through all retina
layers. Consistent with the multiple roles that Müller glia play in retinal homeostasis and
physiology, dysfunction of these cells in DR may be related to retinal dysfunction and
severity of DR [47,48,50,51]. Figure 1 shows a schematic drawing of the retina.
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Figure 1. Schematic diagram of the retina. The retina is organized into nuclear layers separated by
plexiform layers. The photoreceptors (rods and cones) have nuclei in the outer nuclear layer and
synapse with bipolar and horizontal cells in the outer plexiform layer. Bipolar cells are divided into
rod bipolar (light green) and cone bipolar (light and dark purple). Cone bipolar cells form synapses
directly with their respective ganglion cells in specific sublamina (a and b, for, respectively, OFF
and ON pathways) of the inner plexiform layer (IPL). Rod bipolar indirectly transmits information
to ganglion cells indirectly via an amacrine cell in the IPL. The ganglion cell layer and the nerve
fiber layer are formed by the nuclei and axons of ganglion cells, respectively, which transmit the
information to the visual encephalic centers. The retinal glial cells are Müller cells, astrocytes, and
microglia. The retinal pigmented epithelium (RPE), composed of pigmented epithelial cells, plays
several essential roles in maintaining the retina’s health.



Antioxidants 2023, 12, 1237 4 of 27

3. Diabetic Retinopathy

DR is a multifactorial pathology that results from a dysfunction in a variety of retinal
cells, including Müller glia, ganglion cells, endothelial cells, and photoreceptors, as well as
optic nerve damage and, later, retinal neuronal cell death and vascular lesions [52,53]. Al-
though neural retina/optic nerve changes occur before vascular alterations in both human
and animal models, DR is a chronic microvascular disease characterized by vasculopathy,
hyperpermeability, hypoperfusion, and neoangiogenesis of slow progression, accompa-
nied by vitreous hemorrhage, retinal detachment, diabetic macular edema process (DME),
and/or macular ischemia, resulting in neural abnormalities and retinal deficits [20,54,55].
Although DME and macular ischemia can occur at any stage of the disease, they are more
common in the later stages of DR [54].

Chronic hyperglycemia promotes the thickening of the retinal capillary basement
membrane, impairs adherence of tight junctions between endothelial cells, and makes
blood vessels more permeable. These events define the process known as the blood–retinal
barrier (BRB) breakdown. This phenomenon is accompanied by decreased pericytes and
mesenchymal cells surrounding endothelial cells, providing structural support for the
vessel wall and vascular repair processes [56,57]. The loss of pericytes leads to voids in
the capillary walls. In response, capillary endothelial cell growth is induced toward the
inner part of the vessel wall, favoring the formation of cell clusters that obstruct the vessel
lumen and the appearance of hemorrhagic spots and microaneurysms. This combination of
damage compromises vascular function and the oxygen and nutrient supply to the retinal
tissue, leading to ischemia, increased synthesis, and release of pro-angiogenic factors and
neovascularization [55,57].

DR is classified based on pathophysiological characteristics and vascular manifesta-
tions during the clinical course, the initial phase, known as non-proliferative DR (NPDR),
and the advanced phase, known as proliferative DR (PDR). The presence of new blood
vessels characterizes the PDR stage [58].

NPDR is characterized by morphological changes and vascular damage, including
alterations in the microvasculature and an increase in vascular caliber. During this phase,
hyperglycemia causes hemodynamic dysfunction, increased permeability, microaneurysms,
hemorrhages, and exudates. These manifestations generally progress slowly, and some
patients may be asymptomatic. As the disease progresses, the frequency of hemorrhagic
events increases, disrupting the retina’s oxygen supply and metabolic demands and increas-
ing the risk of ischemic events. Fundus examination may reveal whitish spots known as
“cotton-wool spots” that indicate ischemic processes or retinal infarction [56,59,60]. Thus,
the abnormal angiogenic process leads to a more advanced and critical PDR [55,61].

Approximately half of NPDR patients progress to PDR in less than one year [62]. The
main feature of PDR is the appearance of new blood vessels because of the local accumula-
tion of vascular growth factors caused by prolonged hypoxia, followed by the formation
of ischemic zones. These vessels are delicate, composed entirely of the endothelium, and
grow along the retina and into the vitreous without initially causing symptoms or vision
loss. However, because their walls are thin and fragile, the vessels can rupture and re-
lease blood into the vitreous cavity, causing severe vision loss and even blindness [55,63].
Neovascularization is usually accompanied by fibrous tissue growth, which is visible on
ophthalmoscopy [62].

Although DR has been predominantly considered a microvascular disease, increasing
evidence suggests that retinal dysfunction and degeneration are critical features associated
with disease progression and that early neural injury occurs before vascular damage in
DR [64]. Data from electroretinograms of diabetic patients show a decrease in the oscillatory
potential, which would be the first observable change in the retina of these individuals [65].
Other parameters are altered in individuals with DM without vascular changes, such as
contrast sensitivity, color vision, and oscillatory potentials [53]. Histologic analysis of
clinical and postmortem specimens confirmed alterations in retinal structural parameters,
such as changes in the thickness of different retinal layers, neuronal death, and increased
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oxidative stress before vascular changes visible with fundoscopy, supporting the concept
of an early neurodegenerative phase of DR preceding NPDR [65–68].

In this sense, a prospective and longitudinal human study of 45 patients with type
1 DM, without or with minimal DR, reported significant and progressive impairment of
both the nerve fiber layer (NFL) and the ganglion cell (GC)/inner plexiform layer, inde-
pendent of glycated hemoglobin, age, and sex [64]. To confirm these findings, eye samples
from six deceased patients with DM, without or with minimal DR, were compared to
eyes from donors of a similar age without DM. The first group showed a significantly
thinner NFL but no difference in GC density. Surprisingly, the data showed that despite
the neuronal changes observed in the DR group, there was no difference in retinal capillary
density between the groups. These findings were confirmed in two experimental diabetes
mouse models. Recently, other studies using optical coherence tomography showed de-
creased retinal thickness (INL/GCL and NFL) in diabetic patients without signs of DR,
indicating neurodegeneration before vascular changes [64,69–72]. These results suggest
that retinal diabetic neuropathy is not necessarily a consequence of retinal ischemia. It
develops gradually, independent of glycated hemoglobin, age, and sex, before the onset
of microvasculopathy.

All retinal cells (e.g., ganglion, bipolar, amacrine, and photoreceptor cells) show altered
function before visible microvascular lesions [53]. Therefore, the description of DR as a
mere “microvascular pathology” is an oversimplified and flawed characterization that
hinders the exploration of novel therapeutic approaches based, for example, on intervention
on neurodegenerative pathways [73].

4. Cellular and Molecular Pathways Involved with Oxidative Stress and Inflammatory
Response during DR

The retina is susceptible to oxidative stress due to its high polyunsaturated fatty acids
(PUFA) concentration and rapid oxygen and glucose uptake. Another critical element in
the pathophysiology of DR is inflammation. The oxidative stress induces ROS production,
the root cause of neuropathy and retinopathy [74].

Glucose is the primary precursor for energy production in the cell. The citric acid
cycle requires glycolysis-derived pyruvate to produce the high-energy electron carriers
FADH2 and NADH, which fuel the electron transport required for ATP production. At the
end of this electron transport chain, oxygen molecules serve as electron acceptors, limiting
reactions that would otherwise impair the function of other cellular components. High
glucose levels cause increased glycolysis rate, pyruvate levels, and FADH2 and NADH
production. When these electron carriers reach the upper limit of the voltage gradient
across the inner mitochondrial membrane, electron transfer through complex III is impaired,
pushing electrons back to coenzyme Q, which mediates superoxide (O2

−) production [75].
Superoxide belongs to a class of reactive oxygen species (ROS). ROS are highly reactive,
mainly due to unpaired electrons in the outer shell of their atoms, causing dysfunction
in enzymes and altering the interaction properties of proteins, lipids, sugars, and nucleic
acids. O2

− can be converted by superoxide dismutase activity to the non-radical ROS,
hydrogen peroxide (H2O2). H2O2 alters protein interactions or function through cysteine
oxidation. H2O2 can be converted to hydroxyl radical (OH.) by the Fenton reaction, as
well as to hypochlorous acid (HOCl) when targeted by neutrophil myeloperoxidase during
an inflammatory process [76,77]. Indeed, diabetes-induced neuroinflammation showed
increased NO synthase (NOS2) levels in the retina. The reaction of nitric oxide (NO) with
O2

− forms the family member of the reactive nitrogen species peroxynitrite (ONOO−). ROS
damages DNA leading to the activation of DNA repair enzymes, such as poly (adenosine
diphosphate (ADP)-ribose) polymerase. This enzyme produces ADP-ribose, which inhibits
glycerol-3-phosphate dehydrogenase (GAPDH), which is responsible for a step in the
glycolytic pathway. The result is an accumulation of glycolytic intermediates used by
the polyol and hexosamine pathways, advanced glycation end products (AGEs), and
upregulation of the PKC signaling pathway [78].



Antioxidants 2023, 12, 1237 6 of 27

All these pathways increase ROS and form a positive feedback loop to increase ox-
idative stress in the cell. Among many ROS-generating systems, NADPH oxidase (NOX)
activity seems particularly important for generating cytoplasmic ROS, especially for neo-
vascularization [79]. NOX is a group of enzymes that catalyzes the production of O2

− by
transferring an electron from NADPH to O2. NOX4, a subtype of NOX, can also produce
H2O2. NOX activity is upregulated by several signals produced during the progression
of DR, including tumor necrosis factor-alpha (TNF-α), several interleukins, and AGE sig-
naling. Therefore, NOX appears to be important in advance of DR, and inhibition of NOX
has emerged as a promising therapeutic target for DR [80,81]. Thus, oxidative stress is a
constitutive problem and a hallmark of DM.

As mentioned above, hyperglycemic conditions induce the production of AGEs.
Briefly, AGEs are generated by the reduction in amino acids, lipids, or nucleic acids by
glucose, triggering the formation of Schiff bases. Rearrangements of Schiff bases lead
to forming Amadori products, which have reactive carbonyl groups. These carbonyl
groups interact with amino, sulfhydryl, and guanidine functional groups, denaturing
and cross-linking target proteins. Finally, reactions of Amadori products with arginine
or lysine within target proteins lead to the formation of stable AGEs. For example, AGE
can signal through specific receptors, the receptor for advanced glycation end products
(RAGE), mediating paracrine and autocrine signaling involved in the pathology of diabetic
retinopathy [82].

AGEs and oxidative stress activate retinal micro- and macroglia during diabetic
retinopathy [83]. Once activated, microglia produced interleukin (IL)-1β, IL-6, IL-8, and
TNFα under the control of NF-kappaB (NF-kB) [84–89]. Müller glia is activated in DR,
leading to increased secretion of IL-6, IL-8, VEGF, INF-γ, TNF-α, IL-1β, monocyte chemoat-
tractant protein-1 (MCP-1), and EGF [90,91]. In addition, galectin-3 is upregulated in Müller
glia in diabetic rats, and the absence of galectin-3 reduces the number of astrocytes and
macrophage-like cells, both quiescent and activated, in the optic nerve and protects against
ganglion cell death [92]. Retinal astrocytes are consistently activated by oxidative damage,
increasing their secretion of IL-6, MCP-1, and MIP-2 under the control of p38MAPK and
NF-kB signaling [93]. In addition, the AGE receptor mediates astrocyte activation biased
toward a pro-inflammatory profile, increasing NF-kB and complement C3 expression,
mediating synaptic loss [94].

All these secreted mediators orchestrate various pathological events leading to persis-
tent inflammation, ROS production, neurodegeneration, blood–retinal barrier permeability,
and defective neovascularization, which are hallmarks of diabetic retinopathy. TNF-α and
galectin-3 mediate apoptotic cell death of retinal ganglion cells [92,95]. Both IL-1β and
TNF-α increased the content of ICAM-1 on the endothelial surface, allowing monocyte
diapedesis through VLA4 and CD18 binding [96]. These monocytes are attracted to the
retina by MCP-1 secreted by astrocytes and Müller glia and differentiate into macrophages
once in the retinal tissue [97]. IL-8 recruits neutrophils, which release myeloperoxidase
granules, further contributing to the maintenance of oxidative stress [98,99]. These leuko-
cyte recruitments rely on the luminal exposure of MIP-2, which stimulates the upregulation
of leukocyte integrins during diapedesis [100]. Oxidative damage and IL-6 stimulate VEGF
production by Müller glia and endothelial cells, respectively [101]. VEGF decreases oc-
cludin content in endothelial cells, thereby increasing the permeability of the blood–retinal
barrier, leading to retinal edema and degeneration [102]. To worsen the scenario, VEGF
and EGF stimulate neovascularization, expanding the area covered by defective capillaries
in the proliferative phase of diabetic retinopathy [103]. Thus, neuroinflammation and
oxidative stress produce each other in a positive feedback loop, contributing to neuronal
death and vascular pathology of diabetic retinopathy [53].

5. Dietary Polyphenols: A Potential Strategy for Management of Diabetic Retinopathy?

Early studies have demonstrated the importance of consuming foods that contain
substances with antioxidant properties for the prevention of cardiovascular disease, can-
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cer, and age-related degenerative brain disorders [104–106]. Natural products and plant
extracts with antioxidant properties, low toxicity, and known health-promoting properties
have been suggested as possible treatments for eye diseases [107–113]. Although polyphe-
nols offer several advantages, it is crucial to consider certain factors when evaluating
their physiological effects. Some polyphenols have low water solubility and limited oral
bioavailability, requiring higher doses, which are significant barriers to their broader use in
therapies [114,115]. Furthermore, their physicochemical stability, gastrointestinal absorp-
tion, and metabolism are crucial to ensure their efficacy [116,117]. In this context, given
the wide range of biological activities associated with these molecules (Figure 2), it seems
plausible to study not only the potential health benefits but also to develop strategies and
tools (pharmacotechnical and biotechnological) to overcome the limitations mentioned
above, accompanied by research on the molecular mechanisms of dietary polyphenols
and/or their supplementation in diseases affecting the human eye, such as DR.
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Figure 2. Chemical structures of polyphenolic compounds with potential therapeutic implications in
diabetic retinopathy: ferulic acid, quercetin, resveratrol, curcumin, and epigallocatechin gallate.

5.1. Ferulic Acid

Ferulic acid (FA) was first isolated from Ferula foetid in 1866. FA is a polyphe-
nol of the hydroxycinnamic acid (HCA) family, derived from secondary metabolites of
lignin biosynthesis from phenylalanine and tyrosine, found in the free or conjugated
form [118–120]. FA has shown various health biological and therapeutic properties, includ-
ing anti-inflammatory, antioxidant, antibacterial, anti-diabetic, anti-carcinogenic, anti-aging,
and neuroprotective [121].

FA is a potent antioxidant by neutralizing free radicals and enhancing the cellular
stress response by upregulating cytoprotective systems, such as heme oxygenase-1, heat
shock protein 70, extracellular signal-regulated kinase 1

2 , and the proto-oncogene Akt. In
addition, FA can suppress the expression and/or activity of cytotoxic enzymes, such as
cyclooxygenase-2 (COX-2), caspases, and inducible nitric oxide synthase. (iNOS) [122]. In
animal models of hepatocytic and aortic inflammation and ulcerative colitis, FA treatment
inhibited the production of the inflammatory cytokines IL-6, IL-1, and TNF-α. The ability
of hydroxycinnamic acids, including FA, to inhibit the NF-kB pathway and suppress the
expression of COX-2 and iNOS may be a representative anti-inflammatory mechanism [123].
Using optical coherence tomography and electroretinography, FA or its analog ethyl ferulate
attenuated morphologic and functional retinal degeneration in mice, as evidenced by
reductions in outer retinal and choroidal layer thickness [124].
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Retinal degeneration in DR is typically accompanied by glia-mediated neuroinflamma-
tion. FA supplementation reduces neuroinflammation by suppressing microglial activation
in mice [125]. The effect on human retinal pigment epithelial cells has also been studied.
A recent study demonstrated that FA exerts a potent protective effect against oxidative
stress-induced retinal damage. The authors showed that preincubation of human retinal
pigment epithelial (ARPE-19) cells in culture with FA for 24 h significantly attenuated
apoptosis induced by four h of H2O2 challenge by upregulating Bcl-2 and downregulating
Bax [126].

Zhu et al. [127] investigated the anti-apoptotic effect of FA in RPE cells (ARPE-19)
exposed to high glucose and its cytoprotective effects in the retina of db/db diabetic mice.
Treatment with FA significantly increased cell viability and suppressed cell apoptosis
in ARPE-19 cells compared with the untreated group. In addition, treatment with FA
(0.05 g/kg for two months) alleviated degenerative changes in the retinal tissues of db/db
mice. It sharply decreased the expression of apoptosis-related markers in the retinal tissues
compared to the control group. The effect shown in the FA-treated groups was related to
P53 and BAX inactivation and Bcl2 activation.

Adenosine monophosphate-activated protein kinase (AMPK) is a potent regulator
of metabolism and an attractive target for antidiabetic drugs. Hyperglycemia induces
oxidative stress and decreases AMPK phosphorylation. Sigh and Patil [128] showed that
trans-FA increased cellular phosphorylation of AMPK in cultured HepG2 and L6 cells
exposed to high glucose in a time-dependent manner, besides causing upregulation of
GLUT2 and GLUT4 and inhibition of JNK1/2 activity.

In diabetic patients, the formation and accumulation of AGEs are related to the onset
and development of atherosclerosis by inducing oxidative damage, vascular contraction,
and blood coagulation state, stimulating the release of cytokines, and increasing the in-
flammatory process in blood vessels. Reducing or inhibiting AGE formation may be a
prospective strategy to prevent or delay the development of vascular complications in DR.

Liu et al. [129] have demonstrated an inhibitory effect of FA on AGE formation in vitro.
Pretreatment with FA prevented AGE-induced p38 MAPK signaling and NF-κB pathway
activation in human vascular endothelial cells (HUVEC). Because of the many possibilities,
researchers have worked on strategies for the ocular delivery of FA by microencapsulation.
This drug delivery system eliminates losses during the digestive process and increases in
situ bioavailability [130]. Table 1 summarizes the findings for the use of FA in DR.

5.2. Curcumin

Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), also known
as diferuloylmethane, Natural Yellow 3, or E100, according to the European coding of food
additives, belongs to the group of polyphenols. It was first isolated from the rhizome
of Curcuma longa L. (turmeric) in 1815, the main component of this plant species. It is
mainly grown in India and China, and it was first known for its role as a food additive
or spice in cooking (e.g., curry) [131,132]. Clinical studies have reported that curcumin
exerts anticancer, anti-inflammatory, and antioxidant effects. Furthermore, curcumin has
a potential neuroprotective effect [133]. Studies in diabetic mouse models have shown
that oral administration of various doses of curcumin reduces blood glucose levels [134]
and HbA1C levels [135] and improve insulin sensitivity [136,137]. Dietary curcumin also
effectively reduced fasting blood glucose, urine glucose, and urine volume in STZ-induced
diabetic rats [138].

Early evidence has shown that using curcumin as a therapeutic agent can help to
improve the condition of patients with retinal diseases [139–142]. Many of these effects
have been demonstrated using RPE cells and the retina of diabetic rats as models. Curcumin
may exert its pharmacological properties by inhibiting cell proliferation and angiogenesis
by targeting molecular and cellular pathways involved in the pathogenesis of retinal
diseases [143].
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Table 1. Primary outcomes of the studies testing the use of ferulic acid in diabetic retinopathy.

Effects on the Retina
Compound Food Source Experimental Model Effects Reference

Ferulic acid

Cereals (maize, rice
endosperm, barley

extract), grasses,
oranges, tomatoes,
carrots, sugar-beet
pulp, and bamboo

shoot

Mice
Attenuated the NaIO3-induced
retinal degeneration in the retina
and choroid.

[124]

Mice, intragastric
administration.

Suppression of microglia
activation. [125]

Human retinal cells.

Protection against oxidative
stress-induced retinal damage.
Reduction in H2O2-induced
apoptosis by upregulating Bcl-2,
downregulating Bax, and cleaving
caspase-3 protein expression.

[126]

RPE cells incubated in
30 mmol/L glucose medium.

Decreased cell apoptosis and
lowered P53, BAX, and Bcl2
expression levels.

[127]

db/db diabetic mice.

Decreased degenerative alterations
in the retinal tissues.
Decreased expression of
apoptosis-related markers in
retinal tissues.

HepG2 and L6 cells incubated
in a hyperglycemic medium.

Increased phosphorylation of
AMPK, upregulation of GLUT2
and GLUT4, and inhibition of
JNK1/2 activity.

[128]

HUVEC cells incubated in a
hyperglycemic medium.

Inhibitory effects on AGEs and
p38 MAPK signaling pathway,
activating NF-κB pathway.

[129]

Under hypoxic conditions, HIF-1 plays a significant role in the expression of
VEGF [144–146], and studies have described how curcumin can decrease VEGF produc-
tion through the control of HIF-1 [147,148]. The progression of DM is associated with
increased ROS levels in the neural retina and vascular endothelium [149,150]. These events
may decrease the antioxidant defense system and enhance oxidative damage in diabetic
retinopathy [143,151,152].

Curcumin has a potent anti-inflammatory effect by downregulating the expression
of TNF-α, IL-1, IL-6, and IL-8. In addition, curcumin can downregulate the cellular action
of angiogenic proteins, such as VEGF, by inhibiting transcription factors, including NF-
κB, HIF-1α, AP-1, and early growth response-1 (EGR-1) [153–155]. Curcumin treatment
reduced NFκ-B and phosphorylated NFκ-B, IKB-α, IL-1β, and Bax levels, while increas-
ing Bcl-2 expression in rat retinal vascular endothelial cells (RRVECs) exposed to high
glucose [156].

In addition, Ran et al. [157] observed that curcumin downregulated high glucose-
induced inflammatory injury in ARPE-19 by modulating the ROS/PI3K/AKT/mTOR
signaling pathway and decreasing the levels of pro-inflammatory cytokines TNF-α, IL-1β,
and IL-6. These findings show that curcumin exerts anti-inflammatory effects by modulat-
ing multiple signaling pathways, making it a promising molecule against inflammation
and oxidative stress in DR.

Under physiological conditions, the nuclear erythroid 2 p45-related factor (Nrf2) is
an essential protein located primarily in the cytoplasm. In response to oxidative stress,
Nrf2 primarily modulates endogenous defense. Nrf2 translocates to the nucleus and binds
to specific DNA sites, such as electrophile response elements (EpRE) or antioxidant re-
sponse elements (ARE), to initiate the transcription of cytoprotective genes [158,159]. Then,
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1,5-bis(2-trifluoromethylphenyl)-1,4-pentadien-3-one(C3), a curcumin analog, inhibited the
cytotoxic effects of acrolein in the ARPE-19 cells by directly activating the Nrf2 signaling
cascade. More effectively than curcumin, it increased GSH and mitochondrial reductive
enzymes while protecting ARPE-19 cells from oxidative stress [160].

Curcumin may help treat DR since it increases Nrf2/HO-1 and ERK1/2 expression
and reduces ROS-induced apoptosis in RPE cells [161]. Xie et al. [162] investigated the effect
of curcumin on retinal damage in streptozotocin (STZ)-induced diabetic rats and found
that four weeks of oral curcumin, subcutaneous insulin, or combination therapy improved
histopathologic parameters, oxidative stress markers, and reduced plasma glucose in all
groups studied. In addition, curcumin had a better anti-photoreceptor apoptosis effect
compared to insulin treatment. Curcumin has a regulatory impact on oxidative stress-
induced activation of the Nfr2 pathway and inhibition of the AGE–RAGE pathway and
extracellular matrix (ECM)-receptor interaction in the diabetic retina. Table 2 summarizes
the findings for the use of curcumin in DR.

Table 2. Primary outcomes of the studies testing the use of curcumin in diabetic retinopathy.

Effects on the Retina
Compound Food Source Experimental Model Effects Reference

Curcumin
Rhizome of

Curcuma longa L.

RPE cells and the retina of
diabetic rats

Inhibited cell proliferation and
angiogenesis by modulating cellular
signaling pathways.

[143]

RRVECs incubated in a
hyperglycemic medium

Reduced levels of NFκ-B and pNFκ-B,
IKB-α, IL-1β, and Bax, and increased
expression of Bcl-2,

[156]

RRVECs incubated in a
hyperglycemic medium

Diabetic rats
Improved basal membrane thickness. [154,156]

ARPE-19 cells

Downregulated
ROS/PI3K/AKT/mTOR signaling
pathway by decreasing the levels of
pro-inflammatory cytokines and
TNF-α, IL-1β, and IL-6.

[157]

Human ARPE-19 cells Activated Nrf2 signaling cascade. [160]

RPE cells
Increased the expression of
Nrf2/HO-1, ERK1/2, and reduced
ROS-induced apoptosis.

[161]

Streptozotocin (STZ)-induced
diabetic rats

Improved histopathologic parameters,
markers of oxidative stress, and
plasma glucose.
Regulatory effect on Nfr2
pathway activation.
Inhibition of the AGE-RAGE pathway
and extracellular matrix
(ECM)-receptor interaction in
the retina

[162]

5.3. Flavonoids

Polyphenols are classified into flavonoids (e.g., catechins, isoflavones, apigenin,
quercetin, lutein, and anthocyanins) and non-flavonoids (e.g., chlorogenic acids in cof-
fee) [163]. Flavonoids represent one of the main groups of antioxidants found in plants
and are divided into seven subclasses, flavonols, flavones, isoflavones, anthocyanidins,
flavanones, flavanols, and chalcones (these molecules are precursors of flavonoids and
isoflavonoids) [164]. In addition to antioxidant activity, flavonoids have important biologi-
cal activities, such as anti-inflammatory, antimicrobial, anticarcinogenic, and immunostim-



Antioxidants 2023, 12, 1237 11 of 27

ulatory effects [165]. The consumption of flavonoids is inversely associated with cancer,
cardiovascular disease, and neurodegenerative disorders [166].

5.3.1. Epigallocatechin Gallate

Flavanols (flavan-3-ols) differ from other flavonoids by having a hydroxyl in position 3
of the C ring and no double bond between positions 2 and 3 of the same ring. These com-
pounds are found as single molecules (glycated or aglycone) or organized in polymers.
Among the flavanols, the catechin groups (catechin, catechin gallate, epicatechin, epicate-
chin gallate, epigallocatechin, and epigallocatechin gallate), proanthocyanidins, theaflavins,
and thearubigins stand out. Food sources of flavanols include tea (Camellia sinensis), grape
seeds, cherries, berries, and the skins of various fruits [164].

Epidemiological studies associated C. sinensis consumption, mainly green tea, with a
reduced risk of several types of cancer [167,168], and its polyphenols are effective chemo-
prevention agents [169,170]. Other properties include antiallergic, antimicrobial, immunos-
timulatory, and anti-inflammatory effects [171], as well as increased insulin activity [172]
and protection against cardiovascular and brain disease [173,174].

Retinal GSH levels and activity of the antioxidant enzymes SOD and CAT are reduced
in diabetic rats. The administration of green tea extract at 200 mg/kg daily for 16 weeks to
diabetic rats restored GSH levels. It almost increased the SOD and CAT enzyme activities
to the same levels as the non-diabetic group. In addition, green tea treatment led to a
reduction in the expression of pro-inflammatory markers TNF and VEGF in the retina and
a decrease in the thickness of the retinal capillary basement membrane [175].

According to Silva et al. [176], daily consumption of green tea (5.7 g/kg) for 12 weeks
reduced retinal oxidative stress, prevented the upregulation of GFAP and the downregu-
lation of occludin and restored the expression of activated neuronal nitric oxide synthase
(nNOS) in diabetic mice. Green tea regulated the AKT-dependent activation of the en-
dothelial enzyme nitric oxide synthase (eNOS). NO produced by eNOS activation and
inflammatory markers are required for VEGF-induced increased vascular permeability,
which contributes significantly to BRB breakdown. In addition, green tea restored gluta-
mate transporter, glutamate receptor, and glutamine synthetase.

Many of the beneficial effects promoted by the consumption of green tea may be due
to several antioxidant compounds in its composition, most notably EGCG, as evidenced by
in vitro studies that evaluated the effect of incubating retinal cells with EGCG in a hyper-
glycemic medium. Chan et al. [177] observed that incubation of RPE with 10 µM EGCG
inhibited the migration of adult ARPE19 cells and decreased the adhesion of epithelial cells
to fibronectin. In addition, EGCG (3 µM) effectively inhibited the migration of RPE cells by
preventing the activation of PI3K/Akt, ERK1/2, and p38 phosphorylation and blocking
the MAPKs pathway.

Wang et al. [178] demonstrated that EGCG at 10 µM promoted autophagy in rat
retinal Müller cells incubated in a hyperglycemic medium. The authors found that EGCG
treatment decreased P62 protein levels, maintained LC3-B and Beclin-1 protein levels, and
stimulated autophagosome and autolysosome formation. The EGCG-induced decrease in
the mTOR pathway can explain these effects on autophagy.

5.3.2. Quercetin

Compared to other flavonoids, flavonols (3-hydroxyflavones) have a higher concentra-
tion of hydroxyls in the A and B rings. Quercetin, myricetin, kaempferol, and galanin are
some of the primary representatives of this class, which are present in different foods, such
as tea (Carmellia sinensis), onions, apples, and berries [179,180].

Quercetin can exert several biological effects, including anti-inflammatory, antioxidant,
antidiabetic, anti-hypertensive, anti-obesity, anti-hypercholesterolemic, anti-atherosclerotic,
anti-cancer, and anti-tumor [181–183]. In addition, quercetin consumption has been as-
sociated with protection against retinal ischemia-reperfusion injury, inflammation, and
age-related ophthalmopathy [184,185].
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Cheng et al. [186] showed that ARPE-19 cells incubated with quercetin (2.5–20 µM)
could dose-dependently reduce IL-1β-induced expression of inflammatory markers, such
as ICAM-1, sICAM-1, IL-6, IL-8, and MCP-1. This phenomenon was associated with
decreased phosphorylation of MAPKs (ERK1/2, p38, and JNK1/2) and cAMP response
element-binding protein (CREB).

Chai et al. [187] found that intraperitoneal administration of quercetin (150 mg/kg)
for 16 weeks reduced the number of apoptotic cells and improved the thickness of both the
inner and outer nuclear layers. Such retinal histopathologic changes were accompanied by
a decrease in the pro-inflammatory cytokines IL-1, IL-18, IL-6, and TNF-α, as well as in the
production of the pro-angiogenic factors and soluble adhesion proteins VEGF and sICAM-1.
In addition, quercetin treatment increased the expression of neurotrophic factors, including
brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), suggesting that
quercetin may have a neuroprotective effect in DR. The results also showed that quercetin
supplementation increased the expression of heme oxygenase-1 (HO-1), decreased the
expression of both HMGB-1 and TLR4, and reduced the hyperactivation of NLRP3 and
NF-kB inflammasomes. The activation of HO-1 by quercetin may contribute to some of
its effects. Treatment with zinc protoporphyrin (ZnPP), an HO-1 inhibitor, prevented
the retinal protective effects of quercetin. The results suggest that quercetin may have
therapeutic effects in DR by increasing the expression of HO-1.

The formation of retinal neovascularization (RNV) is a hallmark of PDR. In this context,
understanding the mechanisms involved in retinal angiopathy and inflammation associated
with DR has become essential in developing therapeutic strategies. High glucose conditions
promote the activation of angiogenic mechanisms and increase the expression of NLRP3,
ASC, caspase-1, IL-1, and IL-18, as well as the autophagic proteins LC3-B and Beclin-1.
Quercetin treatment effectively inhibits the activation of angiogenic, inflammatory, and
autophagic mechanisms induced by hyperglycemia in a dose-dependent manner (20 to
80 µmol/L) [188]. The results may suggest that the therapeutic potential of quercetin
for retinal neovascularization in DR involves the inhibition of NLRP3 inflammation and
autophagy signaling.

Chen et al. [189] demonstrated that STZ-induced diabetic rats receiving quercetin
supplementation had decreased expression of matrix metalloproteinase-9 (MMP-9) and
VEGF proteins. However, quercetin did not affect the expression of the inflammatory
mediator MCP-1.

Daily five-week quercetin supplementation (50 mg/kg) increased retinal BDNF, NGF,
and tropomyosin-related kinase B (TrkB) in diabetic rats. The treatment also prevented
apoptosis by reducing cytochrome c and caspase-3 activity while increasing levels of the
anti-apoptotic protein Bcl-2. In addition, quercetin treatment significantly increased retinal
GSH levels compared to untreated diabetic rats. The results suggest that quercetin may
protect neurons in the diabetic retina by increasing neurotrophic factors and preventing
neuronal death through potential anti-apoptotic effects mediated by the BDNF-TrkB/Akt-
synaptophysin pathway [190].

Like EGCG, quercetin inhibits photoreceptor cell apoptosis by inhibiting the PI3K/Akt
pathway. By stimulating Bcl-2, which prevents Bax-mediated apoptosis, quercetin most
likely suppresses the PI3K/Akt signaling pathway [191]. Another pathway of quercetin is
the activation of sirtuins, a protein involved in DNA repair and regulation of metabolic
processes. Sirtuin 1 protein is found in the outer nuclear layer and is secreted in the early
stages of retinal degeneration, aiding the repair process [192]. Table 3 summarizes the
findings for the use of quercetin in DR.
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Table 3. Primary outcomes of the studies testing the use of quercetin in diabetic retinopathy.

Effects on the Retina
Compound Food Source Experimental Model Effects Reference

Quercetin

Teas (from
C. sinensis), onions,
apples, and berries.

ARPE-19 cells
hyperglycemic medium

Decreased inflammatory markers,
phosphorylation of MAPKs (ERK1/2, p38,
and JNK1/2), and cAMP response
element-binding protein (CREB).
Activation of transcription factor 2 (ATF2),
c-Jun, and nuclear factor-B kinase
(IKK)/NFκ-B.

[186]

Intraperitoneal injection in
diabetic rats

Reduced the number of apoptotic cells
and partially improved the retinal
histopathology (decreased the thickness
of the inner and outer nuclear layer,
decreasing the distance between the inner
and outer limiting membrane).
Increased the number of ganglion cells.
Decreased pro-inflammatory cytokines,
production of pro-angiogenic factors and
soluble adhesion proteins, VEGF,
and sICAM-1.

[187]

HRMEC incubated in a
hyperglycemic medium

Inhibits the activation of angio-genic,
inflammatory, and autophagic
mechanisms.

[188]

STZ diabetic rats

Improved histology in the retina (less
edema and cell vacuolization).
Reduced expression of matrix
metalloproteinase-9 and VEGF proteins.

[189]

Diabetic rats

Increased retinal BDNF, NGF, TrkB, and
phosphorylation of Akt.
Prevented apoptosis, decreased
cytochrome c and caspase-3, and
increased anti-apoptotic protein Bcl-2.

[190]

Human ARPE-19 cells
incubated with NaIO3 (induce

age-related macular
degeneration-like
retinal pathology)

Inhibited the PI3K/Akt pathway and
stimulated Bcl-2 production. [191]

5.4. Resveratrol

Resveratrol (3,5,4 trihydroxystilbene) is a non-flavonoid polyphenol found in grapes,
peanuts, blackberries, and blueberries. Its high concentration in red wine has been associ-
ated with a lower risk of cardiovascular disease in European populations who consume the
beverage frequently [193,194]. Resveratrol consists of two aromatic rings connected by a
methylene bridge. The molecule naturally has two isomers, cis and trans-resveratrol, the
latter being the biologically active form [195,196].

Early studies have reported several beneficial health properties of resveratrol, includ-
ing anti-tumor, anti-aging, anti-inflammatory, antioxidant, cardioprotective, and neuropro-
tective [195,197,198]. In addition, resveratrol has been shown to modulate angiogenesis,
proliferation, and cell death [194].

Streptozotocin-induced diabetic rats have increased blood glucose, glycosylated
hemoglobin, fructosamine, advanced glycation end products (AGEs), and decreased body
weight. At different time points (1–7 months), these parameters were partially inhibited by
the administration of resveratrol diluted in saline (5, 10, and 20 mg/kg per day) [199–203]
or coated with gold nanoparticles (300 mg/kg per day) [204]. Furthermore, after months
of diabetes, the retina of these animals showed intense cell death, concentrated in the INL
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and the GCL, as demonstrated by various techniques [199,204]. The death induced by high
glucose is probably due to increased production of pro-inflammatory cytokines (TNF-α,
VEGF, INFγ, MCP-1, IL-6, IL1-β, and COX-2) and increased expression and activity of
NF-kB [200,201,203,204].

An imbalance between ROS production and antioxidant defenses has been reported in
the blood and retina of diabetic rats, with a decrease in SOD activity and an increase in the
ratio of GSSH/GSH and 8-isoprostane levels, an indicator of oxidative stress [199,200,204].
Hyperglycemia also contributed to the rise in vessels in the ganglion cell layer, probably
due to the increase in VEGF [204]. Resveratrol has been shown to reverse functional,
morphological, and molecular effects in the retina of diabetic rats [199–202,204]. It appears
that inhibition of NF-kB activity contributes to many of the neuroprotective effects of
resveratrol in diabetes by reducing the levels of proteins associated with inflammation and
cell death [200,201,204].

Data support the anti-inflammatory action of resveratrol and suggest that this is an
essential mechanism for preventing high glucose-induced cell death. On the other hand,
the neuroprotective activity of resveratrol may reflect a joint effort of different effects. In
this sense, it has already been shown that resveratrol inhibits apoptosis in the retina of
diabetic rats and Müller cell cultures by increasing microRNA 29b, which decreases pro-
apoptotic proteins (SP1, activated caspase-3, and Bax) and increases anti-apoptotic (Bcl-2)
proteins [205].

In vitro studies with endothelial cell lines showed that the protective effect of resvera-
trol also depends on the activation of sirtuins (SIRT), a classical target of this polyphenol.
Bovine retinal capillary endothelial cells (BRECs) exposed to high glucose (30 mM) died
by apoptosis induced by increased production of ROS. High glucose also reduces the
expression of p-AMPK, SIRT-1, and PGC-1α, leading to cell death [206]. It has been demon-
strated that the treatment with resveratrol (20 µM) prevented the reduction in protein
levels of p-AMPK, SIRT-1, and PGC-1α, and blocked ROS-induced cell death [206]. A
decrease in SIRT-1 levels was also observed in peripheral blood mononuclear cell cultures
from patients with proliferative diabetic retinopathy and an increase in interleukin-17,
a pro-inflammatory cytokine. The effects were reversed when these cells were exposed
to resveratrol (10 µM) [207]. In human retinal microvascular endothelial cells (HRECs),
exposure to high glucose (25 mM and 30 mM) resulted in decreased mRNA expression
for mitochondrial SIRT-3, 4, and 5, which was accompanied by early endothelial senes-
cence [208]. There was also oxidative damage and increased transition from endothelial to
mesenchymal cells, contributing to tissue fibrosis resulting from increased glucose [208,209].
The phenotypic change from an endothelial to a mesenchymal cell depends on ROS pro-
duction through NADPH oxidase activity via PKC. In this case, resveratrol treatment
inhibited this phenotypic transition by inhibiting PKC activation [209]. However, whether
the activation of AMPK/SIRT is also involved in this phenomenon is unknown. Therefore,
more evidence is needed to answer this question.

Resveratrol has excellent therapeutic potential against abnormalities induced by high
glucose in experimental models of diabetes. Its protective effects include neuronal, vascular
endothelial, and pigmented epithelial cells by activating different pathways that may or
may not be complementary. What would be the primary molecular target of resveratrol,
although SIRT is a strong candidate? In any case, resveratrol has an anti-inflammatory
effect combined with its antioxidant effect under high glucose conditions. The sum of these
effects probably contributes to its overall protective effect. Table 4 summarizes the findings
for the use of resveratrol in DR.

Lastly, Figure 3 shows a schematic diagram illustrating the cellular and molecular
pathways in diabetic retinopathy leading to oxidative stress, inflammation, and apoptosis
and how polyphenols act to downregulate these effects.
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Table 4. Primary outcomes of the studies testing the use of resveratrol in diabetic retinopathy.

Effects on the Retina
Compound Food Source Experimental Model Effects Reference

Resveratrol

Anti-tumor, anti-aging,
cardioprotective,

neuroprotective, and
antioxidant.

Diabetic rat retina

Inhibited NF-kB activity.
Reversed hyperglycemia
Promoted vascular enlargement in
the ganglion cell layer and
increased VEGF.
Inhibited the transcription factor
levels of inflammatory and cell
death proteins.

[200,201,204]

Diabetic rat retina and Muller
cells culture

Increased microRNA 29b
(associated with inhibition of SP1,
activated caspase 3, and Bax) and
increased Bcl-2.

[202]

BRECs incubated
hyperglycemic medium

Prevents the degradation of
AMPK, SIRT-1, and PGC-1α. [206]

Peripheral blood mononuclear
cell cultures from patients with

proliferative diabetic
retinopathy

Increased SIRT-1 Levels and
Decreased Proinflammatory
Cytokine

[207]

HRECs incubated in a
hyperglycemic medium

Inhibited PKC activation leads to
the non-production of ROS, thus
inhibiting the phenotypic change
from endothelial to mesenchymal
cells.

[209]
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Figure 3. Schematic illustration of cellular and molecular pathways in diabetic retinopathy leading to
oxidative stress, inflammation, and apoptosis. Polyphenols, such as quercetin, curcumin, resveratrol,
ferulic acid, and epicatechin gallate, contribute to the inhibition of positive feedback and thus reduce
the occurrence of cellular signaling cascades involved in diabetic retinopathy.
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5.5. Lutein and Zeaxanthin

Lutein and zeaxanthin are carotenoids that have essential functions in eye health and
are available as dietary supplements or foods [210]. In addition to potential antioxidant
action, these compounds are found in the human retina and absorb wavelengths emitted by
light, contributing to eye protection [211]. Individuals with type 2 DM have lower macular
pigments, such as lutein and zeaxanthin, than healthy subjects [212].

Studies have demonstrated the benefits of lutein and zeaxanthin supplementation in di-
abetic retinopathy. Both short- and long-term supplementation with lutein and zeaxanthin
in rodents reduced inflammatory biomarkers and vascular damage in the retina [213,214].
In addition, lutein and zeaxanthin supplementation reduced oxidative stress and inflamma-
tion, increased neuroprotection, decreased production of reactive oxygen species, increased
GSH, peroxidase, and SOD levels in the retina of diabetic rats [215–221], as well as inhibited
retinal histologic changes and increased retinal thickness [222]. The protective mechanisms
of lutein and zeaxanthin in preventing eye diseases, such as cataracts, age-related macular
degeneration, and diabetic retinopathy, have been reported [223].

6. Potential Interactions among Polyphenols, Probiotics, and Gut Microbiota in DR

The gastrointestinal tract is a primary site of action of polyphenols [224]. In this
environment, polyphenols can interact beneficially with the gut microbiota and exert
health benefits in the gut and beyond. However, the bidirectional relationship between
gut microbiota and polyphenols is not straightforward. The beneficial health effects of
polyphenols on the gut microbiota depend on numerous factors, such as their chemical
structure, glycation pattern, and number of hydroxyl groups [224]. Similarly, gut dysbiosis,
a condition characterized by an impairment of gut microbial composition and altered
functional capacity that exceeds the resilience and resistance of the gut, can impair the
metabolism and bioavailability of polyphenols.

Early evidence has suggested the role of gut dysbiosis in developing and maintaining
DR [225–227]. Although previous studies have reported antioxidant and anti-inflammatory
benefits with polyphenol therapy in DR, to our knowledge, there are no studies evaluating
the role of microbiota in the reported effects of polyphenol therapy in DR. This gap should
be explored in further clinical and animal studies.

Probiotics, prebiotics, and symbiotic consumption can alleviate intestinal dysbiosis,
inflammation, and oxidative stress. In addition, selected probiotic strains can improve
the metabolism of polyphenols. In contrast, polyphenols can positively modulate the
composition of the gut microbiota, with effects like those of known prebiotics [228]. In
addition, polyphenols can act as prebiotics and have been shown to regulate intestinal
metabolism and immunity, besides influencing inflammatory pathways by altering T-
cell functions, inhibiting mast cell degranulation, and reducing inflammatory cytokine
responses [229–232].

In this way, the combined intake of probiotic strains and polyphenols has been consid-
ered an approach for a bi-directional improvement of their health-promoting effects [233]
(Figure 2). Although an early randomized, controlled, crossover study found an atten-
uated early-phase insulin response after ingestion of probiotic fruit drinks with differ-
ent polyphenol profiles in healthy young adults [234], whether combined therapy with
pro-pre-symbiotic and polyphenols reduces oxidative stress, inflammation, and diabetic
complications in DR remains to be elucidated.

Considering the early clinical evidence that probiotics, prebiotics, symbiotics, and
polyphenols may alleviate glycemic dysfunction in DM conditions [235], while preclinical
and clinical studies evaluating the effects of combined probiotics and polyphenols [236–238]
in DR are not conducted, it is reasonable to suggest that DR patients may benefit from daily
consumption of probiotics and dietary polyphenols for better glycemic control (Figure 4).
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7. Conclusions

The potential of polyphenols as an efficient, non-invasive, and inexpensive treatment
approach in the face of ophthalmologic pathologies is evident based on the results from
the available literature discussed in the present review. It appears that dietary and/or
nutritional supplementation with polyphenols, alone or in combination with probiotics, for
example, may slow the progression of retinal diseases. The beneficial effects of the antioxi-
dants studied seem to act indirectly rather than directly in controlling diabetic retinopathy
through the activation of metabolic pathways responsible for increasing the antioxidant
capacity of cells. Specifically in the retina, these antioxidant compounds stimulate several
retinal anti-inflammatory pathways leading to inhibition/reduction in cell death caused
by inflammation, AGEs, and hyperglycemia, in addition to improving membrane perme-
ability and retinal cell structure. In addition, understanding the molecular mechanisms
and how polyphenols affect the signaling pathways involved in neuroinflammation and
oxidative stress may help develop effective therapeutic options for various retinopathies,
including diabetic retinopathy. The importance of performing well-defined clinical trials to
evaluate the efficacy, safety, dose range, and potential side effects, as well as chemical and
pharmacokinetic analyses to improve the stability and bioavailability of these compounds,
is emphasized.

Polyphenols are extensively metabolized in the gastrointestinal tract and liver, re-
sulting in low systemic levels of active compounds reaching target organs, such as the
retina. Strategies to increase the bioavailability of polyphenols, such as nanoformulations or
combination with absorption enhancers, appear promising for this challenge. Nevertheless,
the beneficial effects of polyphenols in various models of DR are evident and suggest that,
despite the complexity of their molecular structure, they can cross the blood–retinal barrier.
The literature lacks information on the bioavailability and metabolism of these polyphenols
in the retina, so studies to address this issue are essential. One strategy would be to use
high-performance liquid chromatography, which has been used to assess the levels of other
drugs in the retina, to assess polyphenol levels in animal studies and specifically in retinal
tissue. Furthermore, it is possible that the product of the metabolism of these polyphenols
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by the cytochrome P450 system in the retinal tissue has beneficial biological effects and
that the protective effect is a synergistic response of these produced compounds. Another
relevant point is correlating the doses administered in animal models with the dose and
human consumption from different food sources.

On the other hand, the beneficial effects of polyphenols and other drugs of natu-
ral origin on the retina are much more associated with their chronic consumption than
with punctual administration. In this sense, additional preclinical and clinical research is
needed to discover the ideal dosage and treatment duration for optimal results, which is
challenging to establish a uniform methodology. Furthermore, due to the multifactorial
nature of DR, relying on a single polyphenol may not sufficiently inhibit the various risk
factors involved. Therefore, a dietary intervention using a combination of polyphenols
may offer advantages in preventing sight-threatening retinal diseases. By simultaneously
suppressing multiple risk variables, this approach has the potential to be more effective in
mitigating the complexities associated with DR. Another issue to consider is the interaction
of polyphenols with medications. DR often requires multiple medications, such as insulin,
oral hypoglycemic agents, or blood pressure medications. The interaction of polyphenols
with various medications must be studied to ensure their safety and efficacy. It is also
important to investigate the compatibility of polyphenols and their potential synergistic or
antagonistic effects with other drugs.

Finally, genetic and environmental factors may cause individuals to respond differently
to polyphenol treatment. Several factors, such as gut microbiota composition, genetic
polymorphisms related to polyphenol metabolism, and individual dietary patterns, may
influence the therapeutic benefits of polyphenols. Individual differences may require
personalized approaches or targeted interventions to optimize outcomes. This information
will help clarify whether polyphenol interventions could be an adjuvant and effective
strategy for improving glycemic parameters and the quality of life of people with diabetes.
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