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Abstract: Chemoresistance remains the foremost challenge in cancer therapy. Targeting reactive
oxygen species (ROS) manipulation is a promising strategy in cancer treatment since tumor cells
present high levels of intracellular ROS, which makes them more vulnerable to further ROS elevation
than normal cells. Nevertheless, dynamic redox evolution and adaptation of tumor cells are capable
of counteracting therapy-induced oxidative stress, which leads to chemoresistance. Hence, exploring
the cytoprotective mechanisms of tumor cells is urgently needed to overcome chemoresistance. Heme
oxygenase-1 (HO-1), a rate-limiting enzyme of heme degradation, acts as a crucial antioxidant defense
and cytoprotective molecule in response to cellular stress. Recently, emerging evidence indicated
that ROS detoxification and oxidative stress tolerance owing to the antioxidant function of HO-1
contribute to chemoresistance in various cancers. Enhanced HO-1 expression or enzymatic activity
was revealed to promote apoptosis resistance and activate protective autophagy, which also involved
in the development of chemoresistance. Moreover, inhibition of HO-1 in multiple cancers was
identified to reversing chemoresistance or improving chemosensitivity. Here, we summarize the most
recent advances regarding the antioxidant, antiapoptotic, and pro-autophagy properties of HO-1 in
mediating chemoresistance, highlighting HO-1 as a novel target for overcoming chemoresistance and
improving the prognosis of cancer patients.

Keywords: heme oxygenase-1 (HO-1); reactive oxygen species; cancer; chemoresistance;
cytoprotective effect; antioxidant; apoptosis; autophagy

1. Introduction

The development of resistance to chemotherapy is one of the main obstacles for
tumor management. Although many in-depth studies have been conducted, the specific
molecular mechanisms underlying this inevitable resistance remain to be fully elucidated.
Currently, therapeutic strategies targeting reactive oxygen species (ROS) production to
initiate cellular damage and programmed cell death in cancer treatment are an area of
emerging interest [1–3]. ROS refers to highly reactive molecules produced by incomplete
reduction of oxygen in normal metabolic processes [4], which are mainly categorized into
two types, i.e., free radicals and nonradical ROS. Free radicals contain one or more unpaired
electron(s) in their outer orbital, including superoxide radical anion (O2

•−), hydroxyl
radical (HO•), alkoxyl radical (RO•), and peroxyl radical (ROO•), while nonradical ROS,
such as hydrogen peroxide (H2O2), organic peroxides (ROOH), and singlet oxygen (1O2),
do not possess unpaired electrons but are the downstream products of incomplete reduction
of molecular oxygen and have oxidizing potential [5,6]. The generation and elimination of
ROS are balanced under physiological conditions, and excessive ROS can be scavenged
by a tightly regulated endogenous antioxidant defense system consisting of enzymatic
antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPx), peroxiredoxins (Prx), thioredoxins(Trx), and nonenzymatic antioxidants including
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glutathione, uric acid, coenzyme Q, and lipoic acid [7,8]. ROS play an essential role in
maintaining cell homeostasis by regulating intracellular signaling and the immune response
at low concentrations. However, high levels of ROS are deleterious to nucleic acids, proteins,
and cell membranes, and once an imbalance tends toward ROS overproduction, oxidative
stress occurs, leading to cytotoxicity, cell dysfunction, and cell death [9,10]. Cancer cells are
hypersensitive to fluctuations in ROS levels, which makes inducing ROS production over
cytotoxic threshold levels an effective anticancer strategy [11].

Beyond causing cellular damage directly, ROS have also emerged as important sig-
naling molecules in cancer cell fate decisions. The impact of ROS on the regulation of
programmed cell death, such as apoptosis and autophagy, has been well established re-
cently [12–14]. Remarkably, autophagy and apoptosis have been shown to interact with
each other [15], while ROS may act as a molecular switch between autophagy and apop-
tosis [16]. Apoptosis, also defined as type I cell death, can be triggered by ROS via both
the death receptor or extrinsic pathway and the mitochondrial or intrinsic pathway [17].
Several standard chemotherapeutic agents, including paclitaxel, cisplatin, bortezomib, and
etoposide, have been revealed to achieve tumor therapeutic efficacy partially through
initiating ROS-mediated apoptosis [18]. Adaptive autophagy is essential for cell survival,
proliferation, differentiation, and homeostasis, while hyperactivation of autophagy results
in type II cell death—autophagic cell death [19]. Interestingly, paradoxical effects have been
described for ROS in autophagy. It was reported that excessive ROS levels can activate
autophagic flux via the ROS-FOXO3-LC3/BNIP3, ROS-NRF2-P62, ROS-HIF1-BNIP3/NIX,
and ROS-TIGAR pathways [20]. ROS accumulation was also shown to inhibit autophagy
either by directly increasing AKT/mTOR or by indirectly transactivating antioxidant gene
responses to oxidative stress, which serves as a feedback loop to repress autophagy [21].
Additionally, ROS are also relevant to other types of cell death, including ferroptosis [22],
pyroptosis [23], and necroptosis [24]. ROS-based chemotherapy strategies have been widely
adopted for clinical applications, yet exposure to chemotherapeutic drugs significantly
stimulates the overactivation of the antioxidant defense system in cancer cells, which in-
duces a high level of cellular redox balance, triggering adaptive responses to counteract the
lethal effects of ROS [25]. Thus, the bright side and dark side of ROS rely on each other in
cancer chemotherapy, and chemoresistance emerges when the cellular antioxidant capacity
exceeds the cell killing capacity of ROS. In parallel, accumulating evidence suggests that
antioxidative factor-targeted therapy can recover a low level of redox status in cancer
cells and thus remodel the cytotoxic effect of chemotherapy agents [26,27]. Therefore,
proteins engaged in antioxidant activities may play a crucial role in the occurrence of
tumor chemoresistance.

Heme oxygenase 1 (HO-1), a rate-limiting enzyme that promotes the catalytic break-
down of heme into carbon monoxide (CO), free iron, and biliverdin, is an essential an-
tioxidant enzyme that induces the host defense response to oxidative stress [28]. HO-1 is
normally expressed at a low level under physiological conditions, while it can be activated
in stressful situations, which is important for maintaining cellular homeostasis against
exogenous stress and injury [29]. Nevertheless, HO-1 is a double-edged sword that plays a
cytoprotective role not only in normal cells but also in tumor cells. HO-1 was indicated to
be highly induced in multiple cancers, such as breast cancer [30], liver cancer [31], gastric
cancer [32], colorectal cancer [33], esophageal squamous cell carcinoma [34], prostate can-
cer [35], pancreatic cancer [36], and neuroblastoma [37], and was closely related to poor
patient prognosis. Upregulated expression and improved enzymatic activity of HO-1 not
only represents a potent risk factor for tumorigenesis and tumor progression, but it also
relates to therapy resistance [38]. HO-1 inhibition significantly improves chemosensitivity,
which motivated an increasing number of preclinical studies committed to exploring and
optimizing the ideal strategy for HO-1 targeting to resolve chemoresistance [39,40].

As a stress-related biosensor, the mechanisms of action of HO-1 in chemotherapy
resistance are complicated. In addition to its antioxidant function, HO-1 has been revealed
to be associated with apoptosis avoidance and autophagy induction, which both result
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in resistance to cell death [41–43]. Thus, approaches targeting HO-1 in chemoresistance
have attracted great attention. In this review, we comprehensively summarized the impact
of HO-1 on tumor chemoresistance, with a special focus on HO-1-mediated antioxidant,
anti-apoptosis, and pro-autophagy activity, as well as proposed potential prospects of HO-1
inhibition in promoting therapeutic benefits in cancers.

2. Biological Functions of HO-1

HO-1, a member of the heme oxygenase (HO) family, also known as heat shock
protein 32 (Hsp32), is encoded by the ubiquitous stress-responsive gene HMOX-1, which
maps to chromosome 22q12.3 [44]. HO-1 is widely expressed as a type II membrane
protein throughout mammals, which predominantly anchors to the endoplasmic reticulum
membrane with its hydrophobic carboxy-termini. In addition, the distinct subcellular
localization of HO-1 has also been reported, including the caveolae, the nucleus, and the
mitochondria [45]. Under physiological conditions, normal cells express low levels of
HO-1, which maintains cellular redox homeostasis [46]. Notably, HO-1 is highly inducible
by various stress stimuli, including free heme, pathogen infection, tissue injury, altered
oxygen tension (hypoxia/hyperoxia), inflammatory cytokines, UV radiation, and oxidant
stress, which also serves as a protective feedback mechanism for cellular injury. As a
stress response antioxidant enzyme, HO-1 was identified to play a critical role in heme
metabolism by catabolizing toxic heme into free iron (Fe2+), carbon monoxide (CO), and
the linear tetrapyrrole biliverdin, of which Fe2+ is sequestered by ferritin, and biliverdin is
further reduced to bilirubin [47–50]. HO-1 is widely considered a remarkable cytoprotective
factor and represents the cellular defense mechanism due to its enzymatic activity as well
as byproducts, which will be further discussed below.

2.1. Degradation of Heme

Heme is synthesized in mitochondria by adding iron to protoporphyrin IX with
ferrochelatase and transported to different cellular locations by membrane trafficking pro-
teins as well as heme chaperones, which represent an indispensable cofactor for multiple
biological processes, including oxygen binding and transport, electron transfer, oxida-
tive metabolism, gas sensing, signal transduction related to apoptosis, and cell prolifera-
tion [51,52]. Intracellular heme homeostasis is tightly controlled because excess free heme
is highly toxic by catalyzing the generation of free radicals, together with exacerbating
lipid peroxidation, mitochondrial dysfunction, and inflammatory reactions [53,54]. Free
heme triggers programmed cell death through various mechanisms. For instance, Fortes
et al. indicated that heme induces macrophage necrosis through TLR4/Myd88-dependent
expression of TNF and TLR4-independent generation of ROS [55]. Petrillo et al. found that
heme accumulation in endothelial cells activates paraptosis by augmenting endoplasmic
reticulum (ER) stress [56]. In addition, heme interacts with distinct immune cells to function
as a proinflammatory molecule [57–59]. Heme itself is an activator of HO-1; in turn, the
enzymatic activity of HO-1 eliminates excessive free heme, thereby alleviating cellular
oxidative stress and cell injury. Hemin, an artificially synthesized form of heme, was
demonstrated to cause DNA strand breaks and oxidative DNA damage in human colonic
epithelial (HCEC) and colorectal cancer (CRC) cells, which subsequently promotes Nrf2
stabilization and translocation to the nucleus, along with robust expression of cytosolic
HO-1, thereby conferring protection against the deleterious effects of hemin [60]. Never-
theless, a recent study described the opposite role of heme in HO-1 regulation: excessive
concentrations of heme obviously compromised the inducibility of HO-1 in normal colonic
epithelial cells [61]. Overall, degradation of free heme by HO-1 counteracts its cytotoxic
effect, improving cellular homeostasis.
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2.2. Metabolites of HO-1
2.2.1. CO

CO is widely known as a poisonous gas due to its ability to bind to hemoglobin
with great affinity and thereby block oxygen transport to vital organs, which can cause
respiratory depression [62]. However, emerging evidence has suggested that CO, as a
gasotransmitter, exerts antioxidant, anti-inflammatory, anti-apoptotic, anti-proliferative,
anti-fibrotic, and anti-thrombotic properties at low to moderate doses [63–66]. Mitochondria
are considered the central target organelle in the pro-survival action of CO [62,67–69]. The
dominant function of mitochondria is ATP generation. Soluble guanylyl cyclase (sGC) is
one of the most widely discerned molecular targets of CO [70]. CO elevates ATP production
through the induction of sGC and inhibits TNF-α-mediated hepatocyte apoptosis [71,72].
In parallel, low concentrations of CO were found to protect astrocytes against oxidative
stress-induced apoptosis by improving mitochondrial oxidative phosphorylation and
ATP production, which relies on Bcl-2 expression and its interaction with cytochrome c
oxidase (COX) [73]. CO was described to promote ATP production by activating AMPK
phosphorylation, which coordinates with the activation of HIF-1α and Nrf2 to suppress
hypoxia-induced tubular cell damage [74]. Additionally, CO was shown to increase the
nuclear translocation of transcription factor EB (TFEB) via PERK-dependent Ca2+ signaling
and calcineurin activation, which subsequently enhanced mitophagy and mitochondrial
biogenesis [75]. Due to the great potential therapeutic value of CO, the development
of carbon monoxide-releasing molecules (CORMs), which allow CO to be safely and
selectively delivered, has recently attracted great attention [76].

2.2.2. Fe2+

Iron is a vital element for numerous biological processes, including mitochondrial
respiration, DNA synthesis, signal transduction, and oxygen transport. Iron is a transition
element that can exist as reduced ferrous (Fe2+) or oxidized ferric (Fe3+). Fe2+ is implicated
in the formation of cellular oxidative stress via the Fenton and Haber–Weiss reactions [77].
Concurrent with HO-1 activation, excessively produced Fe2+ is rapidly sequestered by
ferritin in a redox-inactive form. Ferritin is a ubiquitously expressed cytosolic iron storage
protein composed of two subunits, ferritin heavy chain (FTH) with ferroxidase activity and
ferritin light chain (FTL), which facilitates iron nucleation [78].

Practically, ferritin can be regarded not only as an iron regulatory protein but also as
a crucial cellular defense molecule against oxidative stress. In an in vitro oxidative stress
model evoked by H2O2, robust and prolonged activation of JNK and p38 MAPKs was
observed in a labile iron-dependent manner to trigger cell apoptosis. Along with this,
ferritin showed a rapid elevation, which was considered a protective mechanism against
external stimuli. Regrettably, the regulatory mechanism of iron in redox signaling was
not fully elucidated in this study [79]. Another study showed that Nrf2, the master tran-
scription factor involved in oxidative stress signaling modulation, may directly induce the
transcription of the FTL and FTH genes [80]. Recently, ferritin was implied to interact with
ferroptosis through selective autophagic degradation of ferritin via nuclear receptor coac-
tivator 4 (NCOA4), namely, ferritinophagy [81,82], which sheds light on the treatment of
various diseases, including cancers [83,84], neurodegenerative disorders [85], and immune
dysfunction [86–88]. Ferroptosis exerts opposite therapeutic effects in a context-dependent
manner; for instance, activating ferroptosis is beneficial for tumor therapy but has been
found to promote the progression of neurodegenerative diseases. Thus, boosting or inhibit-
ing ferroptosis reasonably in variable contexts to achieve satisfactory therapeutic effects
might be possible.

2.2.3. Biliverdin

Biliverdin (BV) is a water-soluble bile pigment that is rapidly converted to bilirubin
(BR) by biliverdin reductase (BVR). The BV/BR redox cycle elicits robust defenses against
oxidative stress and the inflammatory response. On the one hand, BV and BVR are well-
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characterized signaling cascades, and BVR exhibits cytoprotective effects by converting BV
into the potent antioxidant BR. A previous study revealed that biliverdin reductase mRNA
appeared to be increased by exogenous supplementation with biliverdin, which in turn
reduced the infiltration of neutrophils and the expression of proinflammatory proteins in
an HO-deficient corneal epithelial injury mouse model [89]. Similarly, recent studies have
declared that the BVR-dependent BV/BR redox process protects lens epithelial cells (LECs)
from oxidative stress-induced apoptosis by enhancing intracellular redox homeostasis,
suppressing the NF-κB/iNOS pathway, and activating the Nrf2/HO-1 pathway [90]. On
the other hand, BV itself evokes beneficial biological effects. BV could effectively dimin-
ish the upregulation of proinflammatory mediators such as IL-6, CCL2, and iNOS and
relieve lipid peroxidation, giving rise to a reduction in intestinal mucosal injury in an
in vivo intestinal transplantation model [91]. BV also inhibits cerebral ischemia reperfusion-
induced cell apoptosis and ameliorates cerebral ischemia reperfusion injury (CIR) in the
rat cortex by downregulating lncRNA H19 [92]. Another investigation proposed that
elevated miRNA204-5p expression and its direct interaction with Ets1 was the underlying
mechanism of BV-related neural improvement [93].

In addition, it is widely accepted that BR replaces BV to function as the final product
of HO-1 metabolism in humans. Studies have provided evidence for the protective effects
of BR via antioxidation, anti-inflammation, and immune modulation [94] in numerous
diseases, including inflammatory bowel disease [95], diabetes [96], ischemia-reperfusion
injury [97], and immunological diseases [98].

2.3. Subcellular Localization of HO-1

Apart from functions exerted by the enzyme activity, distinct subcellular compart-
ments of HO-1 also affect its biological activity and function. The C-terminus of endo-
plasmic reticulum-located HO-1 can be proteolyzed under hypoxic or oxidative stress
conditions, leading to different subcellular compartments of HO-1. However, it is some-
what surprising since HO-1 is inactive when translocated into the nucleus, whereas its
enzyme activity is preserved when migrated to mitochondria or caveolae [45,99]. Nu-
clear HO-1 without enzymatic activity displayed the noncanonical function of HO-1,
which may mediate oxidative stress protection and cell death prevention through the
transcriptional regulation of antioxidant genes or signaling pathways, e.g., G6PDH, NQO1,
PI3K/Akt/GSK3 [100], and MAPK pathways [101]. Furthermore, mitochondrial HO-1 was
shown to protect lung epithelial cells from mitochondria-mediated cell death [102]. More-
over, upon mitochondrial translocation, HO-1 detoxified accumulated intramitochondrial
free heme and reduced mitochondrial oxidative stress and dysfunction, which ultimately
repaired apoptotic tissue injury in a gastric mucosal injury rat model [103].

Taken together, these findings imply that both increased expression or enhanced
activity of HO-1 and the different subcellular locations of HO-1 variants constitute an
important cellular protective mechanism against stressful stimuli.

3. Mechanisms of HO-1 Regulation
3.1. Transcription Factors

The human HO-1 gene (HMOX-1) contains specific DNA-binding elements in the pro-
moter, namely, the proximal promoter (PP), distal enhancer E1 (DE1), and distal enhancer
E2 (DE2), located at approximately −0.3 kb, −4 kb, and −10 kb, respectively [104–106].
Accumulating evidence has revealed that multiple transcription factors may directly bind
to enhancer sequences termed “stress-related response elements” (StREs) in the promoter
region of HMOX1, which regulates the expression of HO-1 [106].

Nuclear factor erythroid derived 2-like 2 (Nrf2) and BTB and CNC homology 1
(BACH1) are considered the key transcription factors that conversely modulate HO-1
expression (Figure 1). Nrf2 and BACH1 are both pivotal defense molecules against ox-
idative stress that bind to similar DNA sequences by forming respective heterodimers
with one or more members of the small Maf (musculoaponeurotic fibrosarcoma) protein
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family. Under basal conditions, Nrf2 is sequestered in the cytoplasm by Kelch-like ECH-
associated protein 1 (Keap1), leading to the ubiquitination and subsequent proteolysis of
Nrf2, which retains the low activity of Nrf2 [107]. In response to oxidative stress, Nrf2
dissociates from Keap1 and translocates to the nucleus. Then, through the basic leucine
zipper (bZip) domain, Nrf2 heterodimerizes with Maf family proteins to bind StRE or ARE
(antioxidant response elements) of the target genes [108,109]. It is through this mechanism
that Nrf2 positively regulates HO-1 expression under stimulus conditions. In contrast to
Nrf2, under normal conditions, BACH1 is stably expressed in the cytosol and transferred
into the nucleus to bind to Maf proteins as a transcriptional repressor, which blocks the
nuclear translocation of Nrf2 and consequently represses the expression of HO-1 [110].
Under high heme concentrations, BACH1 dissociates from Maf proteins, is exported from
the nucleus, and is degraded after tyrosine phosphorylation. Then, Nrf2 directly binds
to the HO-1 promoter, leading to the activation of HO-1 expression [111]. Moreover, ex-
isting studies also suggest that HMOX1 induction can be BACH1 dependent but NRF2
independent [112,113].
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Figure 1. The regulatory mechanism of HO-1. Upon stressful stimuli, Nrf2 dissociates form the
Keap1–Nrf2 complex and translocates into nucleus, and then Nrf2 binds with small Maf proteins to
stress response elements (StRE) in the regulatory regions of HMOX1, leading to the activation of HO-1.
BACH1 acts as a negative regulator of Nrf2 through competing with Nrf2 for binding to Maf proteins,
which inhibits HO-1 expression. Several other important transcription factors are also implicated in
the modulation of HO-1 expression including HIF1α [114,115], NF-κB [116], ATF4 [117], AP-1 [118],
and KLF7 [119]. Among these transcription factors, HIF1α demonstrate a complex crosstalk with
HO-1 [120]. Genetic polymorphisms in the promoter region of HMOX1 including (GT)n repeat
and T(−413)A SNP are also involved in the transcriptional regulation HO-1 [121–126]. MiR-155
displayed opposite roles in HO-1 regulation. On the one hand, miR-155 activates HO-1 expression
partially via repressing BACH1 [127,128], while on the other hand, miR-155 alone or in cooperation
with miR-181a inhibits HO-1 expression [129,130]. Furthermore, it has been reported that miR-494
and miR-193a-5p enhanced HO-1 expression, wihle miR-1254 and miR-217 combined with miR-377
suppress the activity of HO-1 [131–134].

In addition to Nrf2 and BACH1, transcription factors such as HIF1α, NF-κB, ATF4,
AP-1, and KLF7 also regulate HO-1 at the transcriptional level by converging on the
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HO-1 promoter, among which HIF1α [114,115], NF-κB [116], ATF4 [117], and AP-1 [118]
positively regulate HO-1 expression, while KLF7 [119] is known as a repressor of HO-1.
Of particular interest, HIF1α, a key regulator of hypoxia-stimulated metabolic adaptation,
has been considered to be an activator of HO-1 by multiple in vitro and in vivo studies,
which has attracted research attention. It was implied in a recent study that HO-1 acts both
downstream and upstream of HIF-1α, and HO-1-stabilized HIF-1α may partly be due to
its enzymatic activity [120]. The interaction between the two stress adaptation molecules
is sophisticated, and its impact on physiological and pathological states is worthy of
further study.

3.2. Promoter Polymorphisms

Gene polymorphisms located in the promoter region are thought to affect gene tran-
scription. In the 5’-noncoding region of the HMOX-1 gene, three polymorphic sites were
identified to be functional and regulate HO-1 expression, including the (GT)n repeat dinu-
cleotide length polymorphism and T(−413)A and G(−1135)A single nucleotide polymor-
phism (SNP) sites [121,122]. Among these, the (GT)n polymorphism was the most studied.
Current evidence proved that the (GT)n repeat varies from 12–45 repeats [123], and a GT re-
peat sequence < 25 was defined as a short (S) allele, relating to higher HO-1 inducibility and
enhanced HO-1 enzymatic activity compared to those with ≥25 repeat sequences, which
were considered long (L) alleles [124]. The other two single-nucleotide polymorphisms,
T(−413)A and G(−1135)A, were detected in research aimed at exploring the correlation
between HO-1 promoter variants and human essential hypertension. It was shown that the
A(−413) allele was associated with significantly improved HMOX-1 promoter activity in
comparison with the T(−413) allele [125]. A previous study comprehensively considered
both T(−413)A and (GT)n polymorphisms to investigate the promoter activity of HMOX-1,
and the results revealed that the transcriptional activity of the A(−413)-(GT)30 allele was
approximately six times higher than that of the T(−413)-(GT)23 allele [126]. However, the
effect of the G(−1135)A polymorphism on HO-1 transcriptional activity remains unclear.

3.3. MicroRNAs

Emerging evidence indicates that microRNAs are involved in the transcriptional
and posttranscriptional modulation of the HO-1 gene, which opens up a new horizon
for research on HO-1 regulation. For instance, it was demonstrated that miR-155 effi-
ciently upregulated HMOX1 mRNA and protein expression by inhibiting BACH1 protein
translation in human umbilical vein endothelial cells [127]. Gu et al. also found that
miR-155 positively regulated HO-1, which favors lung cancer resistance to arsenic triox-
ide [128]. In contrast to the aforementioned results, Zhang et al. reported that miR-155
could directly target the 3′UTR of HO-1, which repressed its expression in tolerant CD4+
T cells [129]. In addition, Li and colleagues found that miR-155 and miR-181a synergisti-
cally engaged in cadmium-induced kidney immunotoxicological effects by reducing HO-1
expression [130]. miR-494 was suggested to upregulate HO-1 expression through a BACH1-
independent mechanism in neuroblastoma cells under oxidative stress [131]. miR-1254 and
miR-193a-5p were shown to be HO-1 suppressors and inducers in prostate and non-small
cell lung cancer cells, respectively [132,133]. Moreover, microRNAs may modulate HO-1
expression at a posttranslational level, as it was proposed that overexpression of miR-217
combined with miR-377 decreased HO-1 protein expression but did not change HMOX1
mRNA levels [134].

4. Cytoprotective Role of HO-1 in Cancer

The primary roles of HO-1 in antioxidant, anti-inflammatory, antiapoptotic, and
proangiogenic effects have been highlighted [135]. Nevertheless, HO-1 displays equiv-
alent cytoprotective effects on tumor cells against oxidative stress caused by the accu-
mulation of ROS [136]. Thus, HO-1 has been implicated in a broad spectrum of pro-
tumorigenic effects and various cancer hallmarks. Survival analysis in the PrognoScan
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database (www.prognoscan.org/, accessed on 10 March 2023) provided strong evidence
that high HO-1 mRNA expression predicts significantly worse prognosis in lung cancer,
breast cancer, blood cancer, brain cancer, colorectal cancer, and ovarian cancer (Figure 2).
Meanwhile, in the Cancer Treatment Response Gene Signature Database (CTR-DB, http:
//ctrdb.cloudna.cn/) [137], the HMOX-1 expression level was shown to be upregulated in
treatment-nonresponsive patients with breast and brain cancer compared with responsive
patients (Figure 3).
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Figure 2. Prognostic significance of HMOX1 expression in various cancer types. Kaplan-Meier
survival curves obtained from PrognoScan database for patients with high (red) and low (blue) HO-1
mRNA expression in lung cancer (A–C), breast cancer (D–F), blood cancer (G), brain cancer (H,I),
colorectal cancer (J,K), and ovarian cancer (L). OS, overall survival; RFS, relapse free survival; DMFS,
distant metastasis free survival; DFS, disease free survival; HR, hazard ratio.

HO-1 overexpression drives tumor growth, metastasis, angiogenesis, therapy resis-
tance, and immune evasion. Wang et al. found that GRIM-19 deficiency resulted in aberrant
HO-1 activation in a ROS-Nrf2 axis-dependent manner in gastric cancer cells, along with
significantly increased HO-1 expression in metastatic lung and liver tissues, while HO-1
inhibition limited GC cell migration and invasion and directly abrogated GC metastasis
in vivo [138]. Overexpressed HO-1 also augmented the bone metastasis of prostate cancer
by modulating bone turnover and remodeling. More importantly, HO-1 enhanced the cell-
cell interactions of osteoblasts and cancer cells [139]. A more recent study illustrated that
exosomes may serve as the basis for HO-1-involved intracellular communication because
androgen-independent prostate cancer (AIPC) cell-derived exosomes activated HMOX1
expression in androgen-dependent prostate cancer (ADPC) cells in vivo and in vitro, which
promoted the transformation of ADPC cells to AIPC cells and the development of castration-
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resistant prostate cancer [140]. In addition, HO-1-related angiogenesis plays an essential
role in the progression of solid tumors, and the underlying mechanism is likely due to its
upregulation or activation of proangiogenic factors such as VEGF and stroma cell-derived
factor-1 (SDF-1) [141–143].
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Notably, an increasing amount of evidence suggests that HO-1 acts as an immuno-
suppressive agent in immune responses [144,145]. HO-1 expression was induced during
the differentiation of monocytic cells into macrophages in the tumor microenvironment
(TME) and exerted a strong immunosuppressive effect by limiting antigen-specific CD8+
T-cell effector function against tumor cells, while myeloid-restricted HO-1 ablation boosted
the effectiveness of therapeutic immunization [146]. Consistently, Khojandi et al. revealed
that HO-1 endowed tumors with the ability to resist immune-mediated apoptosis, and
combined treatment with HO-1 inhibition and anti-PD1 significantly decreased tumor
volume in a mouse model of breast cancer and melanoma [147]. Indeed, HO-1 may affect
the immune response in many distinct ways, among which two main approaches should
be highlighted. On the one hand, HO-1 expressed by antigen-presenting cells (APCs) inter-
feres with the development of regulatory T (Treg) cells, along with restricted infiltration
and activity of effector T (Teff) cells, which was considered as the fundamental mechanism
of the HO-1-related immunosuppressive phenotype [148–150]. On the other hand, the
promotion of HO-1 expression is associated with biased M2 macrophage polarization, thus
facilitating suppressed immune responses and enhancing tumor progression [151,152].
Furthermore, the inhibition of HO-1 augments tumor cell recognition and elimination by
NK cells [153,154]. Therefore, HO-1 represents a promising target to reprogram the TME
and improve the efficacy of cancer immunotherapy.

Based on their promising therapeutic potential, the development of HO-1 inhibitors
has attracted increasing attention. The most reported HO-1 inhibitors for experimental
use are metalloporphyrines (Mps), known as heme derivatives, including SnPP, SnMP,
and ZnPP, which are structurally similar to protoporphyrin but have different metal ions
in their center. Mps can competitively inhibit heme binding to HO-1 to decrease the en-
zyme activity. However, the clinical application of Mps is limited due to the inhibition
of other heme-containing enzymes with poor selectivity, which largely limits its clinical
translation [155,156]. Azole-based derivatives such as ketoconazole, terconazole, sulcona-
zole nitrate, and imidazole-based compounds used for HO-1 inhibitors are also reported
(Figure 4) [157,158]. Ketoconazole, as a widely used antifungal agent, was indicated to
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inhibit both HO-1 and HO-2 activity at typical therapeutic concentrations, and the poten-
tial mechanism is that the KTZ imidazole moiety directly interacts with heme iron and
forms a complex blocking heme from binding to the HO catalytic site [158]. Aside from
its antifungal activity, ketoconazole has been applied off-label as a second-line hormonal
therapy agent for castration-resistant prostate cancer (CRPC) since the 1980s, due to its
additional antiandrogenic function via inhibition of CYP17A1 to block androgen synthesis.
Numerous studies have demonstrated that ketoconazole significantly decreases PSA levels,
alleviates clinical symptoms, and delays disease progression in CRPC patients, regardless
of whether it is used in combination with docetaxel or applied alone before and after
docetaxel [159,160]. Furthermore, artesunate, a powerful anti-malaria drug, was declared
to have a potential impact on HO-1 modulation [161], iron metabolism [162], and ferropto-
sis [163]. Concurrently, another approved drug, artesunate, was announced to be active
against cancers, including ovarian cancer [164], hepatocellular carcinoma [165], renal cell
carcinoma [166], breast cancer [167], and colorectal cancer [168]. Although these drugs
showed both HO-1 modulation and cancer therapy effects, whether the HO inhibitory
effect directly contributes to the effectiveness of tumor therapy remains unclear.

Antioxidants 2023, 12, x FOR PEER REVIEW 10 of 26 
 

[151,152]. Furthermore, the inhibition of HO-1 augments tumor cell recognition and elim-
ination by NK cells [153,154]. Therefore, HO-1 represents a promising target to reprogram 
the TME and improve the efficacy of cancer immunotherapy. 

Based on their promising therapeutic potential, the development of HO-1 inhibitors 
has attracted increasing attention. The most reported HO-1 inhibitors for experimental 
use are metalloporphyrines (Mps), known as heme derivatives, including SnPP, SnMP, 
and ZnPP, which are structurally similar to protoporphyrin but have different metal ions 
in their center. Mps can competitively inhibit heme binding to HO-1 to decrease the en-
zyme activity. However, the clinical application of Mps is limited due to the inhibition of 
other heme-containing enzymes with poor selectivity, which largely limits its clinical 
translation [155,156]. Azole-based derivatives such as ketoconazole, terconazole, sulcona-
zole nitrate, and imidazole-based compounds used for HO-1 inhibitors are also reported 
(Figure 4) [157,158]. Ketoconazole, as a widely used antifungal agent, was indicated to 
inhibit both HO-1 and HO-2 activity at typical therapeutic concentrations, and the poten-
tial mechanism is that the KTZ imidazole moiety directly interacts with heme iron and 
forms a complex blocking heme from binding to the HO catalytic site [158]. Aside from its 
antifungal activity, ketoconazole has been applied off-label as a second-line hormonal 
therapy agent for castration-resistant prostate cancer (CRPC) since the 1980s, due to its 
additional antiandrogenic function via inhibition of CYP17A1 to block androgen synthe-
sis. Numerous studies have demonstrated that ketoconazole significantly decreases PSA 
levels, alleviates clinical symptoms, and delays disease progression in CRPC patients, re-
gardless of whether it is used in combination with docetaxel or applied alone before and 
after docetaxel [159,160]. Furthermore, artesunate, a powerful anti-malaria drug, was de-
clared to have a potential impact on HO-1 modulation [161], iron metabolism [162], and 
ferroptosis [163]. Concurrently, another approved drug, artesunate, was announced to be 
active against cancers, including ovarian cancer [164], hepatocellular carcinoma [165], re-
nal cell carcinoma [166], breast cancer [167], and colorectal cancer [168]. Although these 
drugs showed both HO-1 modulation and cancer therapy effects, whether the HO inhibi-
tory effect directly contributes to the effectiveness of tumor therapy remains unclear. 

 
Figure 4. Chemical structure of mainstream HO-1 inhibitors. (A–C). Protoporphyrin class (cited 
from PubChem). (D–F). Azole-based derivatives [158]. 

Conspicuously, aberrant activation of HO-1 was universal in chemoresistant cancer 
cells compared to that of chemosensitive cancer cells, while the inhibition of HO-1 obvi-
ously mitigated resistance to anticancer therapies. These results suggest that HO-1 is im-

Figure 4. Chemical structure of mainstream HO-1 inhibitors. (A–C). Protoporphyrin class (cited from
PubChem). (D–F). Azole-based derivatives [158].

Conspicuously, aberrant activation of HO-1 was universal in chemoresistant cancer
cells compared to that of chemosensitive cancer cells, while the inhibition of HO-1 obviously
mitigated resistance to anticancer therapies. These results suggest that HO-1 is implicated
in the chemoresistance of various human cancers and could be a potential therapeutic
target to overcome chemotherapy failure. This aspect will be discussed in the next section.

5. Mechanisms of HO-1-Targeted Chemoresistance in Cancer

Chemotherapeutic agents related ROS accumulation can eliminate cancer cells by
inducing oxidative stress, causing DNA damage, disrupting mitochondrial function, and
facilitating synergistic effects [9]. However, its efficacy and long-term use are seriously
limited by drug resistance. Recently, a pivotal role of HO-1, a cytoprotective enzyme with
known antioxidant defense functions, in chemoresistance has been highlighted. The upreg-
ulation of HO-1 after chemotherapy in cancer cells can mitigate ROS-mediated oxidative
damage and counteract chemotherapeutic agent-induced cytotoxicity, which contributes
to acquired chemoresistance. It has also been well documented that the inhibition of HO-
1 is capable of restoring the chemosensitivity of resistant cells in multiple cancer types,
including ovarian cancer [169], acute myeloid leukemia [170], and melanoma [154].

To date, the underlying mechanisms of how HO-1 promotes chemoresistance have not
been fully elucidated. An increasing number of studies have suggested that antioxidative,
anti-apoptosis, and pro-autophagy activities might be involved in the development of
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HO-1-dependent chemoresistance. In this section, we will comprehensively summarize the
role of these mechanisms in tumor chemoresistance associated with HO-1.

5.1. Antioxidative Activity of HO-1

As described above, induction of intracellular ROS by conventional chemotherapeutic
agents can be beneficial in terms of their cytotoxic effects on cancer cell. Yet, enhanced HO-1
expression and enzymatic activity protect cancer cells from ROS during stress response,
leading to acquired drug resistance. Sun et al. reported that the Nrf2/HO-1 pathway
positively regulated by SIRT5 contributed to cisplatin resistance in ovarian cancer cells by
suppressing cisplatin-induced DNA damage in an ROS-dependent manner [169]. The up-
regulation of Nrf2 and its downstream target HO-1 has also been reported to be correlated
with 5-Fu resistance in gastric adenocarcinoma by inhibiting ROS production [171]. These
observations broadly coincide with the results of our previous work. We found that Nrf2
and its target genes, including HO-1 and NQO-1, were upregulated in cisplatin-resistant
ovarian cancer cells, and Nrf2, the main regulator of HO-1, was of great importance for
the development of cisplatin resistance in ovarian cancer [172–174]. In addition, while
induction of HO-1 expression by hemin was shown to protect laryngeal squamous cancer
cells from cisplatin-induced oxidative damage and apoptosis in vitro, the suppression of
HO-1 expression and enzyme activity by the HO-1 inhibitor ZnPPIX significantly promoted
ROS downstream signaling pathway activation, such as P38 and JNK phosphorylation,
which conclusively enhanced the cisplatin sensitivity of cancer cells [175].

The mechanisms underlying chemoresistance are also involved in the antioxidant
properties of heme metabolites catalyzed by HO-1. Recently, Rios-Arrabal et al. reported
that CO produced after HO-1 overexpression induced ECE-1 expression through the activa-
tion of pNF-kβ and pc-Jun in p53 wild-type colorectal cancer (CRC) cells, leading to 5-FU
resistance. However, CO released by HO-1 was unable to modify 5-FU sensitivity in P53
null CRC cells, suggesting that CO-involved chemoresistance may partly rely on P53 [176].
Although HO-1-produced free ferrous iron itself is considered a mediator of ferropto-
sis [177], a new type of cell death mediated by iron-dependent ROS and lipid peroxidation,
free ferrous iron can be rapidly sequestered and stored by ferritin. The latter has been well
documented to have a significant impact on chemoresistance. For instance, ferritin was
found to prevent doxorubicin-mediated cell death by inhibiting intracellular ROS formation
and then reduce doxorubicin sensitivity in a dose- and time-dependent manner in breast
cancer cells [178]. Salatino A et al. observed that chemoresistant ovarian cancer patients
may be characterized by higher ferritin heavy chain levels than chemosensitive patients,
and overexpression of ferritin heavy chain significantly eliminated cisplatin-mediated ROS,
subsequently leading to reduced responsiveness in ovarian cancer cells [179]. Indeed, stud-
ies on the association between the cytoprotective role of HO-1 and newly identified forms
of cell death, such as ferroptosis [180], necroptosis [181], and pyroptosis [182], are gradually
emerging; however, the role of this linkage in chemoresistance remains poorly defined.

In conclusion, these data implied that the antioxidative and cytoprotective features
of HO-1 and its byproducts’ attributes to the development of chemoresistance and poor
patient prognosis. However, evidence has not been provided that HO-1 possess direct ROS-
scavenging activity like “classical” antioxidant enzymes (SOD, catalase, peroxiredoxins,
etc.). Instead, HO-1 exert antioxidant effects indirectly, and the possible mechanism includes
its removal of “prooxidant” heme and production of antioxidant biliverdin/bilirubin
and/or CO products. Moreover, co-expression of HO-1 with other protective enzymes may
obscure the real driving force of the antioxidant effect.

Meanwhile, emerging studies have revealed that HO-1 is a double-edged sword in
ROS regulation; when excessively activated, HO-1 can induce ROS overload and cancer
cell death [183,184]. The probable mechanism may involve uncoordinated stress response
mechanisms mainly caused by imbalanced iron metabolism. Some scholars have concluded
that the iron deprivation status of the body impels the antioxidant function of HO-1 [185].
Since HO-1 regulates iron metabolism via the degradation of heme, once excessively
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produced iron cannot be utilized for biosynthesis or sequestered by ferritin, oxidative stress
occurs, which also initiates ferroptotic cell death [186,187]. Hence, the dual role of HO-1 in
ROS modulation potentially substantiates its paradoxical action in ferroptosis.

5.2. Anti-Apoptosis Activity of HO-1

Apoptotic cell death, a form of programmed cell death provoked in tumor cells follow-
ing exposure to chemotherapeutic agents and excessive oxidative stress [188,189], is integral
to the success of cancer chemotherapy. Since enforced expression and activation of HO-1 in
response to chemotherapy-mediated oxidative stress could provide cytoprotective effects
against chemotherapy-induced apoptosis in tumor cells, this antiapoptotic mechanism
might contribute to acquired chemoresistance. A protein-protein interaction (PPI) network
of HMOX1-related genes was constructed using the STRING database (Figure 5A). To
further explore the function of HMOX1, these interacting genes from the PPI network were
used for Gene Ontology (GO) enrichment analysis. The GO analysis results showed that
the HMOX1-related genes were mainly enriched in antioxidative stress and anti-apoptosis
biological processes (Figure 5B). Based on this, we will fully address the influence of HO-1
on apoptosis, apoptosis-related proteins, and signaling pathways in resistant tumor cells.

The transcriptional and protein levels of pro-apoptosis-related genes, such as Bax,
Smac, Survivin, Fas/FasL, caspase-3 or caspase-9, and anti-apoptosis genes, such as Bcl-2,
BFAR, Bcl-xL, A1 or Mcl-1, are often measured to estimate the degree of cellular apop-
tosis [190,191]. Barbagallo et al. described that increased HO-1 gene expression and
enzymatic activity drive resistance to carfilzomib in neuroblastoma cells, while cotreatment
with carfilzomib and LS1/71, a noncompetitive inhibitor of HO-1, triggered cell apoptosis
with significantly activated proapoptotic BAX gene expression and reduced antiapoptotic
BFAR gene expression [192]. Chakraborty et al. determined that the cytoprotective effect
of the c-Met-HGF-Nrf2-HO-1 pathway in sorafenib-treated renal cancer cells was mainly
implicated in the reduction in ROS generation, promotion of Bcl-2 and Bcl-xL expression,
and downregulation of cleaved caspase-3 expression, which ultimately led to apoptosis
resistance [193]. These results are consistent with the observation that HO-1 inhibition sen-
sitized pancreatic ductal adenocarcinoma cells to gemcitabine by increasing the production
of reactive oxygen species, disrupting the glutathione cycle, and enhancing apoptosis [194].
Recently, microRNAs involved in the regulation of HO-1 were suggested to participate
in the development of chemoresistance by decreasing apoptosis. Gu et al. confirmed
that HO-1 expression modulated by miR-155 was partly responsible for the downregu-
lation of arsenic trioxide-induced apoptosis, leading to resistance to arsenic trioxide in
lung cancer cells [128]. miR-193a-5p-induced HO-1 expression was shown to counteract
docetaxel-induced apoptosis in PC3 cells [133].

In addition, considerable research efforts have been devoted to investigating the impact
of HO-1 end products generated by heme metabolism on apoptosis evasion. Huang et al.
proposed that activation of the HO-1/CO axis protects lens epithelial cells (LECs) from
H2O2-induced apoptosis by inhibiting oxidative stress and activating NF-κB signaling,
along with decreasing apoptotic molecules (Bax, Bcl-2, and caspase-3) [195]. A recent
in vitro study revealed that CO produced by HO-1 may contribute to the resistance of
myeloma cells to bortezomib. Specifically, the treatment of myeloma cells with bortezomib
induced cross-regulation between TLR4 and the HO-1/CO signaling pathway, which subse-
quently increased the unfolded protein response and protected the function of mitochondria,
leading to decreased apoptosis resulting from the cytotoxic effects of bortezomib [196]. In
fact, it should be noted that existing studies have mainly focused on the apoptosis evasion
role of HO-1 itself in chemoresistance, and further effort is still required to understand the
antiapoptotic mechanisms regulated by HO-1 byproducts in chemoresistance.
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5.3. Pro-Autophagy Activity of HO-1

Autophagy, an evolutionarily conserved catabolic process, plays an essential role in
maintaining cellular homeostasis under various metabolic stresses, such as nutritional
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deficiency, hypoxia, pathogen infection, ER stress, oxidative stress, and even chemother-
apy intervention, by capturing and transporting aggregated or misfolded proteins and
damaged organelles to lysosomes for degradation [197,198]. To date, three major types
have been identified, including macroautophagy, chaperone-mediated autophagy, and
microautophagy. Of these, macroautophagy (hereafter autophagy) is the most studied.

In cancer cells, autophagy is a double-edged sword for cell fate determination. On
the one hand, excessive or persistent autophagy promotes autophagic cell death, limits
tumorigenesis and enhances therapeutic efficacy in some specific contexts [199]. On the
other hand, the prosurvival function of autophagy is thought to be involved in oncogenesis,
tumor progression, and therapy resistance [200].

HO-1 and autophagy are both inducible by stress conditions. Indeed, HO-1 was
revealed to be coregulated with autophagy in the development of tumor chemoresistance,
and manipulating HO-1-related autophagy to improve therapeutic responses has attracted
attention. A previous study showed that HO-1 expression was upregulated by rapamycin
and sorafenib treatment in renal cancer cells, which subsequently promoted cancer cell sur-
vival by suppressing both apoptotic and autophagic cell death. The underlying mechanism
of HO-1-downregulated autophagy was associated with increased linkage between Beclin-1
and Rubicon [201]. Nevertheless, the positive role of HO-1 in autophagy activation to
promote cell survival has been highlighted. HO-1 activated autophagic flux by increasing
the LC3BI/LC3BII ratio and upregulating ERK and JNK, which was indicated to drive
resistance against HER2-targeted therapies in breast cancer [202]. HO-1 boosted autophagy
modulation by the Src-STAT3 and PI3K/Akt signaling pathways and was also discovered
to contribute to doxorubicin and pharmorubicin resistance, respectively, in breast cancer
cells [42,43]. In chronic myeloid leukemia cells, silencing HO-1 was shown to reverse
imatinib resistance by inhibiting autophagy through the activation of the mTOR path-
way [203]. In addition, increased HO-1 induced by silencing BACH2 was demonstrated to
facilitate bortezomib resistance in mantle cell lymphoma cells by triggering cytoprotective
autophagy formation and maintaining ROS at a minimal tumor-promoting level [204].

The underlying mechanism of HO-1-regulated autophagy is complicated and not
fully elucidated. Autophagy and apoptosis are tightly intertwined, and the regulation of
autophagy by HO-1 is often accompanied by changes in apoptosis, either by inducing
autophagy to inhibit apoptosis and play a protective role [205–207] or activating exces-
sive autophagy to blow up apoptotic cell death [208]. Thus, appropriate regulation of
HO-1-associated autophagy might become a potential therapeutic strategy to ameliorate
chemoresistance. It is noteworthy that mitochondria are critical to the manipulation of
apoptosis, energy production and cellular homeostasis [209]. Mitophagy, a selective form of
autophagy that facilitates the elimination of damaged mitochondria before they cause cel-
lular function impairments, can be amplified by overactivation of HO-1 and then undergo
cell demise in glioma cells [210]. In accordance with this, HO-1-dependent NRF-1 induc-
tion was validated to arrest cardiomyocyte cell death and prevent fibrosis after oxidative
stress through the transcriptional regulation of key mitophagy proteins that preserve mito-
chondrial homeostasis [211]. In addition, AMPK, a crucial regulator of energy metabolic
homeostasis, was recently found to antagonize mTOR and facilitate HO-1-associated au-
tophagy [212]. HO-1 was implicated in maintaining mitochondrial quality by inhibiting
mitochondrial fission [213,214]. Based on the evidence reviewed above, the crosstalk be-
tween autophagy and apoptosis as well as the participation of mitochondria in biological
processes might be relevant to the regulation of autophagy by HO-1, which still remains to
be thoroughly investigated.

6. Conclusions

HO-1 is an established component of the antioxidant defense system that exerts cyto-
protective functions by scavenging ROS and recovering redox homeostasis to counteract
oxidative stress. However, recent developments have suggested that aberrant activation of
HO-1 may be the decisive factor for chemoresistance in various cancers. In this review, we
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highlighted that increased antioxidative, antiapoptotic, and proautophagic activities are
crucial mechanisms underlying HO-1-mediated chemoresistance (Figure 6).
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Research to date has revealed that inhibition of HO-1 may be a promising strategy
to overcome chemoresistance and improve the efficacy of chemotherapeutic regimens.
Both pharmacological suppression of HO-1 activity by zinc protoporphyrin IX (ZnPP-
IX) or tin protoporphyrin IX (SnPP-IX) and targeted knockdown of HO-1 expression by
siRNA significantly enhanced chemosensitivity in cancer cells and suppressed chemore-
sistant xenograft tumor growth in vivo. Advances have been made in understanding the
mechanisms underlying HO-1-mediated chemoresistance, and further development of
HO-1-targeted therapies provides encouraging prospects for clinical application to opti-
mize patient prognosis in different cancers. However, translating preclinical results to
the clinic has been challenging due to the lack of safe and effective HO-1 inhibitors. It
is noteworthy that suppression of HO-1 might break its protective effect on normal cells
when exerting a killing effect on tumor cells; thus, the side effects of HO-1 inhibitors on
normal cells and the incidence of adverse outcomes remain to be properly measured in the
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development of new inhibitors. Furthermore, whether HO-1-dependent therapy resistance
is universal or specific for certain tumor types remains largely unexplored. As discussed
above, overexpressed HO-1 leads to therapy resistance in both solid and hematological
tumors. As a future perspective, the detailed molecular mechanisms of how HO-1 medi-
tates chemoresistance in a specific cancer type and the development of safe, effective HO-1
inhibitors warrant further investigation.
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