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Abstract: Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ
diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These
substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their
exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly
susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead
to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis
(PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air
pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and
its impact on the lungs requires future research. This includes identifying strategies for preventing
and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress.
Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation,
apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the
alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and
strategies in inflammation and oxidative stress.

Keywords: cigarette smoke; oxidative stress; COPD; NF-κB; MAPK; RAGE; Nrf2; PF; cancer; ARDS;
AE-COPD; CVD

1. Introduction

The World Health Organization (WHO) has estimated that smoking causes about
8 million deaths each year, with the majority occurring in low- and middle-income coun-
tries [1]. Despite estimates, more than 100 million people around the world continue
to smoke regularly [2]. To combat this issue, various world health institutions have set
agreements and goals to reduce the prevalence of smoking. Representatively, the WHO
Framework Convention on Tobacco Control (FCTC) has come into effect since 2005, and
181 countries are participating as of 2020 [3]. The FCTC has implemented measures such as
tobacco price and tax increases, packaging and labeling requirements, and health warning
labels [4,5]. Due to these policies, the global average number of smokers is decreasing;
however, smoking remains a significant cause of disease and death for individuals.

Cigarette smoke (CS) is a representative risk factor for vascular and various organ
diseases, as well as respiratory illness [6]. With over 4000 chemicals, such as nicotine,
acrolein, phenols, carbon monoxide, benzene, and formaldehyde [7,8]. Both active and pas-
sive inhalation of these harmful chemicals can induce oxidative stress in the body, leading
to inflammation, apoptosis, and senescence. Acrolein, for example, causes mutations by
forming acrolein-induced DNA adducts [9]. Acrylonitrile is a representative oxidant in
cigarettes; it produces 8-oxo-2′-deoxyguanosine and contributes to oxidative stress [10].

CS contains a high level of reactive oxygen species (ROS), which can overwhelm
the body’s antioxidant defense system and result in oxidative stress [11]. Chronic CS
exposure causes persistent oxidative stress in the lung, damaging the respiratory system
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and increasing the risk of various diseases. The detrimental effects of smoking on the
lung can be attributed to both the direct and indirect consequences of oxidative stress [12].
Direct effects include damage to cellular components such as lipids, proteins, and DNA [13].
Indirect effects involve the activation of inflammatory cells, leading to the release of pro-
inflammatory cytokines and chemokines that further exacerbate oxidative stress and cause
tissue damage [14].

The production of ROS is involved in various cells, and mitochondria and NADPH
oxidase (NOX) are the main sources of ROS [15]. During ATP synthesis by oxidative
phosphorylation, the main function of mitochondria, ROS is mainly produced, and the
generated ROS is removed by superoxide dismutase, peroxiredoxin, and glutathione
peroxidase [16,17]. NADPH oxidase is found in neutrophils and vascular cells and is
involved in the generation of neutrophil extracellular traps (NETs) and vasoconstriction
and vasodilation, depending on the cell [18,19].

Oxidative stress can inflict cellular damage through the oxidation of lipids, proteins,
and DNA [20]. For example, lipid peroxidation leads to the formation of aldehydes
and other toxic compounds that can disrupt cellular membranes [21]. The oxidative
modification of lipids can lead to membrane permeability changes and cellular dysfunction,
ultimately leading to cell death [22]. Protein oxidation may result in structural changes and
loss of function, while DNA oxidation can lead to mutations and cell death [23]. In addition,
this stress has been linked to a number of lung diseases, including chronic obstructive
pulmonary disease (COPD) and lung cancer [24]. Oxidative stress induces inflammation
and damage, leading to several respiratory diseases such as COPD, ARDS, lung cancer, and
pulmonary fibrosis, as well as cardiovascular diseases [25]. Further research is necessary to
comprehensively understand how oxidative stress affects the lung and to identify effective
antioxidants for the treatment of lung diseases [26–28]. In addition, investigating the role
of oxidative stress in the development of lung diseases and determining the most effective
strategies for prevention and treatment are also crucial [29]. In this review, we aim to
provide a comprehensive summary of the impacts of oxidative stress, primarily triggered
by cigarette smoke, on cellular processes such as inflammation, apoptosis, aging, and
autophagy. We will further explore the consequential diseases and potential therapeutic
targets in the lungs and cardiovascular system.

2. Cellular Responses to Cigarette Smoke
2.1. Inflammation

Inflammation is a biological defense mechanism against harmful stimuli such as
pathogens and damaged cells [30]. It can be acute or chronic, with CS often being a risk fac-
tor for chronic inflammation [31]. Smoking induces high concentrations of cigarette smoke
particles to enter the lungs, and these stimuli are harmful factors that cause acute or chronic
inflammation [32–35]. Oxidative stress is the primary cause of inflammation resulting
from smoking [36]. During oxidative stress, cell damage leads to the release of damage-
associated molecular patterns (DAMP) molecules [37]. The receptor for advanced glycation
end products (RAGE) is a 35-kilodalton membrane receptor known as a receptor for DAMP
molecules such as AGE, high mobility group box 1 (HMGB1), and S100 families [38]. RAGE,
also known as a marker for type 1 lung epithelium, is closely related to lung disease [39].
RAGE has a soluble form (sRAGE) secreted out of the cell and a membrane-bound form
(mRAGE). In general, the soluble form binds to DAMP instead of membrane-bound RAGE
to act as an antagonist to inhibit the activation of membrane-bound RAGE due to cigarette
smoke [40–43]. Toll-like receptors (TLRs) are also key receptors for DAMP and play a cru-
cial role in the innate immune response [44]. TLRs are commonly found in various innate
immune cells, such as macrophages and dendritic cells, and recognize pathogen-derived
molecules [45]. TLRs are significant mediators in the inflammatory mechanism caused by
smoking. Barua et al. reported that CS triggers inflammation through the activation of the
histamine receptor-1 (H1R)-TLR2/4-cyclooxygenase2 (COX2) axis [46]. Moreover, Nadigel
et al. confirmed the expression and inflammation of high TLR4/9 in COPD patients [47].
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As such, oxidative stress and DAMP-induced inflammation by CS are essential mechanisms
in the immune response.

And activation of DAMP receptors, such as RAGE and TLRs, typically activates the
mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light chain-enhancer
of activated B cells (NF-κB) pathways [48]. NF-κB is a p50/p65 heterodimer that plays
an important role in inflammation, immune response, and apoptosis [49,50]. IκB present
in the cytoplasm under physiological conditions inhibits NF-κB, and phosphorylated IκB
through activation of IκB kinase (IKK) promotes phosphorylation and translocation of
NF-κB to induce it to act as a transcription factor [51]. These activated NF-κBs regulate
the recruitment of various infectious cytokines and inflammatory cells [52]. MAPK is
a family of protein kinases that regulate cellular responses to various stimuli, such as
thermal shock, osmotic stress, and pro-inflammatory cytokines [53]. MAPK typically
includes extracellular signal-regulated kinases (ERK1/2), p38, and c-Jun N-terminal Kinase
(JNK1/2). Among them, ERK is activated by differentiation signals, and JNK and p38 are
activated by inflammation and various stresses [53,54]. Each activated factor regulates
the expression of pro-inflammatory cytokines. The secretion of inflammatory cytokines
by activation of these factors activates the signal transducer and activator of transcription
(STAT) pathway [55,56]. The phosphorylated STAT controls the cell cycle, apoptosis, and
differentiation along with interferon regulatory factor 9 (IRF9), CREB-binding protein
(CBP)/P300 [57–59].

Various cells are involved in immune responses, but macrophages, neutrophils, and T
cells play a major role in innate and adaptive immunity. Macrophages are crucial compo-
nents of the innate immune system that recruit and activate lymphocytes through phago-
cytosis and antigen presentation [60]. They can be polarized into M1 (pro-inflammatory)
and M2 (anti-inflammatory) cells [61]. The relationship between CS and macrophage po-
larization has produced conflicting results. Generally, studies have shown that cigarette
smoking upregulates the secretion of IL-8 in human macrophages [62,63] and releases
pro-inflammatory cytokines such as IL-8 and TNF-α in rat lungs [64]. However, it has
been reported that CS extract (CSE) inhibits the phagocytic response in COPD-derived
alveolar macrophages [65] and that exposure to CS promotes M2 polarization in mouse
macrophages [66]. Macrophage M1/M2 polarization progressively increases with the sever-
ity of smoking and disease [67]. Therefore, smoking affects the polarization of macrophages,
but the direction of polarization varies depending on species and severity. Recently, Keshav
et al. combined plant extracts of berberine and liquid crystalline nanoparticles to confirm
antioxidant action in RAW 264.7 cells exposed to CSE [68]. As such, future research is
needed to understand the impact of smoking on macrophage function.

Neutrophils are the most abundant granulocytes and play a pivotal role in innate im-
munity [69]. They are essential in the pathogenesis of COPD, as emerging studies support
the hypothesis that neutrophil elastase breaks down alveolar elastin, leading to emphy-
sema [70–73]. Guzik et al. reported that acute exposure to CS in vitro induces neutrophil
necrosis, promoting phagocytosis in macrophages [74]. On the other hand, Noda et al.
found that CS impaired alveolar macrophage phagocytosis of apoptotic neutrophils in
COPD patients [75]. Furthermore, CS-induced COPD mouse models exhibited that necrop-
tosis and DAMP release cause airway inflammation by neutrophils [76]. In other words,
direct CS exposure to neutrophils induces apoptosis; however, the resulting DAMPs can
be delivered as an inflammatory inducer for other neutrophils or macrophages. Therefore,
inhibition of neutrophil activity in inflammation could be an effective therapeutic target.

T cells are a major subgroup of immune cells that mediate adaptive immunity. These T
cells differentiate into helper, effector, memory, and regulatory T cells upon activation [77–80].
These T cells serve different functions depending on the specific antigen. Helper T cells’
inflammatory responses can be largely classified into Th1, Th2, and Th17 [81]. Th17 cells are
predominantly regulated by CS. In COPD mice, CS exposure has been shown to upregulate
Th17-related cytokines, such as IL-6, IL-17A, and IL-23 [82]. Additionally, Th1 and Th17
cells significantly increased in the bronchoalveolar lavage (BAL) fluid of mice exposed
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to CS for 6 months [83]. Th2 cells are associated with CS-induced airway inflammation.
Hove et al. confirmed increased Th2 activity and expression of IL-13 in the airways of
mice exposed to CS for 4–8 weeks [84]. It has also been reported that the expression of
thymic stromal lymphopoietin, which is essential for Th2 activity, is increased in the nasal
cavities of mice [85]. In summary, Th1 and Th17 develop an inflammatory response with
several pro-inflammatory cytokines in lung diseases caused by CS, and in the nasal cavity,
a Th2-induced allergic reaction can be caused by CS.

CD8+ T cells play a crucial role in the host immune response by eliminating infected
or damaged cells. Typically, it has been reported that inflammation and emphysema caused
by CS were suppressed in CD8 knockout mice [86]. CS also activates CD8+ T cells in COPD
patients and increases expression of IL-1β, IL-6, IL-10, IL-12, TNF-α, and IFN-γ [47]. In
addition, the activation of CD8+ T cells by smoking has been reported in autoimmune
diseases such as rheumatoid arthritis [87]. In conclusion, most studies have shown that
smoking increases the activation of CD8+ T cells. Therefore, inhibition of CD8+ T cells may
be an effective therapeutic target for inhibiting cellular damage caused by smoking.

Most researchers are conducting inflammatory studies with immune cells as targets.
However, there may be various mechanisms related to CS-induced inflammation. For
example, CS-induced inflammation is also associated with the microbiome. Lingyue
et al. reported that fermented black barley enriches probiotics such as Oscillospira and
Ruminococcus, which can inhibit CS-induced lung inflammation [88]. These microbiome
studies can be a new topic for the study of CS-induced inflammation. Therefore, many
studies should be conducted on various targets for CS-induced inflammation.

2.2. Cigarette Smoke-Induced Cell Death

Apoptosis, or programmed cell death, is a highly regulated biological process crucial
for maintaining tissue homeostasis and preventing disease development [89]. It features
morphological changes, such as cell shrinkage, chromatin condensation, and apoptotic
body formation, and is initiated by signals like cellular stress (e.g., oxidative stress) and
extracellular signals (e.g., cytokines and growth factors) [90]. Apoptosis regulation is
complex, involving multiple signaling pathways and target genes, including the B-cell
lymphoma 2 (BCL-2) family of proteins, caspases, the tumor protein p53 (TP53), and
inhibitors of apoptosis proteins (IAPs) [91]. In terms of the signaling pathways involved in
apoptosis, there are two main pathways: the intrinsic pathway, initiated by signals, and the
extrinsic pathway, initiated by extracellular signals [92]. The intrinsic pathway is regulated
by the BCL-2 family of proteins and the activation of caspases, while the extrinsic pathway
is regulated by signaling molecules such as TNF and Fas ligand [93]. The BCL-2 family
of proteins plays a central role in regulating the intrinsic apoptotic pathway [94]. Pro-
apoptotic members, including BAK and BAX, are responsible for releasing pro-apoptotic
factors from the mitochondria in response to cellular stress, while anti-apoptotic members,
such as BCL-2 and BCL-XL, inhibit apoptosis induction [95]. The activation of caspases, a
family of proteases central to the execution of apoptosis, is another key step in the induction
of apoptosis [96]. TP53 and the IAPs also play significant roles in apoptosis regulation, with
TP53 regulating the cell cycle and the IAPs acting as inhibitors of caspase activity [97,98].

Caspase activation has been shown to increase in smokers, indicating an upregu-
lation of apoptotic signaling pathways [99]. Cigarette smoke has been associated with
various molecular and cellular changes in the lung tissue, including the upregulation of
testis-specific serine/threonine kinase 4 (TSSK4) in alveolar epithelial type-II cells, the
involvement of the SENP1-SIRT1 pathway in hyperoxia-induced alveolar epithelial cell
injury, and the effects on the mouse alveolar epithelial cell line MLE 12. The upregulation of
TSSK4 in alveolar epithelial type-II cells increases susceptibility to cigarette smoke-induced
lung injury, as smoke exposure leads to oxidative stress, TSSK4 activation, and subsequent
apoptosis of these cells, which collectively contribute to the development of lung disease-
like emphysema [100]. Cigarette smoke exposure exacerbates hyperoxia-induced alveolar
epithelial cell injury by dysregulating the SENP1-SIRT1 pathway, impairing the cells’ ability
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to cope with oxidative stress, and ultimately leading to increased cell death and lung tissue
damage [101]. The dysregulation of long noncoding RNA uc.375 has been implicated in
epithelial cell apoptosis and smoking-related lung diseases, including bronchopulmonary
dysplasia [102]. In COPD, increased apoptosis levels in lung cells lead to the destruction of
lung tissue and emphysema development [103]. In lung cancer, dysregulated apoptosis
allows cancer cells to avoid programmed cell death and continue dividing and growing
uncontrollably [104].

Apoptosis, along with necrosis and ferroptosis, three distinct forms of cell death, play
crucial roles in lung injury and disease [105]. Necrosis, primarily triggered by injury or
infection, leads to irreversible cellular damage [106]. This process can be mitigated by
substances like ginkgolide C, which acts on the CD40/NF-κB pathway, is a significant
mediator of necrosis-induced epithelial cell damage, and is considered a potential driver
in COVID-19-induced acute respiratory distress syndrome [107]. On the other hand,
ferroptosis is a regulated form of cell death involving iron-dependent lipid peroxides,
closely linked to diseases instigated by cigarette smoke exposure [108]. Notably, several
genes, such as NAD(P)H dehydrogenase [quinone] 1 (NQO1), aldo-keto reductase family
1 member C3 (AKR1C3), and glutathione peroxidase 2 (GPX2), identified through gene
expression dataset analysis, have been implicated in ferroptosis and exhibit promising
diagnostic potential [109].

A study showed that CS extract increased oxidative stress and apoptosis in lung
cells [110]. In particular, smoking has been shown to increase the levels of pro-apoptotic
factors such as BAX and decrease the levels of anti-apoptotic factors such as BCL-2 in lung
cells [111]. Another study found that CS extract caused mitochondrial dysfunction and the
release of pro-apoptotic factors, leading to apoptosis in lung cells [112]. As mentioned, CS
also activates the extrinsic apoptotic pathway through the upregulation of death receptor
signaling molecules such as Fas and TNF [113]. In lung cancer, TP53 tumor suppressor
gene mutations, which regulate apoptosis and cell cycle arrest, are common and can lead to
dysregulation of apoptosis [114]. Lung cancer apoptosis dysregulation may also involve
alterations in the expression of BCL-2 family proteins, such as the downregulation of
the pro-apoptotic protein BAX and the upregulation of anti-apoptotic proteins such as
BCL-2 [115]. These studies suggest that CS increases oxidative stress and dysregulates
apoptosis in the lung, leading to the development of lung diseases such as COPD and lung
cancer. Overall, smoking can dysregulate apoptosis signaling pathways, initiating lung
cell apoptosis and contributing to the development of lung diseases. Understanding how
smoking affects apoptosis is essential for developing effective strategies.

2.3. Effects of Cigarette Smoke on Cellular Senescence in the Lungs

Cigarette smoke (CS) plays a significant role in accelerating lung senescence and
increasing the risk of respiratory diseases in the elderly [116]. CS contains a myriad of
toxic chemicals that can induce oxidative stress, inflammation, and DNA damage, which
contribute to the aging process [117].

One of the primary factors linking cigarette smoke to lung senescence is the production
of reactive oxygen species (ROS) [118]. ROS is generated by the metabolism of toxic
components in CS, subsequently leading to oxidative stress in lung cells [119]. Elevated
ROS levels can damage cellular components such as proteins, lipids, and DNA, eventually
resulting in cellular dysfunction and death [120]. In addition to oxidative stress, CS
promotes inflammation in the lungs by increasing the levels of pro-inflammatory cytokines
such as tumor necrosis factor and interleukin [121]. This chronic inflammation negatively
impacts lung function and contributes to the development of respiratory diseases like
COPD and interstitial lung disease (ILD) [122]. Cigarette smoke exposure can disrupt
the balance of immune cells in the lungs, leading to chronic inflammation and impaired
immune responses [123].

Cigarette smoke exposure can cause oxidative stress and inflammation in alveolar
cells, leading to impaired surfactant production and reduced regenerative capacity [124].
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Neutrophils, when activated by CS, can produce excessive ROS and release destructive
enzymes, such as matrix metalloproteinases (MMPs), further contributing to lung tissue
destruction and the progression of lung disease [72]. Cigarette smoke has also been found
to affect key genes involved in lung senescence, such as fibronectin, MMPs, and sirtuin-
1 (SIRT1) [125]. CS exposure leads to decreased fibronectin levels and increased MMP
levels, which contribute to the loss of lung function and the development of respiratory
diseases [126]. Furthermore, CS exposure results in the downregulation of SIRT1 in lung
tissue, disrupting its protective role against lung injury and senescence [127].

Current therapeutic approaches for CS-induced lung diseases focus on managing
symptoms, reducing inflammation, and improving lung function [128]. Inhaled corticos-
teroids, bronchodilators, and supplemental oxygen may be used for patients with COPD
or ILD [129]. Enhancing the regenerative capacity of alveolar type II cells or modulating
immune cell responses to reduce inflammation and oxidative stress could be potential
strategies for treating CS-induced lung diseases [130]. Importantly, smoking cessation is
the most effective way to prevent further lung damage and slow the progression of lung
senescence [131].

Senescence and immunosenescence are interconnected concepts that all relate to aging
and cellular function [132]. Cellular senescence refers to a state of permanent cell cycle
arrest, which is a natural biological response to various types of stress, such as DNA dam-
age, telomere shortening, or oncogenic stress [133]. While this process has a protective
role against cancer, over time it can contribute to aging and age-related diseases [134].
Senescent cells exhibit a specific phenotype characterized by changes in morphology, gene
expression, and secretion of pro-inflammatory factors, known as the senescence-associated
secretory phenotype (SASP) [135]. SASP can influence the surrounding tissue microen-
vironment and contribute to inflammation and tissue dysfunction [136]. Senolytics are
a class of drugs designed to selectively eliminate senescent cells by specifically target-
ing the survival pathways that these cells rely on [137]. By removing senescent cells,
senolytics can alleviate SASP-induced inflammation and tissue dysfunction, potentially
ameliorating the symptoms of aging and age-related diseases [132]. Preclinical studies
have shown promising results, with senolytics improving health span in animal models
of aging and age-related diseases, but their efficacy and safety in humans are still under
investigation [138]. Immunosenescence refers to the gradual deterioration of the immune
system with age, characterized by a decline in the function of the immune cells and an
increase in systemic inflammation [139]. It is associated with increased susceptibility to
infections, decreased response to vaccination, and a higher risk of autoimmunity and cancer
in the elderly [140]. Senescent cells, through SASP, contribute to immunosenescence by
creating a pro-inflammatory environment [141]. Interestingly, senescent immune cells
themselves can also contribute to immunosenescence [142].

In conclusion, understanding the relationship between cigarette smoke, ROS, lung
senescence, and the roles of key genes such as SIRT1 and MMPs is crucial for developing
effective strategies to prevent and treat age-related lung diseases. Targeting the underlying
mechanisms of senescence, including oxidative stress, inflammation, and the regulation of
SIRT1 and MMPs, may lead to improved outcomes for elderly patients with respiratory
diseases exacerbated by cigarette smoke exposure.

2.4. Understanding the Link between Cigarette Smoke and Autophagy

Autophagy is a spontaneous mechanism of decomposition that eliminates unnecessary
or dysfunctional cellular components [143]. This process is crucial for maintaining cellular
homeostasis through the orderly decomposition and recycling of intracellular elements [144,145].
Defects in autophagy have been linked to cancer and diabetes, with autophagy control
in these diseases being studied as a potential treatment [146,147]. As autophagy is also
considered an antioxidant mechanism for adapting to oxidative stress, the relationship
between CS and autophagy is of particular interest [148,149]. Autophagy largely consists
of five steps: initiation, elongation, autophagosome, autophagosome-lysosome fusion,
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and autolysosome formation [150,151]. Autophagy flux refers to the process from the
autophagosome-lysosome fusion step, where degradation begins [152]. Recently, studies
on the relationship between disease and disrupted autophagy flux have been actively
conducted [153–155].

CS-induced autophagy mechanisms remain largely unknown. Recently, Wang et al.
identified a link between oxidative stress caused by CS and autophagy in the human
airway epithelium. They confirmed that the expression of oxidative stress-induced growth
inhibitor (OSGIN1), an oxidative stress-induced growth inhibitor, was significantly in-
creased in airway epithelial inflammation by smoking and was associated with activation
of autophagy [156]. In addition, it has been reported that exposure of CS to the human
alveolar epithelial cell line A549 accumulates LC3 and activates autophagy [157].

Conversely, there are reports that CS exposure impairs autophagy flux. Expression of
Galectin-8, involved in initiating autophagosome engagement, increases due to activation of
autophagy by CSE in macrophages. However, the accumulation of galectin-8 caused dam-
age to autophagy flux [158]. However, the accumulation of Galectin-8 impairs autophagy
flux. This accumulation is known to affect the immune response and induce cytokines
and chemokines [159–161]. In addition, Monick et al. demonstrated that CSE treatment
in human alveolar macrophages increased autophagosome production but impaired the
binding process of autophagosomes and lysosomes through p62 accumulation [162].

As stated in numerous reports, autophagy is activates the production of autophago-
somes to counteract the oxidative stress caused by CS. However, various factors can
suppress the combination of the autophagosome and lysosome, which are crucial for degra-
dation processes. For example, unlike normal oxidative stress, cadmium in cigarettes can
cause the accumulation of autophagosomes [163]. This accumulation of autophagosomes
results in cytotoxicity and ROS production [164]. In addition, mitophagy, which regulates
the production of ROS in oxidative stress environments, is also associated with CS-induced
damage [165]. Mitophagy is autophagy that occurs in mitochondria, and mitochondria are
the main source of ROS, so mitophagy in oxidative stress environments is inevitable [166].
In alveolar type 2 cells, mitophagy is important for inhibiting CS-induced mitoROS that
can be controlled by the expression of SIRT1 [167]. Therefore, further study of autophagy
flux and mitophagy-related genes as potential treatment targets to mitigate damage to
autophagy flux and mitophagy caused by CS is necessary.

3. CS-Induced Lung and Other Diseases
3.1. Chronic Obstructive Pulmonary Disease (COPD)

Chronic Obstructive Pulmonary Disease (COPD) is characterized by emphysema and
chronic bronchitis [168]. Smoking is the most common cause of COPD, while other factors,
such as exposure to cadmium or occupational smoke, are known to be contributors [169,170].
In addition, inorganic dust such as aluminum silicate or kaolinite in cigarettes can accumu-
late in alveolar macrophages and cause inflammation and pneumoconiosis [171]. Although
COPD can be prevented by smoking cessation and reducing exposure to risk factors, it is
not completely curable, and existing medications primarily alleviate symptoms [172].

Emphysema is a type of COPD that reduces oxygen supply to the blood by inhibit-
ing gas exchange due to the destruction of the alveolar wall [173]. The involvement of
MMPs in the destruction of alveolar walls is well known [174]. However, opinions are
divided on which MMPs have a significant impact on COPD development. There are sig-
nificant differences between human patients suffering from COPD and animal emphysema
models [174,175]. For example, in mouse models, MMP-12 activates CXCL-5 to induce
neutrophil infiltration, contributing to emphysema, but in humans, MMP12 performs the
function of inhibiting the CXCL family [176]. MMP-2 has also been observed to have
increased expression in the lungs and sputum of COPD patients, as well as in CS-exposed
mice [177–179]. However, John V reported lowered MMP-2 gene expression in human lung
tissue with the Global Initiative for Obstructive Lung Disease (GOLD) stage [180]. More
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studies are needed to resolve these discrepancies in results on the expression of MMPs and
their mechanisms in COPD.

Bronchitis, a chronic mucous-producing disease in the airways, is one of the other
aspects of COPD [181]. Smoking is the main cause of bronchitis, and the prevalence rate
increases with years of smoking [182]. Excessive mucus resulting from inflammation in the
airways can obstruct the airways. Mucus production-related genes MUC5B and MUC5AC
are increasing representative factors in patients with chronic bronchitis [183–185]. It is
difficult to conduct research on bronchitis despite the discovery of these target genes.
Research on bronchitis is conducted using rat, canine, and monkey models, as the CS-
induced bronchitis mouse model is nonexistent [186–189]. Therefore, the development and
idea of a new disease modeling system for preclinical research on bronchitis are required.

Nuclear factor erythroid 2-related factor (Nrf2) and Kelch-like ECH-associated protein
1 (Keap1) regulating Nrf2 are regulatory redox proteins in cells [190,191]. Nrf2 and Keap1
separate in an oxidative stress environment, thereby activating Nrf2. The activated Nrf2
then translocates to the nucleus and enables expression of the Nrf2 target genes such as
NQO1, heme oxygenase 1(HO1), and glutathione S-transferase (GST), which are able to
eliminate ROS after binding to the promoter region of the antioxidant response elements
(ARE) [192–194]. Since CS-induced oxidative stress and inflammation are the primary
causes of COPD, Nrf2 is closely related to COPD. The importance of Nrf2 has been demon-
strated in patients as well as in mouse models. It has been reported that exposure of Nrf2
knockout mice to CS made them more susceptible to emphysema [195]. Additionally, Kubo
et al. reported that Nrf2 expression was observed to be lower in CS-induced emphysema
mice, and treatment with astaxanthin restored the Nrf2 levels, alleviating emphysema [196].
Pasini et al. observed elevated expression of Nrf2 and HO-1 in the blood of COPD pa-
tients, accompanied by lower forced expiratory volume (FEV1) in the first second [197].
Furthermore, the genes NQO1, HO1, superoxide dismutase type 1 (SOD1), and thioredoxin
reductase 1 (TXNRD1) were downregulated in COPD patients, with increased expression
following treatment with Nrf2 activators [198]. These findings indicate that Nrf2 inhibition
in patients or mice can result in an exacerbation of emphysema and inflammation due to
an inadequate response to oxidative stress.

COPD can also be caused by the activation of various DAMPs and the subsequent
inflammatory responses. Several studies have revealed that expression levels of AGEs and
RAGEs are high in COPD patients. Smith et al. reported that sRAGE levels were lower in
COPD patients in the presence of a negative association between FEV1 and sRAGE in a
multiple linear regression analysis [199]. Hoonhorst et al. measured AGE and RAGE levels
in young (18–40) as well as old (40–75) smokers, non-smokers, and COPD patients and
found that the lowest sRAGE expression was seen in the plasma of COPD patients [200].
On the other hand, mRAGE is generally upregulated in COPD. Ferhani et al. reported
significantly higher levels of high mobility group box 1 (HMGB1), a representative RAGE
ligand, in COPD patients, with mRAGE overexpressed in airway epithelium and smooth
muscle [201]. In addition, it has been reported that exposure to CS extract induces alveolar
epithelial cell injury and results in an upregulation of mRAGE [42,202]. Furthermore,
RAGE-/- mice exposed to cigarette smoke showed less emphysema compared to WT [203].
The differential expression of mRAGE and sRAGE in COPD patients or smokers may
be genetic. In 2016, Miller et al. confirmed through single nucleotide polymorphism
(SNP) analysis that a lower expression of sRAGE was observed in the UK smoker cohort,
with individuals having the T allele of rs2070600, which is associated with pulmonary
function [204–206].

RAGE-DAMP signaling is the initial point for various inflammatory and oxidative
stress mechanisms, which then activate MAPK. It has been reported that exposure to CS
results in increased inflammation, which is accompanied by increased activity of JNK and
p38 in human bronchial epithelial cells [207]. Marumo et al. confirmed that CS exposure
resulted in an increased mRNA expression of p38 in C57BL/6 mice, while no such effect was
observed in the NZW mice (emphysema-resistant) [208]. Renda confirmed an increased
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expression of phosphorylated p38 in the alveoli of COPD patients [209]. Additionally,
ERK expression in COPD patients induces endothelial cell apoptosis by upregulating MMP-1
and MUC5AC, leading to destruction of the alveolar wall and inflammation [210–212]. Taken
together, RAGE-DAMP signaling can cause extensive alveolar damage and inflammation
via MAPK. Therefore, inhibition of mRAGE or upregulation of sRAGE can serve as a
potential target for preventing COPD.

The expression of NOX is closely related to COPD. It was confirmed that the protein
expression of the NOX family in the tissues of COPD patients was significantly higher as
compared to the non-smoker control group [213]. Xinjing et al. reported that NOX 1, 4, and
5 were detected at various sites such as lung epithelial cells, vascular endothelial cells, and
macrophages, and NOX2 was mainly detected in lung macrophages and neutrophils [214].
Stanley et al. also reported that the NOX inhibitor apocynin inhibited lung inflammation
and vascular injury caused by oxidative stress in the CS-induced mouse model [215]. In
addition, expression of NOX in COPD has been reported in several studies [216–218].
Therefore, since NOX is a major source of ROS, targeting NOX to suppress overproduc-
tion of ROS might be an effective way to protect against oxidative stress. Dual oxidase
(DUOX), a NOX homolog, is also important in COPD. Caspar et al. reported that DUOX1
is downregulated in airway epithelial cells of COPD patients and that a deficiency of
DUOX1 in mice enhances emphysema [219]. In addition, Katsura Nagai et al. reported that
DUOX1 was downregulated in airway epithelial cells of smokers compared to non-smokers
and that both DUOX1 and DUOX2 were downregulated in bronchial epithelial cells of
COPD patients [220]. Interestingly, DUOX is downregulated in COPD patients as opposed
to NOX, which may be due to DUOX1 inhibiting epithelial damage and contributing to
maintaining epithelial integrity [221]. In addition, in previous studies, DUOX1 is involved
in epithelial damage response by MMP-9, and overexpression of MMP-9 can cause pro-
tease/antiprotease imbalance and lead to COPD [222,223]. Therefore, among NOX families,
the functions of NOX series and DUOX series in COPD conflict with each other, so targeting
them should be careful in the study.

Metformin and astaxanthin are among the several treatments that have recently been
studied to treat COPD. Metformin, originally a treatment for type 2 diabetes, has been
reported not only to increase insulin sensitivity but also to suppress damage by controlling
cell redox homeostasis [224,225]. Recently, Francesca et al. reported that metformin inhibits
oxidative stress and apoptosis through regulation of adenosine monophosphate (AMP)
kinase signaling in CS-induced emphysema mouse models [226].

Astaxanthin is a keto-carotenoid derived from Hematococcus pluvialis, which is used as
a health binder with Sirtuin1 (SIRT1) supplements for improving muscle strength and also
has therapeutic effects on atherosclerosis and macular degeneration [227–230]. Mingming
et al. reported that Astaxanthin binds with SIRT1, inhibits Nrf2-modulated oxidative stress,
and regulates NF-κB-related inflammatory responses in CS-induced emphysema mouse
models and human bronchial epithelial cells [231].

Also, new therapeutic agents or transporter studies have been reported to treat COPD.
For example, Noridzada et al. treated the human umbilical cord mesenchymal system
cell (HUC-MSC)-derived extracellular vesicle, which resulted in the alleviation of airway
inflammation in the CS-induced rat model [232]. In addition, Emanuela et al. used lipid-
polymer hybrid nanoparticles (LPHNPs) to develop a drug delivery system for Roflumilast,
a representative PDE4 inhibitor [233]. In addition, studies have been conducted using
liposomes and nanoparticles targeting oxidative stress for treating COPD [234–237]. These
therapeutic studies will be the steppingstones for obtaining treatment for COPD.

3.2. Pulmonary Fibrosis

Pulmonary fibrosis is a chronic lung disease characterized by excessive deposition
of extracellular matrix and progressive scarring of lung tissue. Smoking is a major risk
factor for pulmonary fibrosis. The genetic and molecular mechanisms underlying CS-
induced pulmonary fibrosis involve oxidative stress, inflammation, fibroblast activation,
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and epithelial-mesenchymal transition (EMT) [238]. Genetic polymorphisms in SNPs
related to ROS metabolism, such as cytochrome P450 Family 1 subfamily A Member
1 (CYP1A1) and cytochrome P450 Family 1 subfamily B Member 1 (CYP1B1), as well
as antioxidant enzymes, such as GST and SOD, increase susceptibility to CS-induced
pulmonary fibrosis [239,240]. Several studies have reported the overexpression of NADPH
oxidases, particularly NOX4 [241], which is believed to contribute to the development and
progression of the disease [242]. Specifically, NOX4-derived ROS has been implicated in
fibroblast activation and myofibroblast transformation, which are the key processes in the
pathogenesis of IPF [243]. Therefore, targeting NOX4 might offer therapeutic benefits in
IPF [244].

Rage is one of the several molecular players implicated in the pathogenesis of PF [245].
RAGE contributes to the maintenance of alveolar structure and function in healthy lungs.
However, the overall expression of RAGE is reported to be decreased in the lung tissues
of patients with PF [246]. More specifically, RAGE expression has been observed to be
significantly reduced in fibrotic areas of the lungs affected by PF [247]. This lowering of
RAGE expression is associated with the loss of type I alveolar epithelial cells (AECs), which
are replaced by type II AECs and fibroblasts during disease progression [248]. Additionally,
levels of sRAGE in the serum of PF patients are often elevated [249], which might reflect in-
creased cleavage and loss of membrane-bound RAGE from the injured alveolar epithelium
in PF [250]. Further studies are needed to fully understand the role of RAGE in PF and its
potential as a therapeutic target. Overexpression of RAGE leads to an exaggerated inflam-
matory response, including the release of pro-inflammatory cytokines [251]. In cigarette
smoke exposure, it could exacerbate the inflammatory and oxidative stress responses,
thereby contributing to the progression of lung disease [252]. In IPF, overexpression of
RAGE could potentially worsen fibrotic responses, as RAGE signaling has been implicated
in fibroblast activation and collagen production [247]. RAGE knock-out mice often show
less severe disease phenotypes in response to harmful stimuli such as cigarette smoke [253].
The knock-out mice show less inflammation and oxidative stress in response to cigarette
smoke and less fibrosis in models of IPF [254]. Nuclear RAGE interacts with specific DNA
repair proteins, potentially regulating their activity [255]. As a result, it may influence the
cellular response to DNA damage [42].

An increased risk of pulmonary fibrosis in smokers is associated with genetic variations
in genes encoding inflammatory mediators such as IL-1, TNF-α, and TGF-β [256]. Addition-
ally, polymorphisms in the genes encoding chemokine (C-C motif) ligand 18 (CCL18) and
chemokine (C-X-C motif) receptor 3 (CXCR3) have been linked to CS-induced pulmonary
fibrosis [257]. Fibroblast activation causes excessive deposition of extracellular matrix com-
ponents, such as collagen and fibronectin. Activation of lung fibroblasts and extracellular
matrix production, such as MMPs and tissue inhibitors of metalloproteinases (TIMPs),
is also a result of CS exposure [258,259]. EMT, characterized by the transformation of
epithelial cells into mesenchymal cells, is a critical process in pulmonary fibrosis, resulting
in increased fibroblast activity and extracellular matrix deposition. Smoking upregulates
TGF-β signaling, thereby inducing EMT in lung epithelial cells [260]. Susceptibility to
CS-induced pulmonary fibrosis might be influenced by genetic variations in EMT-related
genes, such as Snail Family Transcriptional Repressor 1 (SNAI1), Twist Family BHLH
Transcription Factor 1 (TWIST1), and Zinc Finger E-Box Binding Homeobox 1 (ZEB1).

Antioxidant therapies, such as N-acetylcysteine, have shown potential for ameliorating
oxidative stress in pulmonary fibrosis [261]. N-acetylcysteine replenishes the levels of
the antioxidant glutathione and reduces reactive oxygen species, thereby mitigating the
harmful effects of oxidative stress on lung tissue [262]. Anti-inflammatory agents targeting
pro-inflammatory cytokines, such as TNF-α, IL-1, and TGF-β [263], and anti-fibrotic drugs,
including pirfenidone and nintedanib [264,265] have been explored as potential treatments
for pulmonary fibrosis in addition to antioxidant therapies.

Targeting EMT with TGF-β signaling inhibitors, such as galunisertib, has shown
promising results in preclinical studies [266]. Modulating specific microRNAs (miRNAs)
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is emerging as a therapeutic strategy for CS-induced pulmonary fibrosis and EMT [267].
It would be therapeutically beneficial to target chemokine signaling pathways such as
CCL2/CCR2 and CCL18/CCR8 [268].

Phosphodiesterase 4B (PDE4B) inhibitors can play a significant role in alleviating
disease progression and function as a therapeutic target for PF. The inflammation and
fibrotic processes, which are often exacerbated by CS exposure in normal human bronchial
epithelial cells, are reduced by the PDE4B inhibitors [269]. With regards to CS-induced
lung damage, inhibitors targeting PDE4B might help mitigate the harmful effects of smoke
and contribute to the overall treatment of pulmonary fibrosis [270].

In conclusion, CS-induced pulmonary fibrosis is a complex disease with multiple
genetic and molecular mechanisms. Currently, emerging therapeutic strategies targeting
EMT, miRNAs, and chemokine signaling might provide more effective treatments for this
debilitating lung disease.

3.3. Cancers

Lung cancer is the leading cause of cancer-related deaths worldwide, accounting
for approximately 1.8 million deaths per year [271]. The primary cause of lung cancer is
cigarette smoking, which accounts for approximately 80–90% of all cases [272] and 25%
of all cancer deaths. Smokers are 15–30 times more likely to develop lung cancer than
non-smokers, and the risk increases proportionally with the number of cigarettes smoked
per day and the duration of smoking [273]. Additionally, antioxidants such as glutathione,
which are crucial in protecting against oxidative stress, can be depleted by CS [274]. The
imbalance between ROS and antioxidants can result in chronic oxidative stress, which has
been linked to lung cancer development [14].

Cigarette smoking, which contains more than 70 carcinogens, including polycyclic
aromatic hydrocarbons and nitrosamines, has been linked to an enhanced risk of various
types of cancer. Studies have indicated an association between smoking and an increased
risk of bladder cancer, pancreatic cancer, kidney cancer, esophageal cancer, and head and
neck cancers [272,275–280]. Oxidative stress has also been implicated in the development of
many types of cancer, including lung cancer, breast cancer, and prostate cancer [281–284], and
is also involved in inducing epigenetic changes, such as DNA methylation and histone
modifications, which can alter expression patterns of genes and contribute to tumorigene-
sis [285].

In cancer, the role of NADPH oxidases is complex and depends on the type of cancer [286].
Some cancers are associated with enhanced expression of certain NOX isoforms, which
contribute to cancer progression by promoting cell proliferation, survival, angiogenesis,
and metastasis [287]. For example, NOX1 is upregulated in colon cancer, while NOX4 and
NOX5 are often overexpressed in breast cancer [288]. Furthermore, the reactive oxygen
species produced by these enzymes can result in DNA damage, which can further lead to
mutations and the development of cancer [289].

NF-κB is a key factor related to controlling inflammation caused by oxidative stress,
which was caused by CS [290]. CS reportedly increases the expression of inducible nitric
oxide synthase (iNOS) and activates NF-κB, causing inflammation in human lympho-
cytes [291]. Oxidative stress-induced activation of the NF-κB pathway is involved in
tumorigenesis by enhancing c-Myc and cyclin D1 levels [292,293]. The DNA damage
induced by ROS results in mutations and altered gene expression patterns that promote
cell proliferation and survival, including the activation of oncogenes and the inactivation of
tumor suppressor genes [294]. The hypoxia-inducible factor (HIF) pathway, which plays a
critical role in tumor angiogenesis, metastasis, and resistance to chemotherapy, can also be
activated by ROS [295]. The PI3K/AKT/mTOR pathway, which regulates cell survival and
proliferation [296], and the dysregulation of which has been implicated in several cancers,
including lung cancer, is activated by ROS [297]. The redox state imbalance is characteristic
of cancer, and the role of the antioxidant factor Nrf2 is important [298]. Interestingly,
Nrf2 plays a dual role in cancer. In general, in the early stages of cancer, NRF2 activates
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DNA damage, cell cycle arrest, and DNA repair [299,300], and with the progression of the
tumor, the activity of NRF2 can contribute to protecting against oxidative stress in tumor
cells [300,301]. Therefore, treatment targeting Nrf2 can be either effective or suppressive,
depending on the progression of the cancer.

Animal models have been developed to determine key molecular pathways involved
in lung cancer, such as the PI3K/AKT/mTOR pathway and hypoxia-inducible factors,
and test the efficacy of various therapies. Nano-immunotherapy has been observed to
enhance the antitumor immune response and enhance therapeutic outcome in preclinical
lung cancer models [302,303]. Zhong et al. reported that apoptosis, along with inhibition
of NF-κB, accumulation of IκBα, and reduction in the DNA binding activity of NF-κB,
was observed in the lungs of cigarette-exposed mice [304]. Clinical trials demonstrated
that targeted therapy with epidermal growth factor receptor (EGFR) inhibitors improved
progression-free survival and overall survival in patients with non-small cell lung cancer
with EGFR mutations [305]. Moreover, some patients achieved long-term remission when
treated with immunotherapy with checkpoint inhibitors, such as pembrolizumab and
nivolumab, in clinical trials [306,307].

The aim of cancer treatment strategies is to improve upon traditional therapies like dex-
amethasone, a steroid that is often used to reduce inflammation and suppress the immune
response in various cancers [308]. PD-1/PD-L1 inhibitors act by potentially mitigating ox-
idative stress, thereby improving the therapeutic efficacy of traditional therapies. Reduced
oxidative stress for PD-1/PD-L1 inhibitors may enhance the ability of the immune system
to target cancer cells by preventing immunosuppressive effects in the tumor microenvi-
ronment. This can be achieved by combining antioxidant therapies with PD-1/PD-L1
inhibitors to lower ROS levels and restore immune cell functionality [309]. The advent of
novel therapeutic modalities such as nanocarriers, antibodies, gene editing technologies,
and exosome technologies has led to a significant evolution of the cancer treatment land-
scape. Liposomes are a type of nanocarrier that is widely used to safely transport drugs
and deliver them to specific tissues [310]. Monoclonal antibodies (mAbs) [311], which can
function by directly inhibiting cancer cell growth, inducing apoptosis, or stimulating the
immune system to attack the cancer cells, have emerged as one of the most successful
strategies for targeted cancer therapy [312]. Examples of monoclonal antibodies include
trastuzumab for HER2-positive lung cancer and rituximab for B-cell malignancies [313,314].
Gene editing, particularly the CRISPR-Cas9 system, is a powerful tool in cancer research
and therapy [315]. This technology can be used not only to modify or correct disease-
causing mutations in cancer cells [316], but it can also be used to engineer immune cells,
such as T cells, to enhance their ability to recognize and kill cancer cells—a strategy used
in CAR-T cell therapy [317]. Combining CAR-T-cell therapy with antioxidant treatments
enables the management of oxidative stress by neutralizing ROS and enhancing the im-
mune response of tumors, thereby improving the survival and functionality of engineered T
cells [318]. Exosomes are small vesicles secreted by cells that can carry proteins, lipids, and
nucleic acids [319], which can be engineered to deliver therapeutic agents, such as drugs
or RNA molecules, directly to cancer cells [320]. Exosomes derived from mesenchymal
stem cells (MSCs) exert therapeutic effects in the lungs [321]. These novel therapeutic
strategies, though promising, also face challenges such as potential side effects, difficulty in
delivery, and issues with specificity and efficiency. Ongoing research is needed to address
these challenges and enable the full realization of the potential of these technologies in
cancer treatment.

3.4. Acute Respiratory Distress Syndrome and Acute Exacerbations of COPD

Acute respiratory distress syndrome (ARDS) is a type of respiratory failure charac-
terized by extensive lung inflammation that is caused by sepsis, trauma, pneumonia, and
aspiration damage [322]. Pathophysiology involves an inflammatory cascade and destruc-
tion of the air-blood barrier [323]. During this process, the infiltrated neutrophils produce
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neutrophil elastase (NE) and MMPs and damage the air-blood barrier, leading to a vicious
cycle leading to more inflammation and edema [324–326].

Although a direct association between smoking and ARDS is not known, studies
suggest that CS exposure in ARDS patients increases the risk and severity. Moazed et al.
reported that patients with ARDS exposed to CS had elevated plasma IL-8 levels [327,328].
In addition, exposure of smokers or non-smokers to LPS resulted in elevated levels of IL-1β,
IL-8, and more excess neutrophils in the BAL of smokers [329]. Liu et al. observed an
increased expression of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-
CoV-2, in human airway epithelial cells [330,331]. A meta-analysis conducted by Cai et al.
confirmed higher ACE2 gene expression in the lungs of smokers than in non-smokers [332].
Voinsky et al. demonstrated an enhanced expression of transmembrane proteases serine 2
and 4 (TMPRSS2 and TMPRSS4), which are important for SARS-CoV-2 to enter the cell, as
well as ACE2 in the bronchi of smokers [333]. Their findings suggest that smoking may
increase the risk of severe COVID-19 [334].

Recently, it has been reported that vitamin C has a positive effect on ARDS. Intravenous
injections of vitamin C regulate neutrophil extracellular traps (NETs) in ARDS patients,
thereby attenuating the ARDS-related biomarker synndecan-1 [335]. Vitamin C is one of
the leading antioxidants and is important for the functioning of the immune system [336].
Activation of NADPH oxidase via ROS causes NETs [337]. Furthermore, various studies
have reported administering ARDS treatment by using nanocarrier drug delivery systems.
Saiping et al. developed a nanostructured lipid carrier that combines the intercellular
adhesion molecule 1 (ICAM-1) antibody (ICAM/NLC) and confirms low pro-inflammatory
cytokine levels in the ARDS-mouse model [338]. The development of such treatment
modalities is important for overcoming ARDS.

Sudden deterioration of respiratory function in COPD patients is referred to as acute
exacerbations of chronic obstructive pulmonary disease (AE-COPD) [339]. This exacer-
bation worsens respiratory failure, necessitating mechanical ventilation [340]. Bacterial
infections are commonly associated with AE-COPD [341–344] and COPD patients due to
their compromised airways. Wang et al. categorized AE-COPD patients as smokers or non-
smokers and conducted an analysis of the hematological parameters, which demonstrated
that smokers exhibited higher counts of eosinophils and basophils in BAL [345]. Moreover,
Li and colleagues reported that, as compared to smokers, non-smokers with AE-COPD
had higher FEV1/forced vital capacity (FVC) and experienced less wheezing and phlegm
production [346]. Thus, it is evident that CS-induced lung damage negatively impacts both
chronic and acute inflammatory lung diseases, both before and after their onset.

3.5. Cardiovascular Disease

Cardiovascular disease (CVD) encompasses various heart and vascular conditions,
such as angina, myocardial infarction, coronary artery disease, and heart failure [347].
Numerous reports have reported CS-induced adverse effects on cardiovascular disease [348–352].
However, the specific mechanisms that exist between CS and cardiovascular disease have
not been fully elucidated.

CS exposure increases the risk of atherosclerosis and, consequently, coronary artery
syndrome and stroke, as it causes vascular dysfunction and inflammation. Several re-
ports have shown that CS exposure impairs endothelial-dependent vasodilation in hu-
mans [353,354]. It has also been found that CS reduces the synthesis of nitrogen oxide
(NO) [355,356]. In general, NO, along with guanosine monophosphate (GMP) and calcium
channels, is involved in vasodilation [357]. In vitro studies have demonstrated lower en-
dothelial NOS (eNOS) activity and decreased production of NO when endothelial cells of
the human coronary artery were treated with the serum of smokers [358]. Furthermore,
CS-induced ROS activates the NOD-like receptor (NLR) family pyrin domain containing
3 (NLRP3), inducing the expression of IL-1β and IL-18, resulting in autophagy, apoptosis,
and endothelial cell dysfunction [359,360]. In addition, CS can secrete several cytokines,
thereby affecting white blood cell recruitment. Mazzone reported that elevated levels of
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soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular cell adhesion
molecule 1 (sVCAM-1), which could contribute to hypertension, were identified in the
plasma of smokers [361]. Smoking can also increase low-density lipoprotein (LDL) levels
in the blood, leading to the formation of oxidized LDLs (oxLDL), which in turn leads to
the production of pro-inflammatory cytokines and foam cells [362–364]. Foam cells are
generated when oxLDL functions as a ligand in the lectin-like oxidized LDL receptor-1
(LOX-1), which is a macrophage-expressing receptor. Smoking increases the expression of
LOX-1 [365,366]. The accumulation of foam cells can lead to atherosclerosis [367].

4. Conclusions

In this review, we explored the cigarette smoke-mediated cellular pathways, focusing
on NF-κB, MAPK, Nrf2, and RAGE. Furthermore, HIF, mTOR, TGF-β, and NLRP3 play
key roles in respiratory diseases such as cancer, pulmonary fibrosis, and cardiovascular
diseases. These factors are influenced by oxidative stress within the body, resulting in a
variety of harmful effects. These complex and pathogenic cellular processes negatively
impact various diseases, including multiple types of cancer, chronic and acute lung diseases,
and cardiovascular diseases. Recently, focus has shifted beyond traditional methods, and
novel treatment modalities such as nanocarriers, drug delivery systems, mAbs, gene editing,
and exosomes have gained attention. We have summarized the various therapy modalities
for CS-induced lung diseases in Figure 1 and Table 1. Future research targeting these
damage mechanisms may pave the way for the development of therapeutic modalities to
mitigate the effects of these diseases.
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Figure 1. Cigarette smoke-mediated cellular pathways in inflammation, fibrosis, senescence, and
autophagy. Cigarette smoke exposure initiates inflammation pathways, leading to the recruitment of
immune cells and the subsequent production of pro-inflammatory cytokines. Prolonged exposure to
cigarette smoke activates fibrosis pathways, resulting in extracellular matrix deposition and fibrosis
formation. Moreover, cellular senescence is expedited, and the autophagy pathway is modified in
response to cigarette smoke, contributing to the onset of age-related diseases. This illustration depicts
the cellular pathways influenced by cigarette smoke exposure.
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Table 1. Treatment approaches for cigarette smoke-induced lung diseases.

Respiratory Disease Therapy CS-Induced Mechanism Reference

COPD

Metformin Inhibition of apoptosis through regulation of AMP kinase. [226]

Astaxanthin Inhibition of Nrf2-modulated oxidative stress and regulation of
NF-κB-related inflammatory responses through binding with SIRT1. [231]

HUC-MSC-
derived EVs Alleviation of airway inflammation in the CS-induced rat model. [232]

LPHNPs Upregulation of cytocompatibility toward bronchial epithelial cells
and macrophages. [233]

Pulmonary
Fibrosis

N-acetylcysteine
Replenish the levels of the antioxidant glutathione and reduce
reactive oxygen species by targeting pro-inflammatory cytokines
such as TNF-α, IL-1, and TGF-β.

[262,263]

PDE4B inhibitors Reducing inflammation and fibrotic processes by inhibiting the
degradation of cAMP. [269]

Cancer

PD-1/PD-L1
inhibitors

Enhance the immune system’s ability to target cancer cells and
restore immune cell functionality by combining PD-L1 from cancer
and PD-1 from T cells.

[309]

Trastuzumab Durable anticancer activity in patients with previously treated
HER2-mutant of NSCLC. [291]

Rituximab Depletes CD20-positive B cells in lung tumors. [292]
CRISPR-Cas9 Modify or correct disease-related genes causing mutations in cancer cells. [316]

CAR-T-cell improve the survival and functionality of engineered T-cells by
reducing ROS and eliminating cancer cells. [318]

MSCs-exosome Cell-to-cell communication within the tumor microenvironment and
suppression of angiogenesis. [321]

ARDS and
AE-COPD

Vitamin C Antioxidant vitamin C inhibits ROS-mediated NET by inactivating
NADPH oxidase. [335]

ICAM/NLC Decrease pro-inflammatory cytokines in the ARDS mouse model. [338]
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Abbreviations
Abbreviation Definitions
CS cigarette smoke
ROS reactive oxygen species
COPD chronic obstructive pulmonary disease
PF pulmonary fibrosis
WHO World Health Organization
FCTC Framework Convention on Tobacco Control
NOX NADPH oxidase
NETs neutrophil extracellular traps
DAMP damage-associated molecular patterns
RAGE receptor for advanced glycation end products
HMGB1 high mobility group box 1
sRAGE soluble form RAGE
mRAGE membrane-bound form RAGE
TLRs toll-like receptors
H1R histamine receptor-1
COX2 cyclooxygenase2
MAPK mitogen-activated protein kinase
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NF-κB nuclear factor kappa-light chain-enhancer of activated B cells
IKK IκB kinase
ERK1/2 extracellular signal-regulated kinases
JNK1/2 c-Jun N-terminal Kinase
STAT signal transducer and activator of transcription
IRF9 interferon regulatory factor 9
CBP CREB-binding protein
CSE cigarette smoke extract
BAL bronchoalveolar lavage
BCL-2 B-cell lymphoma 2
TP53 tumor protein p53
IAPs inhibitor of apoptosis proteins
TSSK4 testis-specific serine/threonine kinase 4
NQO1 NAD(P)H dehydrogenase [quinone] 1
AKR1C3 aldo-keto reductase family 1 member C3
GPX2 glutathione peroxidase 2
ILD interstitial lung disease
MMPs matrix metalloproteinases
SIRT1 sirtuin-1
SASP senescence-associated secretory phenotype
OSGIN oxidative stress-induced growth inhibitor
Nrf2 nuclear factor erythroid 2-related factor
Keap1 Kelch-like ECH-associated protein 1
ARE antioxidant response elements
HO1 heme oxygenase 1
GST glutathione S-transferase
FEV1 forced expiratory volume
SOD1 superoxide dismutase type 1
TXNRD1 thioredoxin reductase 1
GOLD Global Initiative for Obstructive Lung Disease
HUC-MSC Human umbilical cord mesenchymal system cell
LPHNPs lipid-polymer hybrid nanoparticles
EMT epithelial-mesenchymal transition
SNPs single nucleotide polymorphisms
CYP1A1 cytochrome P450 Family 1 Subfamily A Member 1
CYP1B1 cytochrome P450 Family 1 Subfamily B Member 1
CCL18 chemokine (C-C motif) ligand 18
CXCR3 chemokine (C-X-C motif) receptor 3
TIMPs tissue inhibitors of metalloproteinases
miRNAs microRNAs
PDE4B phosphodiesterase 4B
iNOS inducible nitric oxide synthase
HIF hypoxia-inducible factor
NSCLC non-small-cell lung cancer
mAbs monoclonal antibodies
MSCs mesenchymal stem cells
PAHs polycyclic aromatic hydrocarbons
ARDS acute respiratory distress syndrome
NE neutrophil elastase
ACE2 angiotensin-converting enzyme 2
TMPRSS2/4 transmembrane protease, serine 2 and 4
ICAM-1 Intercellular adhesion molecule 1
AE-COPD acute exacerbations of chronic obstructive pulmonary disease
FVC forced vital capacity
CVD cardiovascular disease
GMP guanosine monophosphate
eNOS endothelial NOS
NLR NOD-like receptor
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NLRP3 NLR family pyrin domain containing 3
sVCAM-1 soluble vascular cell adhesion molecule 1
LDL low-density lipoprotein
oxLDL oxidized LDLs
LOX-1 lectin-like oxidized LDL receptor-1
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