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Abstract: Parkinson’s disease (PD) is the fastest-growing neurodegeneration disease, characterized
typically by a progressive loss of dopaminergic neurons in the substantia nigra, and there are no
effective therapeutic agents to cure PD. Rotenone (Rot) is a common and widely used pesticide which
can directly inhibit mitochondrial complex I, leading to a loss of dopaminergic neurons. Our previous
studies proved that the JWA gene (arl6ip5) may play a prominent role in resisting aging, oxidative
stress and inflammation, and JWA knockout in astrocytes increases the susceptibility of mice to
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. JWA-activating compound 4
(JAC4) is a small-molecule activator of the JWA gene, but its role in and mechanism against PD have
not yet been clarified. In the present study, we showed that the JWA expression level is strongly related
to tyrosine hydroxylase (TH) in different growth periods of mice. Additionally, we constructed models
with Rot in vivo and in vitro to observe the neuroprotective effects of JAC4. Our results demonstrated
that JAC4 prophylactic intervention improved motor dysfunction and dopaminergic neuron loss in
mice. Mechanistically, JAC4 reduced oxidative stress damage by reversing mitochondrial complex I
damage, reducing nuclear factor kappa-B (NF-κB) translocation and repressing nucleotide-binding
domain, leucine-rich-containing family and pyrin domain-containing-3 (NLRP3) inflammasome
activation. Overall, our results provide proof that JAC4 could serve as a novel effective agent for
PD prevention.

Keywords: Parkinson’s disease; rotenone; JAC4; mitochondrial complex I; oxidative stress; NLRP3
inflammasome

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease
associated with aging, characterized by a loss of dopaminergic neurons and the formation
of Lewy bodies in the substantia nigra [1,2]. The incidence of PD increases dramatically
with age, and the number of people with PD will exceed 12.9 million by 2040 due to the
world’s aging population [3]. However, there is currently no treatment that can cure or
slow the progression of PD. Therefore, the development of effective agents to prevent or
treat PD is an urgent and unmet need worldwide.

The etiology of PD remains largely unknown. Aging is probably the most important
risk factor for PD, which is also related to genetic and environmental factors [4]. Pesticide
exposure is one of the most important environmental risk factors [5]. Mitochondria and
aging are closely related to PD [6]. Rotenone (Rot) is a common and widely used pesticide,
which can directly inhibit mitochondrial complex I and induce dopaminergic neuron loss
in the substantia nigra, in addition to triggering Lewy body formation [7,8]. Moreover,
the inhibition of complex I activity has been observed in the autopsy brain tissues of PD
patients [9]. Epidemiological studies have shown a 2.5-5.8-times increased incidence of PD
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in people with long-term Rot-exposure [10]. The NLRP3 inflammasome has been found
in the blood of PD patients, indicating that the NLRP3 inflammasome may be involved in
the pathogenesis of PD [11]. Additionally, the activation of NLRP3 usually requires the
involvement of reactive oxygen species (ROS) and NF-κB [12].

The JWA gene [13], also known as ADP ribosylation factor-like GTPase 6 interacting
protein 5 (arl6ip5) (GenBank: AF070523, 1998), is an active environmental response gene
involved in responses to oxidative stress and inflammation [14], the repair of DNA dam-
age [15] and anti-aging [16]. It has been found that astrocyte JWA knockout aggravates
motor dysfunction, dopaminergic neuron loss and astrocyte activation in PD mice [17]. It
has also been demonstrated that neurons can be protected through the JWA-IKKβ-NF-κB
signaling pathway [18]. However, the specific regulatory mechanism between JWA and
inflammasome has not been elucidated.

JAC4 is a small-molecule compound activating the JWA gene that was screened in a
series of high-throughput screening assays conducted by the Chinese National Compound
Library [14,19]. In this study, we demonstrated, for the first time, that JAC4 can alleviate
oxidative stress and inflammation, which antagonizes Rot-induced dopaminergic neuronal
degeneration. Further exploration of the mechanism showed that JWA suppresses the acti-
vation of the NLRP3 inflammasome partially through the AKT/GSK3β/NF-κB signaling
pathway. Our study may provide a new target and therapeutic strategy for PD.

2. Materials and Methods
2.1. Animal and Experimental Design

The animal experiment was approved by the Ethics Committee of Nanjing Medical
University (IACUC-2004044). For the model of mice in different growth stages, all male
C57BL/6 mice were bred in our laboratory and born in the same week. These mice were
randomly divided into four groups (n = 3) and terminated at different ages. For the Rot-
induced PD model, male C57BL/6 mice (7 weeks old, 23–25 g) were provided by the SLAC
Laboratory Animal Center (Shanghai, China). Rot was purchased from Sigma-Aldrich
Chemical Co. JAC4 (C16H13N3O3S, MW: 327.4) was synthesized in our laboratory. The
chemical structure formula of JAC4 is shown in Figure S1A. The solvent composition
contained 52.5% saline, 40% polyethylene glycol, and 7.5% absolute ethanol. The mice were
randomly divided into four groups (n = 10): a normal control group, disease model group,
JAC4 prophylactic administration group and JAC4 therapeutic administration group. The
mice in the JAC4 prophylactic administration group were given JAC4 (100 mg/kg body
weight/day) via gavage for three days before Rot administration, and the mice in the other
groups were given equal volumes of solvent. Except for the normal control group, each
group was orally given Rot (30 mg/kg body weight/day) for 46 days and treated with
JAC4 or solvent. The mice in the JAC4 therapeutic administration group were given JAC4
treatment after behavioral dysfunction was observed. Body weight was measured every
four days. Behavioral tests were performed within the last week before the termination of
the animal model.

2.2. Behavioral Test

The open field test was used to test spontaneous movement ability. The mice were
acclimated in the chamber for 20 min before the test began. The overall distance (mm) and
track were recorded in 5 min using Open Field software (Clever Sys Inc., Reston, VA, USA).

The pole test is performed to observe bradykinesia. The mice were placed on the top
of the pole, and the time that mice took to climb down to the floor was recorded. The pole
was 1 cm in diameter and 50 cm in height. The test was carried out 3 times, and the average
time was calculated.

The rotarod test was used to evaluate motor coordination. The mice were trained
3 times on an accelerating rotarod before the test. In every training session or test, the
rotarod started at 0 rpm, accelerated to 20 rpm within 1 min and then maintained a constant
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speed of 20 rpm. The latency time taken to fall from the rotarod was recorded during the
5 min test.

2.3. Cell Culture and Transfection

HT-22 and SH-SY5Y cells were cultured in Dulbecco’s Modified Eagle’s Medium
supplemented with 10% fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) and
1% penicillin–streptomycin (HyClone, Logan, UT, USA). All the cells were incubated at
37 ◦C in a humidified incubator containing 5% CO2. For cell transfection, the cells were
transfected with shNC and shJWA plasmids for 48 h using lipo 8000 reagent (Beyotime,
Shanghai, China). The shJWA plasmid’s construction was conducted with reference to the
previous research conducted in our laboratory [16].

2.4. Cell Viability Assay

The cells were seeded in 96-well plates 24 h before treatment (5 × 103 cells per well).
In the cytotoxicity test using Rot, cells were treated with Rot at different doses for 24 h to
detect its toxicity. In the test for JAC4’s effect on Rot-induced injury, cells were pretreated
with JAC4 for 24 h and then co-treated with Rot for 48 h. In addition, cells were treated
with JAC4 alone for 72 h to observe the cytotoxicity of JAC4. Next, 10% CCK 8 solution
(100 µL) was added into each well for 2 h of incubation after treatment. The absorbance
was measured at 450 nm. Five biological replications were performed.

2.5. Western Blot Assay

Cells or mice brain tissue samples were lysed with RIPA buffer containing phos-
phatase inhibitor and protease inhibitor for 30 min at 4 ◦C. The protein concentration
was measured using a BCA Protein Assay Kit (Beyotime, Shanghai, China). The same
amount of protein (20 µg/10µL) was separated via SDS-PAGE and transferred to the PVDF
membrane. The membranes were incubated with the primary antibodies overnight at
4 ◦C after 5% defatted milk blocking for one hour at room temperature. Additionally,
they were then incubated with the corresponding peroxidase-conjugated anti-rabbit IgG
or anti-mouse IgG for 1 h after washing for 10 min (3×) with TBST. Subsequently, the
blot images were obtained using the Tanon-5200Multi Fluorescence Image System and
analyzed using Image J. The antibodies used in this experiment are as follows: anti-JWA
(1:100, AbMax, Beijing, China), anti-caspase-3 (1:1000, Cell Signaling Technology, Dan-
vers, MA, USA), anti-caspase-9 (1:1000, Cell Signaling Technology, Danvers, MA, USA),
anti-cleaved-PARP1 (1:1000, Cell Signaling Technology, Danvers, MA, USA), anti-PARP1
(1:1000, Servicebio, Wuhan, China), anti-TH (1:1000, Cell Signaling Technology, Danvers,
MA, USA), anti-NLRP3 (1:1000, Servicebio, Wuhan, China), anti-MT-ND1 (1:1000, Cell
Signaling Technology, Danvers, MA, USA), anti-AKT (1:1000, Abcam, Cambridge, UK),
anti-p-AKT (1:1000, Abcam, Cambridge, UK), anti-GSK3β (1:1000, Cell Signaling Technol-
ogy, Danvers, MA, USA), anti-p-GSK3β (Ser9) (1:1000, Cell Signaling Technology, Danvers,
MA, USA), anti-p-GSK3β (Tyr216) (1:1000, Beyotime, Shanghai, China), anti-NF-κB (1:1000,
Cell Signaling Technology, Danvers, MA, USA), anti-Lamin B1 (1:10,000, Abcam, Cam-
bridge, UK), anti-α-synuclein (1:5000, Abcam, Cambridge, UK), anti-p-α-synuclein (Ser 129)
(1:1000, Abcam, Cambridge, UK), anti-dopamine transporter (1:1000, Abcam, Cambridge,
UK), anti-β-actin (1:1000, Beyotime, Shanghai, China), anti-GAPDH (1:1000, Beyotime,
Shanghai, China) anti-Tubulin (1:1000, Beyotime, Shanghai, China), HRP-labeled Goat Anti-
Rabbit IgG(H + L) (1:1000, Beyotime, Shanghai, China) and HRP-labeled Goat Anti-Mouse
IgG(H + L) (1:1000, Beyotime, Shanghai, China).

2.6. Quantitative Real-Time PCR Analysis

Total RNA was extracted using Trizol reagent and reversed-transcribed into cDNA.
qRT-PCR was performed in a reaction system containing cDNA, primers and SYBR (TaKaRa
Bio, Kusatsu, Japan) with an ABI system (Applied Biosystems, Mississauga, ON, Canada).
GAPDH was used as a control for every sample. The primer sequences are as follows:
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JWA (BC003897), forward 5′-CGGCATCACTCTTCCTTTGCTG-3′ (Tm: 59.04) and re-
verse 5′-CTTCCTGCTGTTCCAAGGCATC-3′ (Tm: 58.01); NLRP3 (BC116174), forward
5′-TCACAACTCGCCCAAGGAGGAA-3′ (Tm: 59.87) and reverse 5′-AAGAGACCACGGCA
GAAGCTAG-3′ (Tm: 58.14); Caspase-1 (BC008152), forward 5′-GGCACATTTCCAGGACTG
ACTG-3′ (Tm: 57.57) and reverse 5′-GCAAGACGTGTACGAGTGGTTG-3′ (Tm: 58.21);
IL-1β (BC011437), forward 5′-TGGACCTTCCAGGATGAGGACA-3′ (Tm: 56.87) and re-
verse GTTCATCTCGGAGCCTGTAGTG-3′ (Tm: 56.31); IL-18 (BC024384), forward 5′-
GACAGCCTGTGTTCGAGGATATG-3′ (Tm: 57.41) and reverse TGTTCTTACAGGAGAG
GGTAGAC-3′ (Tm: 54.93); NDUFS2 (BC016097), forward 5′-CGTTTACGACCAGGTGGAG
TTTG (Tm: 58.28) and reverse GAGGCATCTTGTTCAGACACTGC-3′ (Tm: 58.32); and
GAPDH (BC083065), forward 5′-GCCGGTGCTGAGTATGTC-3′ (Tm: 59.59) and reverse
5′-CTTCTGGGTGGCAGTGAT-3′ (Tm: 61.43).

2.7. Biochemical Analysis

Mice plasma and midbrain tissues were strictly detected according to the protocol
for the malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)
kit (Beyotime, Nanjing, China). Three biological replications were performed for all
the experiments.

2.8. Intracellular ROS Assay

After the JAC4 and Rot treatments, the cells were incubated with DCFH-DA (concen-
tration: 10µM, Beyotime, Shanghai, China) for 30 min at 37 ◦C to measure the level of ROS,
and the fluorescence intensity of the cells was observed using an inverted fluorescence
microscope (Nikon, Tokyo, Japan). Three biological replications were performed.

2.9. Measurement of Mitochondrial Membrane Potential

The mitochondrial membrane potential (MMP, ∆Ψm) was measured using a JC-1
probe (Beyotime, Shanghai, China). The cells were incubated with JC-1 for 30 min at 37 ◦C
and then washed 2 times with JC-1 buffer. When ∆Ψm decreased, the red fluorescence
of the mitochondria decreased and the green fluorescence increased. The results were
observed using an inverted fluorescence microscope and analyzed using the red/green
ratio. Three biological replications were performed.

2.10. Measurement of ATP

After the JAC4 and Rot treatments, we added cell lysis buffer for 30 min at 4 ◦C. Then,
cell lysates were collected and centrifugated at 12,000× g for 5 min. The content of ATP
in the cells were measured using the ATP Assay Kit (S0026, Beyotime, Shanghai, China)
according to the protocol and detected using a luminometer. Meanwhile, the results were
normalized using the protein concentration and presented in nmol/mg protein. Three
biological replications were performed.

2.11. Immunofluorescence Assay

The cells were seeded into confocal dishes at a density of approximately 5%. They
were then fixed with methanol for 30 min after treatment and further supplemented with
normal sheep serum in a 1:100 concentration to block the non-specific binding sites for 1 h
at room temperature. Then, the cells were incubated with primary antibodies overnight
at 4 ◦C and incubated with a secondary antibody at room temperature in the dark for
1 h. Finally, the cells were supplemented with Antifade Mounting Medium with DAPI for
15 min in the dark and observed with a laser-scanning Zeiss LSM 700 confocal microscope
system (Carl Zeiss Jena, Oberkochen, Germany). For the immunofluorescence assay of
the frozen sections of brain tissues, we referred to the steps above. The antibodies used
in this experiment are as follows: anti-NF-κB (1:500, Cell Signaling Technology, Danvers,
MA, USA), TH (1:200, Cell Signaling Technology, Danvers, MA, USA), GFAP (1:200, Cell
Signaling Technology, Danvers, MA, USA), IBA-1 (1:100, Abcam, Cambridge, UK), Goat



Antioxidants 2023, 12, 1134 5 of 17

Anti-Mouse IgG H & L (Alexa Fluor® 555) (1:500, Abcam, Cambridge, UK) and Goat
Anti-Rabbit IgG H&L (Alexa Fluor® 488) (1:500, Abcam, Cambridge, UK). The positive cell
count was determined using Image J 1.8.0 software after selecting the SNc according to the
stereotaxic coordinates of the mouse brain by manual means (n = 3).

2.12. Statistics Analysis

SPSS 22.0 and GraphPad Prism 8.0 were used for the statistical analysis. For gene
differential expression analysis using the GEO database, relevant gene data were extracted
and examined with the Log2(n) change to analyze the differences between samples. The
data were calculated as the mean ± S.E.M and assessed with the unpaired Student’s
t-test or ANOVA followed by Tukey’s test. Additionally, the correlation between the
two variables was analyzed using Pearson’s correlation. p < 0.05 was considered to mark
a statistical difference.

3. Results
3.1. The Expression of JWA Positively Correlates with TH in PD

To determine the role of JWA in the occurrence and development of PD, we analyzed
the microarray data from the GEO database and found that the mRNA expression of JWA in
whole blood from the PD samples (n = 50) was significantly lower than that of the healthy
samples (n = 22, Figure 1A). Furthermore, Pearson’s correlation analysis showed that there
was a positive correlation between TH and JWA expression levels in dopamine neurons
(n = 12, Figure 1B). We also measured the expressions of TH and JWA in the midbrain and
striatum of mice of different ages. Western blot analysis showed that the expressions of both
TH and JWA decreased gradually with age and presented the same trend (Figure 1C–F).
These data suggest that JWA may serve as an important regulator of PD progression.
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Figure 1. The expressions of JWA and TH are positively correlated in human and mice. (A) JWA
mRNA expression was measured in a case–control study (GSE6613, 50 PD samples and 22 healthy
samples). (B) Correlation analysis of the expressions of JWA and TH in DA neurons. (GSE 46798,
n = 12, r =0.59). (C–F) The protein expressions of TH and JWA in midbrain (C) and striatum (E) of
mice in different growth stages and the correlation analysis of the quantitative results (r = 0.73 in (D),
r = 0.77 in (F)). (* p < 0.05).
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3.2. JAC4 Reduces Dopaminergic Neuron Loss and NLRP3 Inflammasome Activation in
Rot-Induced PD Mice

To evaluate the protective effect of JAC4 on Rot-induced PD mice, we constructed
a chronic Rot exposure mouse model (Figure 2A). At the end of the experiment, the disease
model group mice showed significant weight loss compared with the normal control group
(p < 0.01), while there was no significant difference in either of the JAC4 intervention
groups (p > 0.05, Figure S1B). JAC4 is beneficial in preventing weight loss. To evaluate
the efficacy of JAC4 in PD, we conducted behavioral tests of PD-like motor symptoms.
In the open field test, a shorter travel distance was shown by the disease model mice in
comparison with the normal control mice, and JAC4 prophylactic administration improved
the mice’s spontaneous movement ability (Figure 2B,C), while no significant improvement
was measured in the JAC4 therapeutic administration mice (p > 0.05, Figure S1C,D). Shorter
times taken to move from the top to the bottom of the pole and longer latency periods to fall
off the rotarod were observed in the JAC4 prophylactic administration mice (Figure 2D,E),
but there was no effect on mice induced by JAC4 therapeutic intervention (Figure S1E,F).
Then, we detected the expressions of TH and NLRP3 in the midbrain and striatum. The
Western blot results showed that the upregulation of NLRP3 and downregulation of TH in
the Rot disease model mice midbrain were reversed by JAC4 prophylactic administration
(Figures 2F and S2A), while these changes could not be detected in the JAC4 therapeutic
mice (Figure S1G,H). Additionally, the same results could be obtained for the striatum
using prophylactic administration (Figures 2F and S2B). Moreover, our results showed that
JAC4 prophylactic administration could reduce the pathological changes in alpha synuclein
(α-SYN) in the midbrain (p < 0.05, Figures 2F and S2B), but there was no statistical signifi-
cance in the p-α-SYN (Ser129)/α-SYN ratio for the striatum (p > 0.05, Figures 2F and S2D).
Additionally, the Western blot results demonstrated that JAC4 prophylactic treatment could
improve dopaminergic transmission (Figure S2E,F).
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midbrain and striatum. (G,H) Immunofluorescence image and quantification of TH-positive neurons
in SNc (n = 3). (I–L) The mRNA expression of NLRP3, caspase-1, IL-1β and IL-18 in the midbrain.
The results are shown as the mean ± SEM (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001).

To further confirm the neuroprotective effect of JAC4 prophylactic administration,
dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed using
immunofluorescent staining. We found that the loss of dopaminergic neurons was salvaged
(Figure 2G,H). Hence, JAC4 prophylactic administration had an obvious neuroprotective
effect on the Rot mouse model. It is known that the NLRP3 inflammasome may be involved
in the pathogenesis of PD [20]. To determine the potential mechanism of JAC4 in anti-
inflammation among Rot exposure mice, RNA was extracted from the mouse midbrain
tissues, and the qRT-PCR results showed that the upregulation of NLRP3, caspase-1, IL-
1β and IL-18 mRNA in the Rot-induced disease mice was reversed by JAC4 prophylactic
intervention (Figure 2I–L). These results illustrate that prophylactic intervention using JAC4
could antagonize the Rot-induced activation of the NLRP3 inflammasome and multiple
inflammation factors.

3.3. JAC4 Enhances Antioxidant Capacity and Attenuates the Activation of Astrocytes and
Microglia in the Rotenone-Induced Mouse Model

The proliferation and activation of astrocytes and microglia can be observed frequently
in PD and always lead to the release of inflammatory factors. The GFAP-stained and IBA-
1-stained images showed that Rot-exposure resulted in the activation of astrocytes and
microglia in the SNc, while they were significantly blocked by JAC4 prophylaxis (p < 0.05,
Figure 3A–D). Mitochondria are crucial for energy and Ros production [21]. Rot inhibits
mitochondrial complex I activity, which is thought to be closely associated with PD [22].
We detected the mRNA expression levels of the core subunit NDUFS2 of mitochondrial
complex I in the midbrain, and the results showed that JAC4 prophylactic improved
the activity of mitochondrial complex I (Figure 3E). Given that the toxic effects of most
pesticides are mainly related to oxidative stress events, we then examined the antioxidant
status by measuring the contents of SOD, MDA and GSH in the midbrain tissues and
sera. JAC4 preventive intervention reduced the overproduction of MDA induced by Rot
and improved the activity of SOD and the production of GSH (Figures 3F–H and S2G–I).
Together, these results support the antioxidant and anti-inflammatory effects of JAC4 on
Rot-induced disease mice.
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Figure 3. JAC4 enhances antioxidant capacity and attenuates the activation of astrocytes and mi-
croglia. (A–D) Immunofluorescence images and quantification of GFAP-positive (A,B) and IBA-1-
positive (C,D) neurons in SNc. (E) The mRNA expression levels of the core subunit NDUFS2 of
mitochondrial complex I in the midbrain. (F–H) The contents of SOD, MDA and GSH in the midbrain.
The results are shown as the mean± SEM (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001).

3.4. JAC4 Alleviates Apoptosis and Inflammasome Formation In Vitro

Next, we determined the protective effect of JAC4 in vitro by constructing Rot-induced
models of HT-22 and SH-SY5Y cells to further verify its mechanisms. The results of the
CCK8 assay demonstrated the toxicity of Rot, in a dose-dependent manner, towards
the HT-22 and SH-SY5Y cells (Figure 4A,B). Moreover, the Western blot results showed
(Figure 4C) that cleaved caspase-3, cleaved caspase-9 and cleaved PARP-1 were steadily
increased after 48 h treatment with 2.5 µM Rot in the HT-22 cells (25 µM Rot in SH-SY5Y).
Hence, we constructed models according to the above conditions and treated the cells
with JAC4 at different concentrations (0, 1, 10 µM) to observe the effect of JAC4 in vitro
(Figure 4D). The CCK8 results showed that JAC4 haf no toxic effects and could improve cell
viability, which was suppressed by Rot (Figure 4E,F). As shown in the Western blot images
displayed above (Figure 4G), Rot exposure elevated the levels of cleaved caspase-3, cleaved
caspase-9 and cleaved PARP1, while JAC4 treatment reversed this damage in both cell
lines. Similarly, JAC4 suppressed the upregulation of NLRP3 and active cleaved caspase-1
triggered by Rot.

3.5. JAC4 Suppresses Rotenone-Triggered Oxidative Stress and Mitochondrial Damage In Vitro

Increasing evidence shows that the mechanisms of neurodegeneration in PD rely
on oxidative reactions and mitochondrial dysfunction [23]. We measured mitochondrial
membrane potential (∆Ψm) with JC-1 staining. The treatment of JAC4 protected cells from
∆Ψm repression (Figure 5A–D). Moreover, as the results of the ROS assay demonstrated,
ROS accumulation was significantly aggravated by Rot exposure in vitro (p < 0.05), while
JAC4 promoted ROS scavenging (Figure 5E–H). Meanwhile, the mitochondrial complex
I core subunit protein expression of MT-ND1 was decreased after Rot exposure and was
prevented with JAC4 (Figure 5I). Moreover, JAC4 partly rescued Rot-induced ATP depletion
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(Figure 5J,K). The above results indicate that JAC4 ameliorates Rot-triggered oxidative
stress and maintains the homeostasis of mitochondria. 
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Figure 4. JAC4 alleviates cell apoptosis and inflammasome formation in vitro. (A,B) Cell viability at
different doses Rot measured for 24 h in HT-22 (A) and SH-SY5Y cells (B). (C) The protein expression
levels of caspase-3, caspase-9 and PARP-1 after 24 h and 48 h of Rot treatment at different doses.
(D) The schematic diagram of the experimental design in vitro. Cells were pretreated with JAC4
for 24 h and co-treated with Rot for 48 h. (E,F) Cell viability of the TH-22 (E) and SH-SY5Y cells (F)
was measured via CCK8 after treatment with different doses of JAC4 and Rot. (G,H) The protein
expression levels of JWA, caspase-3, caspase-9, PARP-1, caspase-1 and NLRP3 in HT-22 (G) and
SH-SY5Y (H). (n = 3, * p < 0.05, *** p < 0.001).
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(A–D) Mitochondrial membrane potential was detected using the JC-1 probe (A, C) and is shown Figure 5. JAC4 alleviates rotenone-triggered oxidative stress and mitochondrial damage in vitro.
(A–D) Mitochondrial membrane potential was detected using the JC-1 probe (A,C) and is shown as
the JC-1 red/green ratio (B,D). (E–H) ROS accumulation in cells was detected via ROS assay (E,G)
and analyzed using Image-J (F,H). (I) The protein expression levels of MT-ND1. (J,K) The contents
of ATP in HT-22 (J) and SH-SY5Y (K). The results are shown as the mean ± SEM (n = 3, * p < 0.05,
** p < 0.01, *** p < 0.001), **** p < 0.0001.

3.6. JAC4 Inhibits Rot-Triggered NF-κB (p65) Nuclear Translocation

NF-κB is a key transcriptional factor and considered necessary in the activation of
NLRP3 inflammasome [12]. The public database analysis (GSE6613) showed a negative
correlation between the expressions of JWA and NF-κB in the whole blood of PD pa-
tients (Figure 6A). Meanwhile, after separating the cytoplasm and nucleus, the Western
blot results showed that Rot induced higher p65 expression in the nucleus, while JAC4
antagonized this nuclear translocation (Figure 6C). Additionally, the same results were
obtained through the immunofluorescence staining of p65 (Figure 6D). How does JWA
regulate p65? Evidence shows that AKT and GSK3β are abnormally expressed in PD,
and AKT inhibits dopaminergic neuron apoptosis and oxidative stress by increasing the
GSK3β phosphorylation of Ser9 and decreasing p65 phosphorylation [24,25]. Our results
demonstrated that Rot exposure decreased AKT and GSK3β (Ser9) phosphorylation levels
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and increased GSK3β (Tyr216) phosphorylation levels, which activated oxidative stress
and NF-κB signaling. However, JAC4 repressed these signaling by increasing p-AKT and
p-GSK3β (Ser9) instead of decreasing p- GSK3β (Tyr216) (Figure 6B). Meanwhile, the same
results were presented in the Rot-induced mouse model (Figure 7A–D). In addition, to
further verify the above results, we constructed JWA knockdown cells via transfection with
the shJWA plasmid. As exhibited in the Western blot analysis (Figure 7E), compared with
the control transfected with the shNC plasmid, the phosphorylation levels of AKT, GSK3β
(Ser9) and MT-ND1 (a mitochondrial complex I core subunit) further decreased and the
nucleus translocation of p65 increased after JWA knockdown (Figure 7F). Based on the
above evidence, our research supports the notion that JAC4 exerts a neuroprotective effect
by repressing oxidative stress and neuroinflammation in the Rot-induced PD model via the
JWA-mediated AKT/GSK3β/NF-κB signaling pathway.
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Figure 6. JAC4 inhibits NF-κB (p65) nuclear translocation. (A) Correlation analysis of the expressions
of JWA and NF-κB in PD (GSE 6613, n = 50, r = −0.27). (B) The protein expression levels of p-AKT,
AKT, p-GSK3β (Ser9), p-GSK3β (Tyr216) and GSK3β. (C) The protein expression levels of NF-κB in
the nucleus and cytoplasm. (D) Immunofluorescences image of NF-κB location.
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Figure 7. The verification of the mechanism in mice the midbrain and HT-22 cells. (A–D) The protein
expression levels of p-AKT, AKT, p-GSK3β (Ser9), GSK3β, p-p65 and p65 in the midbrain of mice and
their resulting quantized statistics. (E,F) The protein expression levels of JWA, p-AKT, AKT, p-GSK3β
(Ser9), GSK3β and MT-ND1. (E) Immunofluorescence images of NF-κB location (F) in HT-22 cells
Rot-treated for 48 h after shJWA transfection. The results are shown as the mean ± SEM (n = 3,
* p < 0.05, ** p < 0.01, *** p < 0.001, ns p > 0.05).

4. Discussion

There are currently no treatments that can stop or slow the progression of Parkinson’s
disease. Although dopaminergic drugs or dopamine receptor agonists can be used to
improve motor symptoms of PD, long-term treatment with these drugs often leads to
drug resistance and serious complications such as impulse control disorders and can
even worsen non-motor symptoms in patients [26,27]. Rotenone, a functional analogue of
MPTP that is widely used in agriculture, inhibits complex I in the electron transport chain,
which can lead to oxidative damage and progressive neurodegenerative diseases [28,29].
Rot-induced PD models are also widely recognized and used. This study focused on
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the neuroprotective effect and molecular mechanism of JAC4 in Rot-induced PD. For the
first time, early JAC4 intervention was found to markedly improve Rot-induced motor
dysfunction and dopaminergic neuron loss by inhibiting inflammasome activation, which
relies on the maintenance of normal mitochondrial function and the reduction in NF-κB
nuclear translocation (Figure 8).
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Studies have recognized that mitochondrial dysfunction, oxidative stress and in-
flammatory change can lead to neuron dysfunction and death [30–32]. JWA is an active
environmental response gene and is widely involved in cell responses to various stim-
ulations, such as oxidative stress [33,34] and heat shock stress [35], and plays a role in
antioxidants and the repair of DNA damage [15]. Previous studies have shown that the
expression of JWA was downregulated in an MPTP-induced chronic PD model, and JWA
knockout in astrocytes aggravated dopaminergic neuron loss [17]. JAC4 has been shown
to reduce X-ray-induced intestine epithelium damage by repressing oxidative stress and
enhancing DNA repair [14]. However, the effect and potential mechanism of JAC4 in PD
remain unknown.

In this study, Rot-induced models were constructed in vivo and in vitro to investigate
the protective effect. JAC4 intervention showed significant resistance to body weight loss
in Rot-induced disease mice (p < 0.05). Moreover, our results showed that the prophylac-
tic administration of JAC4 significantly improved motor functions and antagonized the
progressive loss of dopaminergic neurons, while these improvements were not observed
in the therapeutic administration group. This may be related to the fact that the death of
neurons is irreversible. Research has shown that a large number of neurons (over 30%) are
damaged when motor dysfunction occurs [28]. Therefore, JAC4 is an effective candidate
agent for preventive or early intervention in Rot-induced PD. Mitochondria are impor-
tant sources of ROS and perform pivotal roles in ATP production, calcium homeostasis
and apoptosis [36,37]. A lower mtDNA content and more mtDNA mutations are always
observed in the SN of PD patients [38–40]. By detecting mitochondrial complex I core
subunit NDUFS2 mRNA or MT-ND1 protein expression, we found that JAC4 alleviated
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Rot-induced mitochondrial complex I damage. ATP is released during apoptosis and the re-
lease of intracellular ATP, and ATP intervention can act as a signal for NLRP3 activation [41].
In our study, JAC4 increased the ATP content and ∆Ψm as a result of the suppression of
mitochondrial damage. ROS reduction has been used as a treatment strategy for PD [42,43].
In this study, it was demonstrated that JAC4 improves mitochondrial damage and represses
ROS production.

The activation and proliferation of astrocytes and microglia can be observed in the
substantia nigra of PD patients and usually lead to the release of cytokines and inflamma-
tory chemokines [44,45]. The prophylactic administration of JAC4 mitigated the activation
of astrocytes and microglia in the SNc, which is consistent with previous research [17,18,46].
NLRP3 inflammasome activation, assembled by NLRP3-ASC-caspase-1, may drive neurode-
generative diseases [47]. The NLRP3 inflammasome and NLRP3-dependent inflammatory
cytokine release have been found in the blood of PD patients [11,48]. JAC4 reduced the
expressions of NLRP3, caspase-1, IL-1β and IL-18, which supports the notion that JAC4
can antagonize the activation of the NLRP3 inflammasome induced by Rot. The activation
of NLRP3 usually involves two steps: (1) NF-κB and other possible inflammatory transcrip-
tion factors activate NLRP3, where the signal provided by the NF-κB activator is necessary
for NLPR3 activation; and (2) external stimuli lead to the dysfunction of mitochondrial,
lysosome and ion redistribution [49,50]. We found a negative correlation between the
expression levels of JWA and NF-κB in the whole blood of PD patients. Meanwhile, JAC4
was shown to reduce NF-κB nuclear translocation by activating JWA to promote AKT
phosphorylation in vivo and in vitro. Similarly, previous studies have demonstrated that
JWA deficiency leads to the activation of the IKKβ-IκB-NF-κB signaling pathway [18].

GSK-3β, a multifunctional kinase, is involved in proinflammatory processes and
apoptosis via the downstream PI3K/AKT pathway, and its inactivation can reduce the
expression of p-α-SYN [51–53]. GSK-3β blocking has been shown to reduce oxidative
damage in some neuronal models, and NF-κB activation is an important pro-inflammatory
pathway promoted by GSK-3β [54,55]. Therefore, GSK-3β inactivation may be a key factor
in inhibiting oxidative stress and inflammation in neurons. JAC4 inhibited the activity of
GSK-3β by promoting the phosphorylation of Ser9, which alleviates oxidative stress.

There are still some shortcomings of this study. Since JWA and TH showed the same
trend, the question of whether JWA could be a marker for early diagnosis or intervention
requires further study. The specific mechanism of JAC4 in antagonizing mitochondrial
complex I damage still needs to be explored further. Additionally, it is not yet known
whether JAC4 also plays a role in PD models without the inhibition of complex I. In
addition, the intervention doses and initiation time required for JAC4 therapy to work
need to be further optimized. Nevertheless, we demonstrated that JAC4, in part, could
inhibit the activation of the NLRP3 inflammasome by inhibiting the AKT/GSK3β/NF-κB
pathway and oxidative stress. These results provide proof that JAC4 could possibly serve
as a novel, effective agent for PD treatment in the clinic.

5. Conclusions

This study demonstrated the neuroprotective effect of JAC4, a JWA gene activator,
in Rot-induced PD. Early JAC4 intervention markedly improved motor dysfunction and
dopaminergic neuron loss. Mechanistically, JAC4 prophylactic treatment reduced oxidative
stress damage by reversing mitochondrial complex I damage, reducing NF-κB nuclear
translocation and repressing NLRP3 inflammasome activation. Thus, our study suggests
that the JWA gene activator compound JAC4 could serve as a novel, effective agent for
PD prevention.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antiox12051134/s1, Figure S1: Effect of JAC4 therapeutic intervention in
Rot-induced PD mice. (A) The chemical structural formula. (B) The body weight curves of the Rot
exposure mouse model (n = 10). (C–F) Behavioral test results for the normal control, disease model
and JAC4 therapeutic intervention mice. Movement track (C) and distance (D) of mice over 5 min in
the open field. Climbing time from the top to the bottom of the pole in the pole test (E). Latency to
fall within 5 min in the rotarod test (F). (G,H) The protein expression levels of TH, JWA and NLRP3
in the midbrain and the quantitative results. The results are shown as the mean ± SEM (* p < 0.05,
** p < 0.01, *** p < 0.001); Figure S2: (A,C) The quantitative results of the TH, NLRP3, and JWA protein
levels in the midbrain (A) and striatum (C). (B,D) The quantitative results of the p-alpha synuclein
(Ser129)/alpha synuclein ratio in the midbrain (B) and striatum (D). (E–F) The protein expression
levels of dopamine transporter (DAT) in the striatum. (G–I) The contents of SOD, MDA and GSH in
serum. The results are shown as the mean ± SEM (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001).
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