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Abstract: Background: Heightened levels of inflammation and oxidative stress are thought to be
involved in the pathophysiology of schizophrenia. We aimed to assess whether intake of anti-
inflammatory and anti-oxidant drugs during pregnancy prevents later schizophrenia-related out-
comes in a neurodevelopmental rat model of this disorder. Methods: Pregnant Wistar rats were
injected with polyriboinosinic–polyribocytidilic acid (Poly I:C) or saline and subsequently treated
with either N-acetyl cysteine (NAC) or omega-3 polyunsaturated fatty acids (PUFAs) until delivery.
Controls rats received no treatment. In the offspring, neuroinflammation and anti-oxidant enzyme
activity were assessed on postnatal day (PND) 21, 33, 48, and 90. Behavioral testing was performed
at PND 90, followed by post-mortem neurochemical assessment and ex vivo MRI. Results: The
supplement treatment led to a quicker restoration of the wellbeing of dams. In the adolescent Poly
I:C offspring, the supplement treatment prevented an increase in microglial activity and partially pre-
vented a deregulation in the anti-oxidant defense system. In the adult Poly I:C offspring, supplement
treatment partially prevented dopamine deficits, which was paralleled by some changes in behavior.
Exposure to omega-3 PUFAs prevented the enlargement of lateral ventricles. Conclusion: Intake of
over-the-counter supplements may assist in especially targeting the inflammatory response related to
schizophrenia pathophysiology, aiding in diminishing later disease severity in the offspring.

Keywords: N-acetyl cysteine; schizophrenia; omega-3 polyunsaturated fatty acids; preventive
treatment; supplements

1. Introduction

Schizophrenia is a neurodevelopmental disorder in which a progressive accumula-
tion of underlying neuropathological processes eventually results in the manifestation of
symptoms later in life [1,2]. The initiation of such processes is likely a result of interacting
genetic and environmental risk factors, of which some of the latter may involve ongoing
heightened levels of inflammation and oxidative stress, presumably set in motion by early
immune dysregulation [2–6]. Accumulating evidence indicates that early systemic inflam-
mation and oxidative stress play a central role the pathophysiology of schizophrenia, as
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the disruptive nature of such processes has been linked to cardinal features of the disorder,
such as alterations in both the myelination of neuronal circuits and expression of parvalbu-
min GABAergic interneurons [7,8]. In line with this, anti-inflammatory and anti-oxidant
drugs are suggested as potential treatment strategies [9–11]. Different drugs have been
investigated including vitamin C, vitamin E, Ginkgo biloba, omega-3 polyunsaturated fatty
acids (PUFAs), and N-acetyl cysteine (NAC). Of these, especially Gingko biloba, NAC, and
omega-3 PUFAs have shown promising results, yet further studies are needed [12–15]. For
omega-3 PUFAs in particular, low levels have been found in the orbitofrontal cortex as well
as in the erythrocyte membranes in patients with schizophrenia [16,17]. Treatment with
omega-3 PUFA supplements have furthermore shown positive effects in the early stages of
schizophrenia, whereas a smaller effect was seen in chronic patients, indicating that timing
of the treatment is important [12,18].

From a developmental point of view, it is of interest whether intake of drugs with
anti-oxidative and anti-inflammatory properties may counteract the later development
of schizophrenia-related outcomes if they are applied early in development before the
immune dysregulation is set in motion. As prenatal inflammation is considered a risk
factor of schizophrenia, preventive measures may already be needed at the fetal stage for
high-risk individuals [19,20]. Both NAC and omega-3 PUFA supplements are considered
safe during pregnancy as well as beneficial for both mother and child. Omega-3 PUFAs
are generally recommended in pregnancy if they are not sufficiently provided through the
diet, due to its benefits on neurodevelopmental outcomes in the offspring [21]. NAC is
suggested as a supplement for high-risk pregnancies, as it may decrease the risk of preterm
delivery and improve neonatal outcomes [22,23]. Gingko biloba, however, should be used
with caution during pregnancy [24].

The Poly I:C rat model is a neurodevelopmental model of schizophrenia based on pre-
natal exposure to a virus-mimicking compound, which leads to a protracted development
of schizophrenia-like behaviors in the offspring similar to those described in patients [25,26].
It has previously been shown that behavioral and associated neurobiological alterations in
the Poly I:C rat model may be prevented if interventions are given prior to symptom mani-
festation [27–30]. Different preventive avenues that have been applied to adolescent Poly
I:C animals have proven beneficial, including the use of antipsychotics, hormonal agents,
different brain stimulation techniques, as well as NAC and omega-3 PUFAs [29,31–36].

As the neurobiological trajectories in the Poly I:C rat model are already observed
prenatally, our aim was to investigate whether prenatal supplement treatment with omega-
3 PUFAs or NAC may prevent later schizophrenia-related outcomes in the offspring of the
Poly I:C rat model.

2. Materials and Methods
2.1. Animals

All procedures were performed in accordance with the European Communities Coun-
cil Directive of 22 September 2010 (2010/63/EU) and after approval by the local ethics
committee (Landesdirektion Sachsen, TVV 15/2016). Female pregnant Wistar rats (n = 48)
were obtained from Charles River Laboratories, Europe. The dams were housed individ-
ually until delivery. On postnatal day (PND) 21, the offspring were weaned and housed
in groups of 2–4 animals in a temperature- and humidity-controlled vivarium under a
12 h light standard day cycle (lights on at 6 a.m.) with food and water provided ad libitum
(unless otherwise stated). All efforts were made to reduce and avoid the animals’ suffering
and minimize the number of animals used.

2.2. Experimental Design

The project followed a 2x3 design with the main factors: phenotype (Poly I:C/saline)
and treatment (control/omega-3 PUFAs/NAC). On gestational day (GD) 15, the dams
placed in individual cages and left to acclimatize for 2 h. Then, they were carefully
anesthetized with isoflurane and injected intravenously with either the viral analogue Poly
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I:C (4 mg/kg; Sigma, Germany, dissolved in saline) (n = 24) or 0.9% saline (n = 24) through
the tail vein (volume: 100 µL/100 g bodyweight) [25,26]. The dams were subsequently
randomized into six groups: saline control, saline omega-3, saline NAC, Poly I:C control,
Poly I:C omega-3, and Poly I:C NAC. No more than two rats from the same litter were used
in each of the experimental groups.

Male offspring from each of the six groups were assigned to different investigations,
and thus randomized to either undergo behavioral experiments and MRI; post-mortem
biochemical analyses at PND 21, 33, 48, or 90; or post-mortem HPLC analyses at PND 90
(Figure 1A,E and Table S1 in Supplementary Materials).

2.3. Supplementary Treatment during Pregnancy

The prenatal treatments were applied four hours following phenotype induction on
GD15 and up until delivery, either as food supplementation (omega-3 PUFAs) or drinking
water mix (NAC). This starting time for the treatment was chosen because inflammatory
activity peaks between 2 and 4.5 h after the Poly I:C injection [37]. Taking into account the
water quantity a pregnant dam drinks per day [38] and the target dose of 500 mg/kg body
weight/day [39,40], a stock solution was prepared and mixed with tap water for a final
concentration of 125 mg NAC/40 mL. Food supplemented with omega-3 PUFA fish oil
was obtained from Ssniff Spezialdiäten GmbH (~18% EPA and 12% DHA). The animals
received a daily supplement of 1.4 g omega-3 PUFAs/kg body weight at a concentration
of 350 mg omega-3 PUFAs/20 g food [38,41]. All pregnant dams received 50 g food and
100 mL water per day.

2.4. Behavioral Testing

Following phenotype induction, the pregnant dam’s food and water intake was
assessed daily at the same time (4 p.m.) during the first 6 days (GD16-GD21). A reduction
in either food or water intake compared to the saline groups was considered a decrease in
the well-being of the Poly I:C mothers.

Behavioral testing of the offspring was related to core symptoms of schizophrenia and
was carried out during the light phase, with three days between tests and in the following
order: Pre-Pulse Inhibition (PPI) for sensorimotor gating, i.e., positive symptoms; Social
Interaction (SI) for social behavior, i.e., negative symptoms; and Discrimination Reversal
(DR) for selective attention, i.e., cognitive symptoms.

Pre-Pulse Inhibition (PPI) [26]: The PPI of the acoustic startle response (ASR) was
measured in a sound-attenuating chamber (41 × 41 × 41 cm, Startle Response System,
TSE, Bad Homburg, Germany) with a wire mesh cage mounted on a movement-sensitive
piezoelectric measuring platform (22.5 cm × 8 cm × 8.5 cm) and two loudspeakers. The
experiment consisted of a 5 min acclimatization phase and the test session. Background
noise was set at 60 dB sound pressure level (SPL). During acclimatization, animals received
five initial startle stimuli (100 dB SPL, white noise, 20 ms). The test session consisted
of four different trial types, each delivered ten times in a pseudorandom order with an
inter-trial interval of 20 to 30 s: startle pulse alone (100 dB SPL white noise, 20 ms) and
three pre-pulses of 69, 73, and 81 dB (duration 30–500 ms), each followed by a startle pulse
with an inter-stimulus interval of 100 ms. The ASR was calculated, and the pre-pulse
trials were measured as the percentage decrease in ASR with pre-pulses. The PPI for each
pre-pulse intensity was calculated according to the formula 100–100% × (mean ASR of
PPI-trials/mean ASR of pulse-alone trials).
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Figure 1. Experimental design and maternal state. (A) Experimental design showing the time points
for phenotype induction, prenatal treatment, and subsequent testing of the offspring. (B,B′) Maternal
food intake (in grams). At GD16, food consumption was significantly reduced in the dams injected
with Poly I:C (post hoc test *, saline control vs. Poly I:C control: p < 0.001), whereas this was less
pronounced in Poly I:C animals treated with omega-3 PUFAs (post hoc test *: Poly I:C control vs. Poly
I:C omega-3: p < 0.001). At GD17, food consumption had normalized in Poly I:C animals treated with
both omega-3 PUFAs and NAC, whereas the Poly: I:C controls continued to display reduced food
intake (post hoc test *: saline control vs. Poly I:C control: p = 0.009; Poly I:C control vs. Poly I:C NAC:
p = 0.014; Poly I:C control vs. Poly I:C omega-3: p = 0.003). (C,C′) Maternal water intake (in milliliters)
after phenotype induction from GD16 to GD21. At GD16, water intake was significantly reduced in
all Poly I:C groups following phenotype induction (post hoc test *: all Poly I:C vs. respective saline
groups: p < 0.001). At GD17, water intake was restored in Poly I:C animals treated with omega-3
PUFAs and NAC, whereas the Poly I:C controls continued to display reduced water intake (post hoc
test *: saline controls vs. Poly I:C controls: p = 0.009). (D) Number of pups born in each experimental
group. (E) Percentage of male offspring in each experimental group. B′ shows subimage of figure
B, focusing on GD16-17. C′ shows subimage of figure C, focusing on GD16-17 GD: gestational day,
PND: postnatal day, OS: oxidative stress, MRI: magnetic resonance imaging, NAC: N-acetyl-cysteine
(n; saline: control = 7, omega-3 = 8, NAC = 9; n Poly I:C: control = 7, omega-3 = 8, NAC = 9). Asterisks
* indicate significant post hoc tests.
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Discrimination Reversal (DR) [42]: A T-maze was filled with water (25 ◦C ± 1 ◦C), and
a hidden platform (15.5 × 15.5 cm) was placed in one arm. On day 1 (discrimination), the
platform was consistently placed in one of the arms, and rats were trained to discriminate
between the left/right position. If rats chose the correct arm, they could remain on the
platform for 5 s. If rats chose the wrong arm, they were confined there for 5 s. Training
continued until a criterion of five consecutive correct trials was reached within a maximum
of 25 trials. On the next day, the rats were first retrained until the criterion on the position
discrimination was reached, and then trained until reaching the criterion on the reversal of
this discrimination (reversal), i.e., with the platform being located in the opposite arm. The
number of trials to reach the criterion was recorded for both days.

Social Interaction (SI) Test [43]: Prior to the experiment, rats were habituated to the
testing room and arena (Plexiglas chamber, 69.5 × 68.5 × 40 cm) for 30 min. Test rats were
paired with sex-, age-, and weight-matched naïve Wistar rats (actor rats). On the testing day,
the rats were habituated for 30 min and marked (using finger paint) to clearly distinguish
between test and actor rats. An experimental rat and its unfamiliar social partner were
placed in the arena. The sessions lasted for 10 min and their behavior was recorded.
The frequency of behaviors was quantified for approaching/following and the non-social
control behavior of rearing. The time spent with anogenital and non-anogenital exploration
was quantified. An experimenter blind to the experimental condition performed the
quantification using EthoVision XT 11 software (Noldus, Wageningen, The Netherlands).

2.5. Post-Mortem Analysis

Animals were anesthetized with pentobarbital (i.p.,60 mg/kg), decapitated, and the
brains were extracted. The prefrontal cortex (PFC), striatum (Stria), and hippocampus
(Hipp) were dissected from both hemispheres [44], immediately frozen in liquid nitro-
gen, and stored at −80 ◦C. The frozen tissue samples were weighed, complemented with
1 mL ice cold Tris-HCL buffer containing 0.5% Triton X-100, and homogenized for
10–20 s with a sonicator. The homogenate was centrifuged at 10,000× g for 15 min and the
supernatant was collected in aliquots. All sample preparation steps were carried out at
4 ◦C. One aliquot was used for protein quantification using the Pierce™ 660 nm Protein
Assay (ThermoScientific). The remaining aliquots were stored at −80 ◦C until assay.

2.6. Enzyme Activity

Glutathione peroxidase activity was detected using a commercial kit (GPx, abcam
ab102530, colorimetric method). A volume of 25 µL of sample (containing 0.11 ± 0.4 mg
protein) was diluted with 25 µL ice cold assay buffer and the GPx activity was measured in
5 min intervals at OD340 nm as the decrease in NADPH. For analysis, the data obtained at
10 min of incubation, during which enzymatic activity was evident but had not reached
a plateau, was used and calculated employing a NADPH standard curve. Superoxide
dismutase activity was assessed using a commercial kit (SOD; abcam ab6535,4 colorimetric
method). All samples were diluted with the provided working solution for a final protein
concentration of 0.5 mg/mL and the activity was measured at OD450 nm as percent
inhibition. All sample measurements were taken in duplicates. The results are presented as
% of controls, in which each individual value was divided by the mean of the saline control
group × 100.

2.7. Western Blot

Relative levels of cluster of differentiation 68 (CD68) protein in reference to the house-
keeping protein beta actin were analyzed as indicators of microglia activity. The samples
were loaded with Laemmli Sample Buffer (Biorad) and β-mercaptoethanol. The proteins
were separated by sodium duodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
using Mini-Protean® TGX™ Precast Gels (Biorad) and electrophoretically transferred to
0.2 µm nitrocellulose membranes. Nonspecific binding was blocked by incubation with
5% nonfat dry milk in PBS containing 0.1% Tween 20 for 1 h. The membranes were in-
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cubated with primary antibodies at 4 ◦C overnight. Secondary antibodies conjugated
with horseradish peroxidase were applied for 1 h at room temperature. The antibodies
used were mouse anti-rat beta actin (VMA00048; Biorad, 1:4000), mouse anti-rat CD68
(MCA341R; Biorad; 1:500), goat anti-mouse IgG (H + L)-HRP (STAR 117P; Biorad, 1:2000
for CD68), and donkey anti-goat IgG (H + L)-HRP (ab205723; abcam, 1:2000). The signals
were detected using SuperSignal® West Femto Trial Kit (Thermo scientific) on a chemilu-
minescence imaging system (Fusion Fx Vilber Lourmat). The generated data files were
analyzed using ImageLab 6.0 software from Biorad (Copenhagen, Denmark). The results
are presented as % of controls, in which each individual value was divided by the mean of
the saline control group × 100.

2.8. HPLC

Animals were anesthetized with pentobarbital (i.p., 60 mg/kg) and decapitated; whole
brains were extracted and snap-frozen for 2 min at −20 to −40 ◦C in methylbutane and
stored at −80 ◦C. Unilateral samples from the medial prefrontal cortex (mPFC), hippocam-
pus (Hipp), and striatum (Stria) were taken through 1 mm diameter micropunches and
then homogenized in 250 µL 0.1 M perchloric acid by ultrasonication 3 times during
10 s while maintained on crushed ice. After protein quantification (Pierce™ 660 nm Protein
Assay; ThermoScientific), dopamine (DA) and DOPAC were calculated as µg/g protein by
electrochemical detection using a HPLC Agilent Platform equipped with a PRONTOSIL
120-5-C18SH analytical column. The results are presented as % of controls, in which each
individual value was divided by the mean of the saline control group × 100.

2.9. Ex Vivo MRI

Image acquisition: Following behavioral testing (~PND 114), the rats were anesthetized
with pentobarbital (60 mg/kg) and transcardially perfused with PBS and cold PFA 4%.
The heads were collected and refrigerated in PFA at 4 ◦C overnight, after which they were
moved to 20% sucrose in PBS. MRI scanning was performed 3–5 days later using a 7.0
Tesla rodent scanner (Bruker BioSpin MRI GmbH, Ettlingen, Germany) at the Charité
Universitätsmedizin (Berlin, Germany). For scanning, the brain was left in the skull and
placed in a 50 mL Falcon tube without any solution to secure alignment and the correct
orientation in anatomical space. The acquisition protocol consisted of a multi-slice localizer
(field of view (FOV) 50 x50 mm) and T2-weighted contrast images with a rapid acquisition
with relaxation enhancement (RARE) sequence (imaging parameters: TR/TE = 4050/30 ms,
RARE factor 8, NEX 6, FOV 30 × 30 mm, MD 256 × 256) resulting in 42 slices every
0.5 mm. The total scanning time amounted to 13 min per perfused rat head.

Lateral Ventricle volume: Extraction of lateral ventricle volumes was achieved through
an in-house automated analysis platform based on the Advanced Normalization Tools
and implemented on a high-performance computing setup [45]. Following DICOM to
NIfTI format conversion, the images were reoriented into standard anatomical space
based on the ITK-SNAP employing the orient algorithm of the Convert3D tool. All the
images were reoriented into standard space using a transformation matrix defining the
orientation of the voxels of the NIfTI image data sets. The initial orientation LPI (Left
Posterior, Inferior) showing voxel orientation across the X, Y, Z axes, respectively, was
changed to the RIP (Right, Inferior, Posterior). The N4BiasFieldCorrection algorithm was
used to correct intensity nonuniformity within images. Fifty iterations over three levels
with a convergence threshold of 1× 10−6 and full width at half-maximum deconvolution
kernel of 0.15 mm were employed with default parameters. For brain extraction, the
python command SkullStrip was used. As reference, a stripped image with its brain mask
(manually delineated once) was used. The antsMultivariateTemplateConstruction.sh script
was utilized for a within-study template from four control subjects. An iteration was
employed with the greedy symmetric normalization transformation and a cross-correlation
similarity metric. The anatomical image of the template was manually delineated using ITK-
SNAP. The left and right hemispheres were considered as one unit. The antsRegistration
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command was applied. The cross-correlation similarity metric was used for diffeomorphic
registration and the mutual information during linear registration between the fixed and
moving images. The antsApplyTransforms command was used for label propagation of all
subjects with a nearest neighbor interpolation scheme. Visual quality control was carried
out to verify the quality of segmentation. The volume information was extracted using the
LabelStats algorithm and MATLAB Version 9.4 (R2018a).

2.10. Statistical Analysis

PPI and data concerning maternal food and water intake, normalized to the dam’s
weight, were analyzed using repeated measure analysis of variance (ANOVA) with phe-
notype, treatment, and day/pre-pulse intensity/stage as variants. The data on social
interaction, brain morphology, neurochemical alterations (DA levels and DA turnover),
and anti-oxidant enzymatic activity (SOD/GPx) were analyzed using 2-way ANOVA with
phenotype and treatment as variants. The analyses of neurochemical alterations and en-
zymatic activity were split by brain region and PND, respectively. This was followed by
Holm–Sidak post hoc test if applicable. DR was analyzed using non-parametric Kruskal–
Wallis followed by Bonferroni corrected post hoc testing. Normality was tested using the
Shapiro–Wilk Test and Q-Q Plot inspection. Equality of variances was tested using Levene’s
test. For ANOVA with repeated measures, sphericity was tested using Mauchly’s Test. A
p value < 0.05 was considered statistically significant. In the figures, significant main effects
for phenotype are presented with a number sign # whereas asterisks * indicate significant
post hoc tests. All statistics were calculated using SPSS 28.0.1 and figures were constructed
using GraphPad Prism 8.

3. Results
3.1. Maternal State

Following phenotype induction, a decrease in food consumption was observed specif-
ically during the first days after the dams were injected with Poly I:C (day F (5,210) = 45.13,
p < 0.001; day × phenotype F (5,210) = 29.87, p < 0.001; day × treatment F (5,210) = 3.83,
p < 0.001; day × phenotype × treatment F (5,210) = 1.99, p = 0.036). Post hoc testing at
GD16 showed a significant omega-3 PUFA treatment effect at 24 h following phenotype
induction (post hoc test, saline control vs. Poly I:C control: p < 0.001; Poly I:C control vs.
Poly I:C omega-3: p < 0.001), which restored the observed reduced food consumption. At
GD17, food consumption in both omega-3 PUFA and NAC treatment groups had fully
normalized (post hoc test, saline control vs. Poly I:C control: p = 0.009; Poly I:C control vs.
Poly I:C NAC: p = 0.014; Poly I:C control vs. Poly I:C omega-3: p = 0.003), while food intake
was restored in untreated Poly I:C controls not before GD18- GD19 (GD18–GD21 all post
hoc tests: p > 0.05) (Figure 1B,B′ and Table S2 in Supplementary Materials)

Similarly, water consumption was significantly decreased in all Poly I:C groups fol-
lowing phenotype induction and normalized more rapidly with NAC and omega-3 PUFA
treatments (day F (5,210) = 38.88, p < 0.001; day × phenotype F (5,210) = 25.71, p < 0.001;
day × treatment F (5,210) = 3.8006, p= 0.001. Post hoc test: GD16 all Poly I:C vs. re-
spective saline groups: p < 0.001; GD17 saline controls vs. Poly I:C controls: p = 0.009)
(Figure 1C and Table S2 in Supplementary Materials). The treatments did not affect the
mean number of pubs being born in each group (Figure 1D,E).

3.2. Oxidative and Inflammatory Parameters during Development

At PND 21, the CD68 levels were generally increased in the mPFC of the Poly I:C
animals (phenotype F (1,28) = 13.667, p < 0.001). At PND 48, Poly I:C controls displayed a sig-
nificant increase in microglial activity in the mPFC (phenotype × treatment F (2,29) = 7.132,
p = 0.003; Post hoc test: saline control vs. Poly I:C control, p = 0.003), the striatum (treat-
ment F (2,29) = 3.871, p = 0.032; phenotype × treatment F (2,29) = 10.871, p < 0.001; post
hoc test, saline control vs. Poly I:C control, p < 0.001) and the hippocampus (phenotype
F (1,29) = 7.102, p = 0.012; treatment F (2,29) = 3.754, p = 0.035; phenotype x treatment
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F (2,29) = 4.516, p = 0.020; post hoc test: saline control vs. Poly I:C control, p = 0.001).
This increase in activity was prevented by prenatal exposure to both NAC and omega-3
PUFAs in the striatum (post hoc test, Poly I:C control vs. Poly I:C NAC p < 0.001, Poly I:C
control vs. Poly I:C omega-3, p < 0.001) and hippocampus (post hoc test: Poly I:C control
vs. Poly I:C NAC, p = 0.008; Poly I:C control vs. Poly I:C omega-3, p = 0.026) in the Poly I:C
animals. No difference in microglial activity was seen across groups at PND 33 or PND 90
(Figure 2A and Table S2 in Supplementary Materials).
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normalized to controls, used as a marker of microglial activity assessed at PND 21, PND 33, PND 43,
and PND 90 in the mPFC, striatum, and hippocampus. At PND 21, CD68 levels were generally increased
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in the mPFC of the Poly I:C animals (significant main effect # for phenotype
F (1,28) = 13.667, p < 0.001). At PND 48, Poly I:C controls displayed a significant increase
in microglial activity in the mPFC (post hoc test *: saline control vs. Poly I:C control, p = 0.003), the
striatum (post hoc test *: saline control vs. Poly I:C control, p < 0.001) and the hippocampus (post
hoc test *: saline control vs. Poly I:C control, p = 0.001). Both NAC and omega-3 PUFAs prevented
the increase in microglial activity in the striatum (post hoc test *: Poly I:C control vs. Poly I:C NAC,
p < 0.001; Poly I:C control vs. Poly I:C omega-3, p < 0.001) and the hippocampus (post
hoc test *: Poly I:C control vs. Poly I:C NAC, p = 0.008; Poly I:C control vs. Poly I:C
omega-3, p = 0.026). (B) GPx activity levels as % of controls used to assess activity lev-
els of anti-oxidant enzymes at PND 21, PND 33, PND 43, and PND 90 in the mPFC,
striatum, and hippocampus. At PND 21, GPx activity was significantly increased in
the striatum of the Poly I:C controls (post hoc test *: saline control vs. Poly I:C control,
p = 0.002), which was prevented by prenatal exposure to NAC (post hoc test *: Poly I:C control vs.
Poly I:C NAC, p = 0.042). At PND 48, GPx activity was significantly increased in the hippocampus
of the Poly I:C controls (post hoc test *: saline control vs. Poly I:C control, p = 0.05), which was
prevented by omega-3 PUFA treatment (post hoc test *: Poly I:C control vs. Poly I:C omega-3,
p = 0.020). PND: postnatal day, mPFC: medial prefrontal cortex, stria: striatum, Hipp: hippocampus,
GPx: glutathione peroxidase activity, CD68: cluster of differentiation 68, NAC: N-acetyl cysteine
(PND 21: n saline: control = 5, omega-3 = 6, NAC = 7; n Poly I:C: control = 5, omega-3 = 6, NAC = 7;
PND 48: n saline: control = 6, omega-3 = 5, NAC = 6; n Poly I:C: control = 6, omega-3 = 5, NAC = 7;
PND 33: n saline: control = 5, omega-3 = 5, NAC = 7; n Poly I:C: control = 5, omega-3 = 5, NAC = 7;
PND 90: n saline: control = 7, omega-3 = 6, NAC = 6; n Poly I:C: control = 7, omega-3 = 7, NAC = 7).
Number sign # indicates significant main effect for phenotype. Asterisks * indicate significant post
hoc tests.

At PND 21, GPx activity was significantly increased in the striatum of the Poly I:C
controls (phenotype F (1,28) = 5.263, p = 0.029; phenotype x interaction F (2,28) = 5.705,
p = 0.008; post hoc test: saline control vs. Poly I:C control, p = 0.002), which was prevented by
prenatal exposure to NAC (post hoc test: Poly I:C control vs. Poly I:C NAC, p = 0.042). At
PND 48, GPx activity was significantly increased in the hippocampus of the Poly I:C controls
(phenotype x treatment F (2,29) = 3.535, p = 0.043; post hoc test: saline control vs. Poly I:C
control, p = 0.05), which was prevented by prenatal exposed to omega-3 PUFAs (post hoc
test: Poly I:C control vs. Poly I:C omega-3, p = 0.020). No difference in GPx activity was seen
across groups at PND 33 or PND 90 (Figure 2B and Table S2 in Supplementary Materials).

No difference in SOD activity between groups was observed at any time point during
development (See Figure S1 in Supplementary Materials).

3.3. Dopamine System in Adulthood

The adult offspring of Poly I:C controls displayed an increase in DA content within
the mPFC (phenotype x treatment F (2,40) = 6.360, p = 0.004; post hoc test: saline controls
vs. Poly I:C controls, p = 0.008), which was significantly decreased following prenatal
exposure to omega-3 PUFAs (post hoc test: Poly I:C control vs. Poly I:C omega-3, p = 0.031).
In the hippocampus, a reduction in DA content was observed (phenotype x treatment
F (2,40) = 5.376, p = 0.009; post hoc test: saline controls vs. Poly I:C controls, p = 0.014),
which was increased following prenatal exposure to NAC (post hoc test, Poly I:C control vs.
Poly I:C NAC: p = 0.05). In the striatum, no differences in DA content among the groups
were found (Figure 3A and Table S2 in Supplementary Materials).

In the adult offspring of Poly I:C controls, an increase in DA turnover was seen in
the hippocampus (phenotype x treatment F (2,40) = 5.373, p = 0.009; post hoc test: saline
controls vs. Poly I:C controls, p = 0.05), which was prevented following prenatal exposure
to NAC (post hoc test: Poly I:C control vs. Poly I:C NAC, p = 0.026). The decrease in DA
turnover was not affected by either treatment within the mPFC (phenotype x treatment
F (2,40) = 3.103, p = 0.056; post hoc test: saline controls vs. Poly I:C controls, p = 0.013)
(Figure 3B and Table S2 in Supplementary Materials).
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Figure 3. Dopamine system in adulthood (A) Dopamine levels expressed as % of controls across
regions. Poly I:C controls displayed an increase in DA content within the mPFC (Post hoc test *:
saline controls vs. Poly I:C controls: p = 0.008), which was significantly decreased by omega-3 (Post
hoc test *: Poly I:C control vs. Poly I:C omega-3: p = 0.031). A reduction in DA content was also
observed in the hippocampus of the Poly I:C animals (Post hoc test *: saline controls vs. Poly I:C
controls: p = 0.014), which was increasedfollowing prenatal exposure to NAC (Post hoc test *: Poly
I:C control vs. Poly I:C NAC: p = 0.05) (B) Dopamine turnover expressed as % of controls across
regions. A significant decrease in DA turnover was seen in the mPFC of the Poly I:C animals (Post
hoc test *: saline controls vs. Poly I:C controls: p = 0.013). An increase in DA turnover was seen in the
hippocampus (Post hoc test *: saline controls vs. Poly I:C controls: p = 0.05), which was prevented
following prenatal exposure to NAC (Post hoc test *: Poly I:C control vs. Poly I:C NAC: p = 0.026)
(n saline: control = 7, omega-3 = 7, NAC = 8; n Poly I:C: control = 8, omega-3 = 7, NAC = 9). NAC:
N-acetylcysteine, DA: dopamine, mPFC: medial prefrontal cortex, Stri: striatum, Hipp: hippocampus.
Asterisks * indicate significant post hoc tests.

3.4. Behaviors in Adulthood

The adult offspring of Poly I:C rats displayed deficits in pre-pulse inhibition (pre-pulse
F (2,106) = 1093, p < 0.001; phenotype F (1,53) = 4.916, p = 0.031; phenotype x treatment, F
(2,53) = 3.707, p = 0.030. Post hoc test: saline control vs. Poly I:C control: 81 dB p < 0.001,
73 dB p = 0.021, 69 dB p = 0.012), which was improved following prenatal exposure to
omega-3 PUFAs (post hoc test: Poly I:C control vs. Poly I:C omega-3 PUFAs: 69 dB p < 0.05)
(Figure 4A and Table S2 in Supplementary Materials).

In the DR paradigm, no difference in discrimination (day 1) across groups was found.
A significant difference in reversal learning was found across groups (day 2, H (5) = 13.506,
p = 0.019), as the adult offspring of Poly I:C rats showed a trend towards rapid rever-
sal (post hoc p = 0.051), indicative of excessive switching behavior, which was signif-
icantly improved following prenatal exposure to omega-3 PUFAs (post hoc p = 0.045)
(Figure 4B and Table S2 in Supplementary Materials).

The adult offspring of Poly I:C rats displayed a general decrease in social interactions,
measured as reduced anogenital sniffing (phenotype F (1,63) = 16.18, p < 0.001), which was
not affected by supplement treatment (Figure 4C, and Table S2 in Supplementary Materials).
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Figure 4. Behaviors in adulthood (A) Pre-pulse inhibition paradigm, displaying percentage pre-
pulse inhibition at 81, 73 and 69dB. Poly I:C controls displayed deficits in all pre-pulses tested (Post
hoc test *: saline control vs. Poly I:C control: 81dB p < 0.001, 73 dB p = 0.021, 69 dB p = 0.012).
Exposure to omega-3 improved the pre-pulse deficits seen for 69dB in the Poly I:C animals (Post hoc
test *: Poly I:C control vs. Poly I:C omega-3: 69dB p < 0.05).(n saline: control = 12, omega-3 = 11,
NAC = 10; n Poly I:C: control = 11, omega-3 = 10, NAC = 14). (B) Discrimination reversal paradigm,
displaying number of trials needed to reach the criterion for discrimination and reversal testing.
Poly I:C control rats showed rapid reversal (Post hoc test *: saline control vs. Poly I:C controls
p = 0.05), which was significantly improved following exposure to omega-3 (Post hoc test *: Poly I:C
controls vs Poly I:C omega-3, p = 0.045) (n saline: control = 11, omega-3 = 8, NAC = 9; n Poly I:C:
control = 11, omega-3 = 10, NAC =12). (C,C′) Social interaction paradigm displaying the time spent
in seconds sniffing genitals (Sniffgen) and anogenital (SniffAgen), as well as frequency of rearing
and follow/approach behavior Poly I:C rats displayed a general decrease in social interactions,
by means of reduced anogenital sniffing (significant main effect # for phenotype F (1,63) = 16.18,
p < 0.001) (n saline: control = 12, omega-3 = 11, NAC = 10; n Poly I:C: control = 12, omega-3 = 10,
NAC = 14). dB: decibel, s: seconds. Number signs # indicates significant main effect for phenotype.
Asterisks * indicate significant post hoc tests.

3.5. Brain Structure in Adulthood

The adult offspring of Poly I:C controls displayed enlarged lateral ventricles (phenotype x
treatment F (2,61) = 3.43, p = 0.039; post hoc test: saline controls vs. Poly I:C controls, p = 0.025),
which was prevented by prenatal exposure to omega-3 PUFAs (post hoc test: Poly I:C control
vs. Poly I:C omega-3, p = 0.020) (Figure 5A,B and Table S2 in Supplementary Materials)
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Figure 5. Size of lateral ventricles in adulthood. (A) The size of the lateral ventricles in mm3 across
groups. Poly I:C controls displayed enlarged lateral ventricles (post hoc test *: saline controls vs. Poly
I:C controls, p = 0.025), which was prevented following exposure to omega-3 PUFAs (post hoc test *:
Poly I:C control vs. Poly I:C omega-3, p = 0.020) (B) Ex vivo MRI visualizing the volume of the lateral
ventricles (mm3) (n saline: control = 12, omega-3 = 11, NAC = 10; n Poly I:C: control = 12, omega-3 = 10,
NAC = 14), LV: lateral ventricle, NAC: N-acetyl-cysteine. Asterisks * indicate significant post hoc tests.

4. Discussion
4.1. Supplementary Treatment Affected the Inflammatory Response in Both the Dams and
Their Offspring

We found that exposure to NAC and omega-3 PUFAs benefitted the mothers as well
as the offspring, who, once reaching adulthood, displayed partial relief in schizophrenia-
related outcomes. Several studies have shown that microglial alterations in the Poly I:C
model are correlated with schizophrenia-like symptoms [46–50]. This aligns with clinical
findings indicating an important role of microglial alterations in the immune dysregulation
observed in patients with schizophrenia [51]. As indicated by the CD68 upregulation, we
found a pronounced increase in microglial activity starting in the mPFC at PND 21, which
was absent at PND 33, and then detected again in the mPFC, striatum, and hippocampus
once the Poly I:C control rats reached adolescence (PND 48). It remains to be investigated
what triggers this re-activation in microglia activity, now affecting all brain regions, in the
adolescent animals. It might indicate an alteration in the readiness of the microglia, which
are kept latent in the earlier stages of life, only to later become active. Indeed, it is suggested
that in schizophrenia, a subset of microglia may be maintained in a permanent primed state as
a consequence of prenatal infection, which later serves as a vulnerability factor for an increase
in cytokine release and subsequent changes in cognition and affective behavior [52–54]. At
PND 21, microglial activation in the mPFC was increased across all Poly I:C groups. The
evolution of schizophrenia is found to rely on time-dependent alterations within intercon-
nected brain structures, with alterations in the mPFC suggested as an early sign [55–58]. It
remains to be investigated whether the early increase in microglial activation, specifically
within the mPFC, also reflects an early signal of an emerging disorder. Adolescence and
early adulthood are recognized as vulnerable time periods in schizophrenia, and may, in
some individuals, constitute a prodromal phase before the first psychotic symptoms [59].
Similar to our findings, others have shown that microglial alterations in Poly I:C rats tend
to arise between periadolescence (PND 35) and early adulthood (PND 74), which occurs
in the hippocampus, striatum, and prefrontal cortex [46,60]. In schizophrenia, a further
recruitment of subcortical brain areas in particular as the disease progresses is thought
to eventually set the ground for the full manifestation of symptoms [57,58]. As such, we
suggest that the re-activation of microglia across interconnected pathology-relevant brain
areas in the adolescent Poly I:C rats may mark a transition towards disease manifestation.
The prevention of later symptoms through early intervention has shown to rely on a mod-
ulation of the preexisting abnormal microglial properties in the Poly I:C model [47,50].
Prenatal exposure to both NAC and omega-3 PUFAs prevented the surge in microglia
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activation in the adolescent offspring, especially within the striatum and hippocampus,
which may be linked to both supplements also partially relieving some of the symptoms
later found in the adult Poly I:C animals. Both NAC and omega-3 PUFAs were also demon-
strated to benefit the dams. Exposure to Poly I:C immediately decreased the intake of food
and water, reflecting a reduction in the well-being of the dams. Both NAC and omega-3
PUFAs led to a faster restoration of normal consumption levels compared to the Poly I:C
control rats who eventually got better over time without any intervention. This accelerated
improvement may be attributed to the anti-inflammatory properties of both supplements,
counteracting the heightened inflammatory response in the mothers following exposure
to the virus-mimicking compound [37]. However, the potential direct effects on the fetus
need further assessment.

4.2. Prenatal Supplementary Treatment Partially Prevented Deregulation in the Collective Enzyme
Anti-Oxidant Defense System in the Developing Offspring

The activity of the anti-oxidant enzymes SOD and GPx throughout development was
used as an indirect measure of the oxidative status in the Poly I:C model. The major anti-
oxidant enzymes are critical at different stages for removing free radicals, as SOD catalyzes
the dismutation of ROS to hydrogen peroxide (H2O2), which is then removed by GPx [61].
Alteration in one of these enzymes without compensation in the other increases the risk of
redox deregulation and oxidative damage [62]. Within the post-mortem brains of patients
with schizophrenia, low levels of GPx have been found in the caudate putamen, whereas
high levels of SOD have been observed in the frontal cortex alongside normal levels of
this enzyme in the putamen, thalamus, and caudate nucleus [62,63]. This is inconsistent
with our results, as we did not, at any time point, observe changes in SOD activity in
any of the brain areas investigated, and rather an increase in GPx activity was seen in the
striatum at PND 21 and again in the hippocampus at PND 48 in the offspring of the Poly
I:C group. It is worth mentioning that the proliferation of microglial is especially mediated
by H2O2, which is the substrate for GPx [64]. Thus, further studies are needed to evaluate
whether the increase in GPx activity found in the Poly I:C controls is related to the increase
in microglial activity found during the same time periods. Nevertheless, the mismatch
between normal SOD activity, alongside changes in GPx in the Poly I:C controls indicates
a potential deregulation in the collective enzymatic anti-oxidant defense system, which
theoretically may affect the oxidative status in these animals. Indeed, it has been shown
that neonatal Poly I:C exposure results in oxidative damage at PND 74 by means of reduced
glutathione and increased lipid peroxidation [60]. Prenatal exposure to NAC reduced GPx
activity in the striatum at PND 21, whereas GPx activity in the hippocampus at PND 48
was reduced following omega-3 PUFA exposure. Further studies investigating the level of
oxidative stress in these animals and the subsequent impact of prenatal exposure to NAC
and omega-3 PUFAs are needed.

4.3. Prenatal Supplementary Treatment Partially Prevented Schizophrenia-Related Outcomes in
The Adult Offspring

Alterations in the dopamine system, including an imbalance between cortical and
subcortical levels, have long been considered to be involved in the pathophysiology and
symptoms of schizophrenia [65,66]. In the adult offspring of the Poly I:C controls, we
found an increase in DA levels alongside a decrease in DA turnover of the mPFC, and
a decrease in DA levels of the hippocampus [26]. Prenatal exposure to omega-3 PUFAs
prevented the increase in DA levels within the mPFC, whereas the decrease in DA levels
in the hippocampus was prevented by NAC. We further found that prenatal exposure to
omega-3 led to partial relief of later symptoms, mainly affecting some aspects related to
positive symptoms as assessed in the PPI paradigm and cognition as reflected by rapid
reversal in the Poly I:C controls. Strikingly, prenatal exposure to omega-3 was able to
prevent the enlargement of lateral ventricles that was otherwise observed in the Poly I:C
model. The ability to prevent the otherwise enlarged lateral ventricles in the Poly I:C
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model has been previously reported following preventive interventions applied during
adolescence, prior to symptom manifestation [28,29,32–35].

4.4. Limitations

Our results are limited to a distinct animal model, in which the phenotype is fully
present in all Poly I:C offspring. Future clinical research will be challenged by the ability to
identify the group of high-risk individuals who may benefit from supplement treatment
at the fetal stage. The clinical symptoms of schizophrenia are complex and, despite the
Poly I:C model being well-validated, there are currently no animal models which fully
mimic the human disorder. As our results only showed partial relief in distinct behaviors
and pathophysiological processes, additional investigations incorporating other animal
models and further behavioral paradigms are needed before any translational conclusions
can be made. Further studies on the mechanism of action related to the prevention of
schizophrenia-like outcomes in the offspring are also warranted.

5. Conclusions

Taken together, we showed that prenatal exposure to supplements known to have
anti-inflammatory properties improved the well-being of the dams exposed to immune
activation, and benefitted the offspring by partially improving some of the neurobiological
and behavioral abnormalities otherwise found in the Poly I:C model. Thus, our results
show that intake of over-the-counter supplements may assist in specifically targeting the
inflammatory response related to schizophrenia pathophysiology, aiding in diminishing
later disease severity in the offspring.
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