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Abstract: Heavy episodic ethanol (EtOH) consumption is a typical pattern, especially among younger
people. The therapeutic effect of exercise on EtOH damage has not yet been fully elucidated. There-
fore, this study aims to investigate whether moderate exercise can reduce the damage generated
by ethanol consumption in salivary glands and saliva. Thus, 32 male Wistar rats were divided into
four groups: control (sedentary animals treated with water); training (trained animals treated with
EtOH); EtOH (sedentary animals treated with EtOH); and EtOH + training (trained animals treated
with ethanol). EtOH was administered to the animals at a dose of 3 g/kg/day at a concentration of
20% w/v for three consecutive days per week via intragastric gavage. The training was performed
on a treadmill for five successive days. At the end of the 4-week experimental protocol, the animals
were euthanized, and salivary glands and saliva were collected for oxidative biochemistry analysis.
Our results showed that EtOH consumption generated changes in the oxidative biochemistry of the
salivary glands and saliva. Thus, it was possible to conclude that moderate physical exercise can
significantly recover antioxidant activity, reducing the damage generated by EtOH.

Keywords: alcohol; binge-drinking; salivary gland; moderate physical training; oxidative biochemistry

1. Introduction

Ethanol (EtOH) is the most consumed substance worldwide in the form of alcoholic
beverages. Its consumption has been favored by numerous cultures and has motivated
celebrations for centuries [1]. The drug’s psychoactive properties promote its harmful use,
such as alcohol abuse leading to alcohol-use disorder, which is associated with deleterious
effects on personal health [2,3]. These detrimental effects of alcohol misuse have significant
social and economic consequences [1].

It is known that the harmful effects of alcohol frequently vary according to dose and
consumption period. Among patterns of alcohol intake, binge drinking is defined as the
ingestion of four (women) to five drinks (men) in a 2 h time frame in the past 30 days,
which brings about a blood alcohol concentration of 0.08 mg per deciliter or higher [4,5].
Heavy drinking is also an alcohol use disorder defined by five or more times the gender-
specific binge threshold [6]. Those patterns are considered a health issue worldwide
due to their association with injuries, violence, and chronic diseases. In general, despite
consumption patterns, ethanol is well absorbed orally, freely passes through membranes,
and is well distributed throughout the body without binding to any plasma proteins [7].
EtOH undergoes hepatic metabolization mainly by an oxidative pathway which is oxidized
to acetaldehyde primarily by alcohol dehydrogenase (ADH). However, this oxidation may
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occur by means of the hepatic microsomal ethanol oxidation system (MEOS)—CYP450
2E1—and catalase (Figure 1) [8]. The second step in the oxidative pathway involves the
action of aldehyde dehydrogenase (ALDH) converting the acetaldehyde to acetate, which
is harmless [3,9].
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expression, and increasing oxidative stress [3,9]. Then, this system produces additional 
reactive oxygen radicals, possibly damage mitochondria and, thus, generating 
cytotoxicity, inflammation, and cell death [5,8,10]. 

Oxidative stress is characterized by an imbalance of the redox system, elevated levels 
of free radicals, and an impaired antioxidant system [8]. Studies have revealed that a 
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Figure 1. Representative schematic of the toxic damaging mechanisms of ethanol (cytotoxicity,
inflammation, and oxidative stress) and its hepatic metabolization in the human body. The enzyme
alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde. This, in turn, undergoes the action
of aldehyde dehydrogenase (ALDH), generating the acetate molecule that participates in several
metabolic cycles.

If heavier EtOH consumption occurs, increases in the expression and activity of
MEOS generate the production of acetaldehyde through the formation of reactive oxygen
species (ROS), such as radical superoxide anion (O2

−) and hydrogen peroxide (H2O2) [9].
Acetaldehyde is the most toxic metabolite produced from alcohol metabolism; it interacts
with DNA, causing mutations and chromosomal damage, positively regulating CYP2E1
expression, and increasing oxidative stress [3,9]. Then, this system produces additional
reactive oxygen radicals, possibly damage mitochondria and, thus, generating cytotoxicity,
inflammation, and cell death [5,8,10].

Oxidative stress is characterized by an imbalance of the redox system, elevated levels
of free radicals, and an impaired antioxidant system [8]. Studies have revealed that a
deficiency of the essential vitamins for the production of the potent antioxidant glutathione,
mainly vitamins B1 (thiamine), C, B9 (folate), and B12, are commonly observed in cases of
alcohol abuse [3,11]. Therefore, oxidative stress is linked to the etiology of many diseases
and plays a vital role in the damage mechanism of alcohol disorders [8]. Therefore, high
blood alcohol concentration quickly reaches the body tissues and disrupts their functioning,
especially the liver, central nervous system, bone, and cellular metabolisms [7,10]. Thus,
alcohol use disorders are associated with the risk of alcoholic liver disease, cardiovascular
diseases, pancreatitis, cancers, malnutrition problems, brain damage, and fetal alcohol
spectrum disorders [3,8,9]. Interestingly, salivary glands are susceptible to biochemical,
morphological, and functional damage through different forms of alcohol exposure, both
in chronic and binge-like models [12–14].

Physical activity is defined as any skeletal muscle-driven movement that requires
more energy expenditure than usual. For example, it includes tasks related to everyday life,
recreation, employment, sports, and active transportation [15,16]. In contrast, methodologi-
cal factors of physical training, such as volume, intensity, frequency, and type of exercise,
define exercise as a planned and structured activity with the primary goal of improving the
body’s capabilities. Both types of activity have a preventive impact against several diseases
and play a role in redox balance [17].

In addition, exercise is an efficient strategy to minimize alcohol-derived central ner-
vous system impairments [18,19]. A recent study found a relationship between exercise
and salivary oxidative stress, especially at moderate intensity (see the systematic review
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of Alves et al., 2022 [20]). However, the interaction between EtOH consumption and the
effects of moderate-intensity physical exercise on the salivary glands and saliva remains
unclear in the literature. Thus, this study aimed to evaluate whether physical exercise can
prevent the damage caused by binge-like EtOH patterns in Wistar rats.

2. Materials and Methods
2.1. Animals and Experimental Groups

This experiment was conducted with the approval of the Ethics Committee on Experi-
mental Animals of the Federal University of Pará, number 1423181219. A total of 32 male
albino rats (Rattus norvegicus) species, Wistar strain, 90 days old, were used. The animals
were housed in plastic collective cages (40 cm × 30 cm × 13 cm), with 4 animals per cage at
a temperature of 25 ◦C on a 12 h dark/light cycle. For four weeks, the animals were fed a
balanced diet and had access to water ad libitum.

The animals were divided into four groups, with eight animals each, as follows: control
group (sedentary animals that received distilled water); training group (trained animals
that received distilled water); EtOH group (sedentary animals treated with ethanol); and
EtOH + training group (trained animals treated with ethanol).

An evaluation of their trainability was performed on a treadmill to help distribute the
animals among the groups, and a scale of 1 to 5 was used [21]. In this way, each animal was
observed during a 5 min run at a speed of 15 m/min and, according to its performance,
received one of the five classifications below:

1. The animal refuses to run;
2. Running without constancy (runs and stops or runs in the wrong direction);
3. Regular race;
4. Good run (occasionally runs at the back of the treadmill);
5. Excellent running (runs permanently at the front of the treadmill).

Animals that received a rating equal to or greater than three were elected for the
physical training group. In contrast, animals with a rating of 1 to 2 were selected for
the sedentary animal groups. In this way, it was possible to reduce the bias, minimizing
possible differences related to the level of stress that each animal suffered [22].

2.2. Binge-like EtOH Treatment

The animals in the EtOH and EtOH + training groups were intoxicated with ethanol
at a dose of 3 g/kg/day (20% w/v) orally (gavage) through an orogastric cannula (Insight,
Brazil) on three consecutive days per week for four weeks [13,23], while the control group
and the sedentary + water group received distilled water by the same route to simulate the
same level of stress naturally generated by the gavage process. The animals were weighed
weekly to adjust the dose. On the fifth day of each week, EtOH or distilled water was
administered eight hours after the last training day. Thus, the animals underwent twelve
binge sessions throughout the entire experiment. The experimental design is summarized
in Figure 2.

2.3. Aerobic Physical Training Protocol

The training protocol was performed according to the model of Arida et al. (2011) [24],
modified and validated by Pamplona-Santos et al. (2019) [19] and Lamarão-Vieira et al.
(2019) [18]. It was characterized as moderate-intensity aerobic exercise, in which the animals
were forced to walk on a treadmill adapted for rodents with no inclination degree (Insight
LTDA). Each animal was separated from the others by an acrylic wall. The exercise lasted
30 min daily for 5 consecutive days of the 4-week experiment. The treadmill’s speed was
modified weekly, following the scale shown in Figure 2.
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Figure 2. Summary of the methodology used in the experiment, referring to the period of training and
intoxication, removal of salivary glands, and analyses performed. Thirty-two male Wistar rats were
divided into four groups of eight animals. Two groups were submitted to thirty minutes of forced
running on five consecutive days a week for four weeks. All groups were administered distilled water
or EtOH at the end of each week (A). After 28 days of the experiment, the animals were anesthetized
for the collection of saliva and salivary glands (B). The glandular tissue was used to determine
oxidative stress through analysis of antioxidant capacity against peroxyl radicals (ACAP), nitrite
concentration (NO), and lipid peroxidation assay (LPO) (C), and saliva was analyzed by assessing
Trolox-equivalent antioxidant capacity level (TEAC) and amylase activity (D).

2.4. Collection of Saliva and Salivary Glands

At the end of 4 weeks of administration with EtOH associated with physical exercise
on a treadmill, the animals were anesthetized with a combined solution of ketamine
hydrochloride (90 mg/kg) and xylazine (9 mg/kg). Pilocarpine (1 mg/kg) was injected
intraperitoneally to collect saliva in plastic microtubes over ice for 10 min, with immediate
storage of the samples at −80 ◦C. Then, the animals were euthanized for resection of the
parotid and submandibular glands, which were washed in saline solution and subjected
to freezing with liquid nitrogen, then stored at −80 ◦C until the time of biochemical
analysis. Subsequently, to prepare the homogenates of the salivary gland samples, sonic
disaggregation was performed in 20 mmol/L Tris-HCl, pH 7.4 at 4 ◦C (approximate
concentration of 1 g/mL). The supernatants were collected, and aliquots were separated
for each biochemical analysis.
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2.5. Salivary Gland Oxidative Biochemistry Analysis
2.5.1. Analysis of Antioxidant Capacity against Peroxyl Radicals (Antioxidant Capacity
against Peroxyl Radicals—ACAP)

For this analysis, the samples were centrifuged at 14,000 rpm (Eppendorf Centrifuge
5910 Ri) to obtain the homogenate. In this method, quantification of ROS generated by
equally concentrated samples (2.5 g protein/L) after exposure to a peroxyl radical generator
was used to assess ACAP [25]. Thermal cracking of 2,2′-azobis 2-methylpropionamidine
dihydrochloride at 35 ◦C resulted in the production of peroxyl radicals (ABAP; 4 mmol/L;
Sigma-Aldrich, St. Louis, MI, USA). The 2′,7′ dichlorofluorescein diacetate (H2DCF-DA,
InvitrogenTM, Whaltan, MA, USA) was used for ROS detection at a final concentration of
40 nmol/L. Every 5 minutes for 30 minutes, measurements were made in a fluorescence
microplate reader (Victor X3, Perkin Elmer, Waltham, MA, USA). The relative difference
between the area of ROS with and without ABAP was considered as a measure of antioxi-
dant capacity. From this, the results were converted to the inverse of the relative area and
expressed as percentages of the control.

2.5.2. Lipid Peroxidation Assay

Malondialdehyde (MDA) levels were used as an indication to calculate LPO levels in
the salivary glands [26]. Homogenized samples were centrifuged at 5600 rpm (Eppendorf
Centrifuge 5910 Ri) for 10 min at 4 ◦C. The next step involved the incubation of sample
supernatants and standard MDA solutions with a 10.3 mmol/L N-methyl-2-phenylindole
solution diluted in methanol (1:3) and methanesulfonic acid at 45 ◦C for 40 min. Then, a
spectrophotometric reading was performed (λ = 570 nm). Results are plotted as percent of
the control, and are represented in nanomolars per microgram of protein (nmol/µg). The
Bradford method was used to quantify proteins [27].

2.5.3. Analysis of Nitrite Concentration

For this determination, the lysate was thawed and centrifuged at 14,000 rpm (Eppen-
dorf Centrifuge 5910 Ri) for 10 min at 4 ◦C. The supernatant was separated into aliquots to
determine nitrite and protein concentrations. The concentration of nitrites was determined
based on their reaction with the Griess reagent (Naphthyl-ethylene-diamine 0.1% and
sulfanilamide 1% in phosphoric acid 5%-1:1). This reaction formed azoic compounds,
which yield a characteristic bluish color. The intensity of the blue color was proportional
to the chromogen concentration, and was verified by spectrophotometric reading [28].
Afterwards, 50 microliters of supernatant or standard nitrite solution were added to 100 µL
of Griess reagent and incubated for 20 min at room temperature. Afterward, the reading
was performed (λ = 550 ηm), and the results were expressed as micromoles of nitrites for
each microgram of proteins (µmol/µg).

2.6. Saliva Biochemical Analysis
2.6.1. Trolox-Equivalent Antioxidant Capacity (TEAC) Level

This analysis was performed according to the methodology outlined by Re et al.
1999 [29], with modifications. It was based on the ability of substances to eliminate the
ABTS•+ radical cation, a blue-green chromophore that reduces its intensity in the presence of
antioxidants, resulting in the formation of ABTS, which can be identified by its characteristic
colorlessness. The ABTS•+ solution (2.45 mmol/L) was prepared through the reaction
between ABTS (7 mmol/L) and potassium persulfate (140 mmol/L; K2O8S2). Initially, the
reading (T0) of the ABTS•+ solution was performed. Then, 30 µL of sample or standard
was added to this solution. After 5 min, a second reading was performed (T5). The reaction
was measured by a spectrophotometer at 734 nm. The results were expressed in mmol per
liter (mmol/L).
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2.6.2. Amylase Activity

Saliva samples were weighed, frozen in liquid nitrogen, and stored at −80 ◦C. To de-
termine the amylase activity, the K003 BIOCLIN® colorimetric amylase test kit (QUIBASA,
Química Básica Ltd.a., Belo Horizonte, Minas Gerais, Brazil) was used according to the
modified Caraway method [30]. Absorbances were measured in a spectrophotometer at
660 nm. Amylase activity results were expressed as U/µg of salivary protein.

2.7. Statistical Analysis

After data collection, the distribution was tested using the Shapiro–Wilk method
to verify normality. Statistical comparisons between groups were performed using one-
way ANOVA and Tukey’s post hoc test. Values of p < 0.05 were considered statistically
significant. All analyses were performed using GraphPad Prism 7.0 software (San Diego,
CA, USA).

3. Results
3.1. Physical Training Was Able to Attenuate the Oxidative Stress Generated by the EtOH
Consumption in the Salivary Glands in a Binge-Drinking Model in Rats

In the parotid gland, EtOH reduced the concentration of antioxidant capacity com-
pared to the groups that did not ingest EtOH (p < 0.0001), and physical training was not
able to minimize the damage to this parameter (Figure 3A).
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Figure 3. Parameters of the oxidative biochemistry of the parotid glands after intense and episodic
ingestion of ethanol (binge drinking pattern) in sedentary and trained Wistar rats for 90 days. In
(A), antioxidant capacity against peroxyl-ACAP radicals. (B) Lipid peroxidation concentration (LPO);
(C) nitrite concentration. Results are expressed as mean ± standard error of the mean and converted
to percentages of the control. One-way ANOVA and Tukey’s post hoc test were used. Different
superscript letters between groups indicate statistical differences (p < 0.05).

On the other hand, when evaluating the LPO levels in the parotid gland, a significant
increase was observed in the groups that received the binge-like EtOH treatment compared
to those treated with distilled water only (p < 0.0001). Moreover, the physical training
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alone did not change this parameter compared to the control group (control group means:
100%; training group means: 132.7%; p = 0.1847). However, physical training reduced LPO
levels compared to the sedentary group that received EtOH (EtOH group mean: 303.7%;
EtOH + training group mean: 215.5%; p < 0.0001; Figure 3B).

A significant increase in nitrite levels in the parotid gland was observed in the groups
that received treatment with EtOH (p < 0.0001). However, when analyzing the isolated
effect of physical training on this parameter compared to the control group, it was not
observed significant changes (control group mean: 100%; training group mean: 119.9%;
p = 0.1376). On the other hand, physical training was able to reduce nitrite levels compared
to the sedentary group that received EtOH (EtOH group mean: 216%; EtOH + training
group mean: 160.8%; p < 0.0001; Figure 3C).

Meanwhile, in the submandibular glands, moderate-intensity aerobic physical training
decreased oxidative stress by modulating all evaluated parameters. When assessing the
ACAP parameter, it was observed that the consumption of EtOH promoted a reduction
in the antioxidant capacity compared to the groups that received only distilled water
(p < 0.0001). Regarding the effect of physical training, it was verified that the protocol
application still failed to recover the control levels (control group means: 100%; training
group means: 87.63%; p = 0.0060). However, physical training generated a recovery effect on
ACAP levels compared to the sedentary group that received the binge-like EtOH treatment
(EtOH group mean: 48.41%; EtOH + training group mean: 66.39%; p < 0.0001; Figure 4A).
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Regarding the LPO parameter, EtOH promoted an increase in MDA levels compared to
the groups that received only distilled water (p < 0.0001), and the effect of physical training
alone did not cause changes in this parameter (control group mean: 100%; training group
mean: 115%; p = 0.4552). However, when evaluating the LPO levels in the groups subjected
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to binge-like EtOH treatment, a significant reduction was observed in the group that
received the aerobic physical training protocol (EtOH group mean: 242%; EtOH + training
group mean: 196.4%; p = 0.0007; Figure 4B).

Similarly, nitrite levels in the submandibular gland were elevated in the groups that
received the binge-like EtOH treatment (p < 0.0001), and physical training was able to
reduce nitrite levels compared to the sedentary group that consumed EtOH (EtOH group
mean: 145%; EtOH + training group mean: 122.3%; p = 0.0032; Figure 4C).

3.2. The Intense and Episodic EtOH Consumption Promoted Alterations in the Salivary Oxidative
Biochemistry of the Animals, but Aerobic Physical Training Could Not Minimize the Damage

The results showed that TEAC levels in the EtOH group were lower compared to the
control group (p < 0.0001), but physical training was not able to minimize the modulation
generated (p > 0.05; Figure 5). On the other hand, exposure to EtOH in the binge drinking
model did not cause alterations in the amylase activity in the saliva of rats (p > 0.05;
Figure 6).
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mean. One-way ANOVA and Tukey’s post hoc test were used. Different superscript letters between
groups indicate statistical differences (p < 0.05).
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All significantly relevant values from the biochemical and saliva analyses are contained
in Supplementary Tables S1 and S2.

4. Discussion

This study demonstrated that EtOH induced alterations in the oxidative biochemistry
of the parotid and submandibular glands, suggesting an association with oxidative stress,
as indicated by the decreased antioxidant capacity (ACAP) and increased pro-oxidant
parameters (LPO and NO). On the other hand, physical exercise was able to promote a
reduction in pro-oxidant parameters in salivary glands and the recovery of antioxidant
levels in the submandibular gland. Evidently, EtOH modified salivary antioxidant capacity
(TEAC); however, exercise did not have the same beneficial effect on salivary glands, as
antioxidant levels did not recover. In addition, amylase activity did not change significantly
after EtOH consumption (supplementary Table S2).

In this context, it is necessary to approach the morphology and physiology of the
salivary glands, as they are composed of different cell types, including endothelial, mes-
enchymal, and epithelial neuronal cells [31]. The major salivary glands can be defined as
agglomerations of acini in arborized form, which act as secretory units; a complex system
of ducts, which contribute to the salivary formation and transport; and myoepithelial
cells, which are involved in salivary secretion [32,33]. Classified as exocrine, these glands
are present in the oral cavity as three pairs of major glands (parotid, submandibular, and
sublingual) and several minor glands which are distributed in some oral mucosa regions,
such as the cheeks and lips [34–36].

In rats, the parotid glands are composed only of serous cells, while the submandibular
glands are composed of both serous and mucous acinar cells, although the presence
of serous acini is predominant. Parotid serous cells secrete a large number of proteins
such as amylase, resulting in the production of more watery saliva. On the other hand,
the mixed submandibular acini secrete more viscous saliva due to a large number of
glycoproteins [32,34,36]. Therefore, due to these different biochemical and morphological
characteristics, each gland plays an individual role in the production and composition
of saliva [37]. In this way, saliva performs numerous functions which are essential for
maintaining oral and systemic health, such as protection and cleaning of the teeth and
mucosa, antimicrobial action, feeding and digestion facilitation, and maintaining pH.
Therefore, quantitative and qualitative losses in this fluid can cause discomfort, such as
taste changes and difficulty in chewing and swallowing, as well as favoring the increase in
carious lesions and pathological conditions such as candidiasis and mucositis [38,39]. In
addition, salivary biomarkers can contribute to diagnosing oral and systemic disorders [40].
Therefore, it is relevant to understand the possible etiologies of the alterations that occur in
the salivary glands and, in particular, how intense and episodic ethanol consumption can
modulate the behavior of this tissue.

Our findings showed a significant increase in oxidative stress parameters and a simi-
larly reduced antioxidant capacity induced by intense and episodic consumption of ethanol
(3 g/kg/day) in both glands. This alteration could be observed through reduced levels of
ACAP and higher levels of LPO and nitrite in the groups exposed only to ethanol (sup-
plementary Table S1). These results are compatible with other studies which observed
oxidative damage in female adolescent rats after ethanol consumption. This effect occurred
due to increased levels of lipid peroxidation markers, determined through MDA levels
in the tissues studied, in the parotid glands after 1 and 4 weeks of binge drinking, in the
submandibular glands after only one week of binge drinking [13], and in the motor cortex
after four weeks of binge drinking. This was in addition to a reduction in the activity of
the catalase (CAT) and superoxide dismutase (SOD) antioxidant enzymes, unbalancing the
protection system against damage caused by oxidative stress [23].

Another study evaluated the impact of ethanol consumption on the salivary glands
through saliva analysis, and also observed alterations in the functional biochemical system
in response to the toxic effect of ethanol through assessment of the enzymatic activity of total
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acid phosphatase (TAP) and tartrate-resistant acid phosphatase (TRAP). The researchers
noticed a progressive reduction in both activities in the submandibular glands of rats
exposed to chronic consumption of cachaça for 75–105 days, in addition to reduced mucin
levels in the exposed group [12]. The metabolization of ethanol produces acetaldehyde,
which is linked to greater production of ROS. This contributes to cellular oxidation and,
consequently, the damage caused by this process [41]. These analyses demonstrated that
these toxic effects of ethanol consumption affect the biochemical system in different and
time-dependent ways [13,23,41].

In this context, physical exercise minimized the oxidative imbalance in the parotid and
submandibular glands, where recovery of the antioxidant capacity expressed by ACAP
was observed. This analysis method detects ROS by fluorescence, so a peroxyl radical
generator is added to the samples, which should intercept these ROS as a compensatory
response to biochemical imbalance [25]. This damage reduction may be associated with
increased blood flow in the salivary glands. For instance, according to a study conducted
in an experimental model with rats [42], voluntary physical training on the wheel induced
increased expression of angiogenesis markers VEGF-1 and CD-31 in the submandibular
gland. Thus, a greater local blood flow would increase the concentration of endogenous and
exogenous antioxidants in the gland, which would consequently decrease the concentration
of ROS. However, the damage caused by EtOH may have altered the homeostatic dynamics
of the salivary glands, as was also observed in the analysis of LPO and nitrite levels, both
pro-oxidant parameters. The LPO levels were increased with the consumption of EtOH, and
this parameter indicates the occurrence of oxidation of lipid membranes in the cells, along
with the release of metabolites such as malondialdehyde, which is considered a biomarker
of plasma damage [26]. Besides this parameter, the analysis of nitrite is an indicator of
redox changes, because it is a method that quantifies a metabolite of nitric oxide [43] which
showed increased levels after EtOH consumption. However, physical exercise contributed
to reductions in both pro-oxidant parameters. Corroborating our findings, another study
showed that aerobic exercise in aged rats decreased ROS generation and oxidative DNA
damage markers in the salivary gland while significantly recovering the salivary flow rate
and total protein compared to young rats [44].

It is evidenced in the literature that in this experimental model, in which ethanol was
administered and absorbed directly into the digestive tract, ethanol consumption causes
alterations in the peripheral blood. It also generates repercussions in the hippocampus of
rats, such as reduced levels of total antioxidant capacity (TEAC) and glutathione (GSH)
and increased concentrations of MDA and nitrite in hippocampal tissue, in addition to
reduced levels of GSH in plasma. These are the parameters that were restored by physical
training [19].

On the other hand, the literature points out that physical exercise naturally promotes
increases in oxidative stress through several pathways. One of them is due to the in-
crease in intramuscular calcium concentration during physical activity, which promotes
the formation of superoxide and hydroxyl radicals, the latter being the most reactive of
the intermediary radicals. Another example is leukocyte activation in response to exercise-
induced muscle damage, since neutrophils can reduce molecular oxygen into superoxide
radicals [45,46]. However, studies also show that while exercise promotes an increase in
oxidative stress, it also increases the expression of antioxidant defense regulators, such as
heme oxygenase-1 enzyme and the peroxisome proliferator-activated receptor γ coactivator
1α [47]. In addition, exercise promotes compensatory adaptation, increases systemic antiox-
idant capacity, and consequently improves the ability to reduce free radical reactivity [48].

Thus, the physical exercise protocol in this study was configured as a moderate-
intensity model of aerobic resistance, a strategy for maintaining quality of life and pre-
venting chronic diseases [18,19]. Its effective role in minimizing oxidative damage caused
by EtOH has been evidenced in previous studies which observed reductions in oxidative
stress in different regions of the central nervous system, such as the hippocampus [19,49]
and cerebellum [18]. Furthermore, the systemic changes caused by EtOH were expressed
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through the analysis of redox parameters in blood, where exercise increased antioxidant
activity [19,50].

Through the capacity of physical exercise to act systemically, the possible mecha-
nisms involved in this process include the regulation of the redox and anti-inflammatory
systems [51]. Some studies have reported a decrease in the production of ROS and pro-
inflammatory cytokines (TNF-α and IL-1β). At the same time, mitogen-activated protein
kinase (MAPK) activation may occur, which promotes the induction of the NF-κB pathway
and results in increased antioxidant defenses [52]. Another study showed that exercise in-
creased antioxidant activity expressed by superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPx) [53]. Similarly, such a modulating effect can be identified by
observing reductions in lipid peroxidation in the liver mitochondria of trained rats [54,55].
This increase in antioxidant defense in response to physical exercise was also observed
in saliva analysis, and was determined by an increase in total antioxidant activity and a
decrease in the concentration of lipid hydroperoxides (oxidative stress index) immediately
after physical exercise [56].

In the salivary glands, the effects of EtOH were significant to the extent that they
altered the homeostasis of the redox system. In addition to this are the alterations found
in the saliva, which were expressed by reductions in antioxidant capacity (TEAC) in
the groups that ingested EtOH. However, regarding the role of physical exercise, it can
be observed that it did not promote a compensatory response of increased antioxidant
capacity in the saliva, contrary to what was observed in the salivary glands. Such a
finding may be related to the fact that the oral cavity is more exposed to acetaldehyde, the
concentration of which is associated with EtOH-induced oxidative stress [57,58]. In this
context, salivary acetaldehyde concentrations after ethanol ingestion reflect its production
by alcohol dehydrogenases in the epithelium of the oral mucosa, especially at higher
concentrations, and EtOH oxidation by the oral microbiota [59]. Therefore, overexposure to
acetaldehyde in the oral cavity of trained animals may be responsible for mitigating the
beneficial effects of training on salivary TEAC.

Furthermore, amylase activity, a marker of salivary stress through sympathetic ac-
tivation, was evaluated [60]. It can be observed that there was no significant change in
enzyme activity after moderate exercise, which corroborates the findings of a study that
also applied a moderate exercise model at 75% VO2 max and did not find changes in
amylase [61]. Another study also showed similar results in a model of voluntary wheel
running with mice, in which no significant differences in amylase activity nor in the flow
rate between groups were observed [62]. This outcome may have resulted from resting
after exercise, during which the amylase concentration returns to baseline levels [63].

Thus, despite the limitations of our study, essential data compatible with the literature
were found regarding how moderate physical exercise can reduce the damage generated
by binge drinking. Therefore, more research is required to determine whether this behavior
can affect other salivary functions, whether other training protocols can produce similar or
better results, and how they can be used as therapeutic measures for this problem, given
the local and systemic harm that heavy ethanol consumption can cause.

5. Conclusions

The EtOH binge-drinking consumption pattern promoted changes in the redox system
of rats’ parotid and submandibular glands with reduced ACAP and increased levels of LPO
and nitrite. Furthermore, it was possible to identify a reduction in the antioxidant capacity
in saliva without altering the amylase activity. In contrast, moderate-intensity aerobic
physical exercise proved to be a therapeutic tool with beneficial effects. This is because
it promoted the recovery of antioxidant capacity and reduced pro-oxidant parameters
in both glands, favoring improvement in redox homeostasis animals subjected to EtOH
binge-like exposure.
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