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Abstract: Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling,
corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence
suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but
also endogenous sources of oxidants in the form of reactive oxygen species (ROS). Mitochondria,
the major producers of ROS, exhibit impaired structure and function in COPD, resulting in reduced
oxidative capacity and excessive ROS production. Antioxidants have been shown to protect against
ROS-induced oxidative damage in COPD, by reducing ROS levels, reducing inflammation, and
protecting against the development of emphysema. However, currently available antioxidants are
not routinely used in the management of COPD, suggesting the need for more effective antioxidant
agents. In recent years, a number of mitochondria-targeted antioxidant (MTA) compounds have
been developed that are capable of crossing the mitochondria lipid bilayer, offering a more targeted
approach to reducing ROS at its source. In particular, MTAs have been shown to illicit greater
protective effects compared to non-targeted, cellular antioxidants by further reducing apoptosis and
offering greater protection against mtDNA damage, suggesting they are promising therapeutic agents
for the treatment of COPD. Here, we review evidence for the therapeutic potential of MTAs as a
treatment for chronic lung disease and discuss current challenges and future directions.

Keywords: antioxidants; mitochondria; COPD; lung; ROS; pulmonary disease

1. Introduction

Chronic obstructive pulmonary disease (COPD) is the third most common cause of
death globally [1], with no effective cure. COPD is characterized by the limitation of airflow
in the lungs, which leads to shortness of breath in addition to wheezing, chest tightness,
and ongoing chronic cough [1]. Common pathologies of chronic airway inflammation,
such as bronchitis, airway remodeling, collagen deposition, fibrosis, and mucus hyper-
secretion and/or emphysema, underly the condition [2,3]. Chronic exposure to cigarette
smoke (CS) is the primary cause of COPD, but other causes include long-term exposure
to lung irritants—such as air pollution, chemical fumes, or dust [4,5]. In addition, genetic
risk factors have been identified in COPD, including α-1-antitrypsin deficiency (AATD),
telomeropathies, and several other rare variants, and groups of common variants likely
affect COPD heterogeneity [6–8].

Current treatments available for COPD include the use of bronchodilators [9], inhala-
tion of corticosteroids [10], oxygen therapy, lung transplantation, or reduction surgeries,
which mitigate disease symptoms and help to prevent exacerbations [11,12]. However,
there are no currently available treatments that inhibit the progression or reverse the
features of disease [13], and hence there is an urgent need for novel therapies that can
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prevent the progression of COPD. Although cessation of smoking is highly recommended
for patients at all stages of COPD [14], disease progression fails to halt in the absence of
exogenous stressors, suggesting that additional endogenous factors may underlie disease
pathogenesis [15].

Oxidative stress has been identified as a key mechanism driving the pathogenesis of
COPD, and mitochondria play an important role in these mechanisms through the gener-
ation of endogenous reactive oxygen species (ROS) [15,16]. Emerging evidence suggests
that mitochondrial ROS (mtROS) contributes to widespread mitochondrial dysfunction in
COPD and drives chronic inflammation in the lungs. Thus, therapeutic treatments aimed
at targeting mtROS generation hold great promise for COPD. In this review, we discuss
the role of mitochondria-derived oxidative stress in COPD and the therapeutic efficacy
of MTAs as a treatment for chronic lung disease. Current challenges and new tools for
targeting mtROS are discussed.

2. Oxidative Stress in COPD

Oxidative stress is a key pathological feature of COPD, with numerous studies report-
ing increased levels of oxidative stress markers such as ethane [17], malondialdehyde [18],
hydrogen peroxide [19,20], and 8-isoprostane [21] in the breath of COPD patients. Oxida-
tive stress refers to an imbalance in the production and accumulation of reactive molecules
and free radicals derived from molecular oxygen, collectively referred to as reactive oxy-
gen species (ROS). ROS arises from two sources in COPD; (1) exogenous ROS, which
is caused by chronic inhalation of CS, as well as other environmental factors such as
carbonyls/aldehydes, CO, NO2, SO2 etc. [5,22], and (2) endogenous ROS, which predom-
inantly arises from damaged or dysfunctional mitochondria. Numerous studies have
implicated endogenous ROS as a causative feature of COPD, due to the fact that oxida-
tive stress fails to resolve in the absence of exogenous sources of ROS [23]. In line with
this, oxidative stress markers remain elevated in COPD patients who are ex-smokers and
never smokers [15,24], suggesting that endogenous ROS production may drive chronic
deterioration of the lungs.

Mitochondria are the main energy producers of the cell and are also known to be
one of the major sources of ROS (mtROS) [25]. MtROS are generated as by-products of
the electron transport chain (ETC) located on the inner mitochondrial membrane during
oxidative phosphorylation (OXPHOS) [26]. Electron leak from complex I and complex III
of the ETC lead to a partial reduction in oxygen to form superoxide (O−). The sequential
reduction in oxygen through the addition of electrons leads to the formation of several
types of ROS including superoxide (O2

−), hydrogen peroxide (H2O2), hydroxyl radical
(OH), hydroxyl ion (OH−), and nitric oxide (NO) [27,28], leading to protein, lipid, and
DNA damage.

Although normal levels of ROS play a crucial role in maintaining homeostatic pro-
cesses, such as autophagy, pathogen killing, and resolution of inflammation [23,29–31],
excessive ROS production causes damage to various cellular structures and has been
shown to exacerbate COPD progression. For instance, ROS can lead to extracellular matrix
(ECM) and blood vessel remodeling, mucus hypersecretion, as well as apoptosis [32,33]
and senescence [34,35]. ROS have also been shown to inactivate growth factors in COPD,
such as transforming growth factor beta (TGFβ), thus increasing fibrosis and activating
matrix metalloproteinases (MMP) [36]. Conversely, mtROS inhibition has been shown to
reduce airway hyperresponsiveness (AHR) and lung inflammation in mouse models of
COPD [25,37], suggesting it plays a central role in the disease pathogenesis.

Recent studies have implicated mtROS production as important regulators of immune
processes [38]. In line with this, endogenous ROS in the airways is primarily released from
inflammatory cells such as macrophages, neutrophils, as well as epithelial and endothelial
cells. Cigarette smoke (CS) triggers alveolar macrophages to produce ROS and subse-
quently releases mediators that attracts neutrophils and other inflammatory cells in the
lungs [15,39]. ROS has been suggested to initiate a cascade of inflammatory responses in
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the lungs via activation of transcription factors such as nuclear factor (NF)-κB and activator
protein (AP)-1, along with other signal transduction pathways including mitogen-activated
protein kinases (MAPK) and phospoinositide-3-kinase (PI3K), resulting in increased pro-
inflammatory factors [40–43]. In addition, oxidative stress in the lungs regulates nuclear
histone modification such as methylation, acetylation, and phosphorylation that is sug-
gested to cause chromatin remodeling, recruitment of basal transcription factors, and RNA
polymerase II, leading to increased pro-inflammatory responses [40–42]. Studies have
reported that CS-induced mtROS in COPD patients contributes to an alteration in mito-
chondrial fission and fusion proteins [44–46], increased oxidative stress gene signatures [47],
lower mitochondrial membrane potential and ATP levels [48], impaired mitophagy and
concomitant aggregation of damaged and dysfunctional mitochondria [35,49,50], and necro-
sis [51–53]. In line with this, immune cells in COPD exhibit altered metabolic function,
including glycolysis and fatty acid oxidation [54–58], which are important processes re-
quired for ATP production to fuel energy demanding immune functions [59]. Subsequently,
immune cells in COPD exhibit impaired immune functions, including phagocytosis, altered
viral response, and increased cytokine production [60–62], suggesting a self-perpetuating
cycle in which ROS exposure both initiates and maintains mitochondrial and immune cell
dysfunction in COPD, contributing to widespread destruction of the airways.

The primary mechanism of ROS elimination is via endogenous antioxidant defense
mechanisms, including antioxidant enzymes such as superoxide dismutases and catalase,
and via direct antioxidants such as vitamin E, and glutathione (GSH). These antioxidants
play a crucial role in reducing mtROS levels, by preserving the oxide/reduction equilibrium
in the cell. However, the excessive generation of ROS in COPD leads to an imbalance
between the rate of their formation and the antioxidant capacity. For instance, GSH is
reduced in COPD patients and smokers [63–65], and correlates with disease severity [66].
Genetic studies have identified an association between extracellular superoxide dismutase
(ECSOD) polymorphisms and the risk of developing COPD [67]. Furthermore, transcription
factors FOXO3a and NRF2 are reduced in COPD patients, leading to downregulation of
antioxidant genes [68,69]. Although some studies have reported increased antioxidant
levels in smokers [70], these levels were unable to prevent the development of COPD [71],
suggesting that these levels are either insufficient or easily overwhelmed by excessive ROS
production [72]. Thus, therapeutic strategies aimed at enhancing antioxidant production
and capacity are of great interest in COPD.

3. Non-Targeted Antioxidants in COPD

Due to the detrimental role that ROS plays in COPD pathogenesis, there is widespread
interest in the use of conventional (non-targeted) antioxidants as a strategy for reducing ox-
idative stress in COPD. These include thiol-based antioxidant compounds (N-acetylcysteine
(NAC) and carbocisteine), dietary antioxidants (vitamin C, vitamin E, resveratrol, and
flavonoids), NADPH oxidase (NOX)inhibitors, and other small molecule antioxidants
(reviewed in [15,73]). Indeed, non-targeted antioxidants have been shown to reduce in-
flammation, reduce oxidative stress, and attenuate cigarette smoke-induced changes in
lung function in animal models of COPD and cells isolated from COPD patients [74–76].
However, despite the beneficial effects of non-targeted antioxidants in pre-clinical models
of COPD, clinical trials in patients with COPD have produced contradictory results, and
few have made it into clinical practice. For instance, whereas several small studies of NAC
treatment in COPD patients reported reduced exacerbations, a larger clinical trial in 523 pa-
tients with COPD reported no reduction in exacerbations or disease progression following
NAC treatment [77]. Two other thiol-based compounds, carbocisteine and erdosteine, have
shown modest effects in reducing exacerbations in COPD patients [78–80]. However, these
reductions only applied to mild exacerbations (but not moderate or severe), and benefits
were only observed in conjunction with other treatments [81]. Studies investigating dietary
supplementation with antioxidants have reported correlation and association with lung
function parameters (reviewed by [82]), but largely reported no benefits on symptoms, lung
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function, or hospitalization for COPD [83]. Furthermore, dietary antioxidant supplementa-
tion has been linked to adverse effects and in some cases increases the risk of lung disease.
For instance, studies have reported that lung cancer incidence was increased following
β-carotene [84–86] and retinol supplementation [87]. Given the common environmental
and genetic risk factors underlying both lung cancer and COPD [88], these findings suggest
that these supplements may also exert harmful effects in COPD. This may be due to the
possibility that dietary antioxidant supplementation may interfere with the absorption,
transport, and metabolism of carotenoids and other micronutrients, thus increasing the
risk of lung cancer [87,88]. In particular, higher concentrations of antioxidants have been
suggested to be detrimental (reviewed in [89]). High-dose antioxidant exposure may inter-
fere with the normal physiological roles of ROS required for tissue homeostasis, including
autophagy, pathogen killing, and resolution of inflammation [23,29,30], or induce detrimen-
tal compensatory mechanisms, such as upregulation of mitogen-activated protein kinase
(MAPK) pathways [90]. Overall, non-targeted antioxidants show only modest benefits
in COPD patients, with no effect on lung function or disease progression, and high-dose
supplementation may be detrimental. Current use of non-targeted antioxidants in COPD
is hampered by their limited specificity in targeting ROS at its source, lack of knowledge
concerning the optimal dose, and possible interference with physiologic processes, thus
limiting their use in clinical settings.

4. Mitochondria-Targeted Antioxidants in COPD

Given that non-targeted antioxidants have largely failed to produce clinically relevant
benefits in COPD patients, research is ongoing to develop novel mitochondria-targeted
antioxidants (MTAs). These antioxidants are conjugated with a carrier, such as lipophilic
cations, liposomes, or peptides, which enable the targeted delivery of bioactive ingredients
into the mitochondria [91]. This mitochondria-specific transport enables the accumulation
of high concentrations of antioxidants at the source of ROS generation, thus allowing for
optimized dosing and specificity. Broadly, MTAs can be divided into four groups that are
as follows: lipophilic cation-linked MTAs; liposome-encapsulated MTAs; peptide-based
MTAs; and Manganese (Mn) Porphyrin-based MTAs [91] (Table 1). In this section, we will
discuss currently available MTAs and their therapeutic potential for patients with COPD.

Table 1. Mitochondria-targeted antioxidants and their mode of action.

Type Mode of Action

Lipophilic cation-linked MTAs

Different antioxidants such as Ubiquinone,
plastoquinone, piperidine nitroxides, and

α-tocopherol are linked to lipophilic cations such as
TPP. The positive charge of lipophilic cations results in
the preferential accumulation of these antioxidants in

mitochondria.

Peptide-Based MTAs

These are small, positively charged peptides with
alternating aromatic residues and basic amino acids.

The tyrosine or dimethyl-tyrosine residues present in
these peptides are responsible for free radical

scavenging properties.
Mn (III) Porphyrin-based MTAs These are superoxide dismutase mimics.

Liposome-encapsulated MTAs

Different antioxidants such as quercetin, resveratrol,
curcumin, etc. are encapsulated in liposomes. This

results in increased cellular uptake through
micropinocytosis and mitochondrial transfer through

membrane fusion.

4.1. Lipophilic Cation-Linked MTAs

The mitochondrial membrane potential is generated by mitochondrial complexes in
the inner mitochondrial membrane (IMM) and is required for oxidative phosphorylation
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and ATP generation. In general, mitochondria maintain a strong negative potential, approx-
imately −180 mv, which makes the inner mitochondrial membrane impermeable to the
passive diffusion of compounds [92]. Interestingly, this physical property of the IMM has
been utilized to develop different lipophilic cation-linked MTAs [93]. A lipophilic cation
such as triphenyl phosphonium (TPP) is conjugated with the selected target antioxidant.
TPP, being lipophilic and positively charged, quickly passes through the lipid bilayer and
is preferentially accumulated in the negatively charged mitochondrial matrix [94]. To date,
multiple lipophilic cation-linked MTAs have been developed. The following are the most
studied.

4.1.1. MitoQ: MitoQ Is a Conjugation of TPP and Ubiquinone

Mitochondrial ubiquinone is a respiratory chain component in the lipid core of the
IMM. It accepts two electrons from complexes I or II and is reduced to ubiquinol [95].
Multiple studies have shown that the ubiquinone pool is depleted with aging and under
diseased conditions, and supplementation with ubiquinone improves mitochondrial func-
tion, reduces free radical production, and decreases lipid peroxidation [96–98]. However,
unconjugated ubiquinone has low water solubility making its cellular uptake slow. Conju-
gating TPP leads to rapid accumulation of ubiquinone in mitochondria [99], thus reducing
mitochondrial oxidative stress.

Several in vitro studies have revealed protective effects of MitoQ using cells from
COPD patients, or in response to cigarette smoke extract (CSE) exposure. MitoQ has been
found to reduce CSE-induced ROS levels and attenuate autophagy in human umbilical vein
endothelial cells (HUVECs) [100] and Beas-2B cells [52], potentially via inhibiting PINK1
stabilization and consequent DRP1 phosphorylation [52]. MitoQ restored endothelial bar-
rier integrity, as well as decreased inflammation by the NF-κB and NLRP3 inflammasome
pathways in endothelial cells [100]. Both MitoQ and Tiron attenuated the proliferation of
airway smooth muscle (ASM) cells from human patients with COPD, and Tiron further
attenuated cytokine secretion in these cells [25].

In line with these findings, pre-clinical studies using animal models of COPD have
reported therapeutic effects of MTAs in vivo. For instance, the treatment of mice with
MitoQ reversed airway hyperresponsiveness (AHR), reduced total BAL cell counts, restored
mitochondrial membrane potential, and reduced ROS levels in an ozone-induced model
of COPD [25]. Another recent study showed that treatment of mice with MitoTEMPO
reduced lung inflammation scores, attenuated inflammatory cytokine levels, and reduced
serum 8-OHdG and mtROS levels in ozone-exposed mice [37]. In addition, this same study
showed that MitoTEMPO treatment inhibited the expression of mitochondrial complex II
and IV in lung tissue, and also inhibited the expression of mitochondrial fission/fusion-
related proteins DRP1 and MFF, as well as NLRP3. However, no effect of MitoTEMPO on
lung function was observed. Taken together, promising data from both in vitro and in vivo
studies suggest that MTA exert beneficial effects in COPD, and the translational potentials
of MTAs in clinical trials warrants further investigation (Figure 1).

MitoQ is currently the only commercially available MTA (available as a dietary sup-
plement) and has shown significant success in Phase II clinical trials for patients with
hypertension [101], Parkinson’s [102], and liver disease [103]. In addition, MitoQ has been
shown to improve motor function [104] and vascular function in healthy older adults [105].
A 2019 study by Kwon and colleagues reported protective effects of MitoQ on measures
of vascular function and hyperemic response to both single and continuous passive leg
movement in COPD patients [106], suggesting that MitoQ is a promising approach to com-
bat cardiovascular disease in patients with COPD. However, no effects on exacerbations
or lung function were reported. Two clinical studies investigating the effects of MitoQ in
COPD patients are currently in progress [107,108], and there are additional ongoing clinical
studies investigating MitoQ in other lung diseases, including asthma (NCT04026711), cystic
fibrosis (NCT02690064), COVID-19 (NCT05373043, NCT05381454), and respiratory viral
infections (NCT05381454) (Table 2). The results of these studies will be highly informative
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about the potential therapeutic efficacy of MTAs in COPD moving forward. One of the
biggest challenges in clinical trials using MitoQ is establishing the optimal drug dose and
standardizing treatment methodology. Thus, in current and ongoing clinical studies of
MitoQ in COPD, establishing standardized dosing will be of significant clinical importance.

Antioxidants 2023, 12, x FOR PEER REVIEW 6 of 17 
 

 

Figure 1. Therapeutic effects of mitochondria-targeted antioxidants in COPD. Endogenous expo-

sure to oxidants triggers endogenous mtROS production in COPD. In vitro studies using cells from 

COPD patients, or in response to cigarette smoke (CS) exposure, have reported protective effects on 

mitochondrial ROS levels, fission and fusion, mitophagy, MMP, as well as inflammation and cyto-

kine secretion. Abbreviations: ROS: reactive oxygen species; mtROS: mitochondrial ROS; MMP: mi-

tochondrial membrane potential. 

MitoQ is currently the only commercially available MTA (available as a dietary sup-

plement) and has shown significant success in Phase II clinical trials for patients with hy-

pertension [101], Parkinson’s [102], and liver disease [103]. In addition, MitoQ has been 

shown to improve motor function [104] and vascular function in healthy older adults 

[105]. A 2019 study by Kwon and colleagues reported protective effects of MitoQ on 

measures of vascular function and hyperemic response to both single and continuous pas-

sive leg movement in COPD patients [106], suggesting that MitoQ is a promising ap-

proach to combat cardiovascular disease in patients with COPD. However, no effects on 

exacerbations or lung function were reported. Two clinical studies investigating the ef-

fects of MitoQ in COPD patients are currently in progress [107,108], and there are addi-

tional ongoing clinical studies investigating MitoQ in other lung diseases, including 

asthma (NCT04026711), cystic fibrosis (NCT02690064), COVID-19 (NCT05373043, 

NCT05381454), and respiratory viral infections (NCT05381454) (Table 2). The results of 

these studies will be highly informative about the potential therapeutic efficacy of MTAs 

in COPD moving forward. One of the biggest challenges in clinical trials using MitoQ is 

establishing the optimal drug dose and standardizing treatment methodology. Thus, in 

current and ongoing clinical studies of MitoQ in COPD, establishing standardized dosing 

will be of significant clinical importance. 

Table 2. Mitochondria-targeted antioxidants in clinical trials for chronic lung disease. 

Intervention Condition Effects Status Phase 

Clinical-

Trial.gov Identi-

fier 

Ref 

MitoQ COPD N/A Ongoing N/A NCT05605548 [107] 

MitoQ COPD N/A Ongoing 1 NCT02966665 [108] 

MitoQ COPD • Enhanced FMD Completed   [106] 

Figure 1. Therapeutic effects of mitochondria-targeted antioxidants in COPD. Endogenous exposure
to oxidants triggers endogenous mtROS production in COPD. In vitro studies using cells from
COPD patients, or in response to cigarette smoke (CS) exposure, have reported protective effects
on mitochondrial ROS levels, fission and fusion, mitophagy, MMP, as well as inflammation and
cytokine secretion. Abbreviations: ROS: reactive oxygen species; mtROS: mitochondrial ROS; MMP:
mitochondrial membrane potential.

Table 2. Mitochondria-targeted antioxidants in clinical trials for chronic lung disease.

Intervention Condition Effects Status Phase ClinicalTrial.gov
Identifier Ref

MitoQ COPD N/A Ongoing N/A NCT05605548 [107]
MitoQ COPD N/A Ongoing 1 NCT02966665 [108]

MitoQ COPD • Enhanced FMD
• Enhanced PLM and LBF

Completed [106]

MitoQ Asthma N/A Ongoing 1 NCT04026711 [109]
MitoQ CF N/A Ongoing N/A NCT02690064 [110]
Mito-Q + Exercise COVID-19 N/A Ongoing N/A NCT05373043 [111]
MitoQ COVID-19 N/A Ongoing 1/2 NCT05381454 [110]

MitoQ Respiratory Viral
Infections N/A Ongoing 1/2 NCT05381454 [110]

Abbreviations: FMD: flow-mediated vasodilation; PLM: passive leg movement; LBF: leg blood flow; CF: cystic
fibrosis.

4.1.2. SkQ1 and SKQR1

SkQs are a subclass of MTAs consisting of plastoquinone, an electron carrier and an-
tioxidant, conjugated with TPP to obtain SkQ1 or its analog plastoquinonyl decylrhodamine
19 (SkQR1). Studies have shown that plastoquinone may exert improved antioxidant effects
compared to ubiquinone. SkQ1 exerts antioxidant effects at lower concentrations than
MitoQ in vitro [112]. Further, the “window” between anti- and pro-oxidant concentrations
of SkQ1 and SkQR1 is much larger than MitoQ, thus reducing the risk of off-targeted
effects [113]. Treatment with SkQ1 significantly ameliorated defective phagocytosis in
monocyte-derived macrophages (MDMs) generated from COPD patients [114]. A phase 2
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clinical trial has already been conducted with SKQ1 against Keratoconjunctivitis Sicca. The
study shows that SkQ1 treatment improves the functional state of the cornea by reducing
dry eye symptoms such as dryness, burning, grittiness, and blurred vision [115,116]. There
are currently no clinical trials on SkQ1 or SKQR1 in COPD.

4.1.3. MitoTEMPOL and MitoTEMPO

MitoTEMPO and MitoTEMPOL are the piperidine nitroxides 4-hydroxy-2,2,6,6-
tetramethylpiperidine-1-oxy (TEMPOL) and 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO)
linked to TPP [117]. In vitro studies have shown that these compounds are intercon-
verted into the nitroxide and the oxoammonium forms and act as superoxide dismutase
mimic [118]. Growing reports suggest that treatment with MitoTEMPO or MitoTEMPOL
reduces free radical production, lipid peroxidation, oxidative stress, and inflammation in a
wide range of different disorders [119–121]. MitoTEMPO has been shown to exert protec-
tive effects in vitro by reducing CSE-induced ROS levels and attenuating mitochondrial
fragmentation in HBECs [45] and human pulmonary artery smooth muscle cells [122], as
well as reducing neutrophil extracellular traps (NETs) formation in polymorphonuclear
neutrophils isolated from the peripheral blood of COPD patients [123].

4.1.4. MitoVitE

MitoVitE is a conjugate of vitamin E (Vit-E) attached to a TPP cation [124]. Vit-E, or
α-tocopherol, is a potent antioxidant in the IMM. The phenolic group of the chromanol
ring present in vit-E donates hydrogen to the free peroxyl and alkoxyl radicals generated
during lipid peroxidation and oxidative phosphorylation, thus acting as a free radical
scavenger [125,126]. The antioxidant and anti-inflammatory potential of MitoVitE has
been reported in preclinical studies in different disorders, including pneumonia-related
sepsis [127], and neuropathic pain [128], but no studies have yet been conducted in COPD.

4.2. Peptide-Based MTAs

Mitochondria-targeted peptides, also known as SS (Szeto–Schiller) peptides, are novel
antioxidants that target mitochondria-associated oxidative stress. Structurally, they consist
of alternating aromatic residues and basic amino acids (aromatic-cationic peptides). The
tyrosine or dimethyl-tyrosine residues present in these peptides are responsible for free
radical scavenging properties. SS-01 (H-Tyr-D-Arg-Phe-Lys-NH2), 2. SS-02 (H-Dmt-D-Arg-
Phe-Lys-NH2), SS20 (H-Phe-D-Arg-Phe-Lys-NH2), and SS31 (H-D-Arg-Dmt-Lys-Phe-NH2)
are the different types of SS peptides that are generated, and SS31 is most studied among
them [129]. The main advantages of SS peptides over the TPP-like MTAs are that their
cellular uptake is energy independent, and their uptake in mitochondria is independent of
MMP [130]. A large body of evidence shows that SS31 treatment reduces ROS production,
improves mitochondrial functioning, and prevents mitochondrial structural changes and
phospholipid oxidation in different disorders [131–134]. SS-31 has also been shown to be
safely tolerated and exert protective effects in phase I clinical trials of patients with heart
failure [135] and phase II trials of reperfusion injury patients [136]. Despite this, there are
currently no clinical trials on peptide-based MTAs in COPD patients.

4.3. Mn (III) Porphyrin-Based MTAs

Cationic Mn (III) N-substituted pyridyl porphyrins are superoxide dismutase mim-
ics known to alleviate the superoxide stress. MnTE-2-PyP5+, MnTnHex-2-PyP5+, and
MnTnBuOE-2-PyP5+ are the most important Mn (III) Porphyrins (MnPs) that have been
studied. Studies show that the positive charge and the lipophilic alkyl chains direct the
preferential accumulation of these compounds in mitochondria [137]. In addition to their
role as free radical scavengers, MnPs are known to modulate the activity of transcription
factors such as nuclear factor κB, nuclear factor E2-related factor 2, and hypoxia-inducible
factor [138–140]. Clinical trials are already ongoing utilizing MnTnBuOE-2-PyP5+ against
Squamous Cell Carcinoma and Anal Cancer (NCT03386500).
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4.4. Liposome-Encapsulated MTAs

Liposomes are lipid bilayer membrane vesicles used as nanocarriers for drug or
bioactive substance delivery to cells. The advantage of liposome encapsulation is that it
does not alter the activity or structure of the bioactive substance to be delivered. Liposome-
encapsulated MTAs enter the cells through micropinocytosis. Following entry through
macropinosomes disruption, mitochondrial membrane fusion occurs, and the antioxidant
is delivered to the mitochondrial matrix [92,141]. So far, different antioxidants such as
quercetin, resveratrol, curcumin etc., have been liposome encapsulated and tested against
various pathological conditions [142–144], and improved therapeutic effects of encapsulated
antioxidants compared to non-encapsulated ones have been reported [145,146]. However,
to date, no studies have tested the therapeutic efficacy of liposome-encapsulated MTAs
in COPD.

5. Non-Targeted versus Mitochondria-Targeted Antioxidants

In general, MTAs are thought to confer greater protection against oxidative stress
compared to untargeted antioxidants. For instance, Kolosova and colleagues compared the
effects of the MTA SkQ1 with NAC on markers of aging in senescence-accelerated OXYS
rats and found that SkQ1 prevented age-related decline to a greater degree compared to
NAC, despite the higher dose of NAC used [141]. Similarly, Jauslin and colleagues reported
that MitoQ and MitoVitE were several hundredfold more potent in protecting Friedreich
Ataxia fibroblasts against oxidative stress compared to the untargeted antioxidants Trolox
and idebenone [147]. Consistent with this, Oyewole and colleagues reported that MitoQ
and Tiron elicited greater protection against UVA and H2O2-induced mitochondrial DNA
(mtDNA) damage in human dermal fibroblasts, compared to nontargeted antioxidants
(resveratrol, curcumin, and N-acetyl cysteine) [148]. The reason for the superior effects of
MTAs over nontargeted antioxidants has largely been attributed to their efficient pharma-
cokinetics, better absorption rate, and specific targeting of ROS at its source, thus allowing
for more optimal dosing and less non-specific effects [91,145,149].

6. Limitations and Future Perspectives for MTAs in COPD

Despite the promising results from MTA use in pre-clinical models of COPD, these
compounds exhibit several limitations, which may hamper their translational potential.
For instance, the method by which mitochondria are targeted by MTAs is important as
it can produce potential off target effects. TPP, being lipophilic and positively charged,
quickly passes through the lipid bilayer and is preferentially accumulated in the negatively
charged mitochondrial matrix [94]. However, the TPP moiety of MTAs has been shown to
inhibit oxidative phosphorylation independent of antioxidant effects [146], and both the
TPP-conjugated MTAs MitoQ and SkQ1 were reported to impair mitochondrial function
in vitro [94,150]. It should be noted that the concentrations of MTAs used in these studies
were significantly larger than those associated with beneficial effects in vivo, and thus their
potential effects in disease models are unclear. Since the TPP-conjugated MTAs MitoQ and
SKQ1 can also impair mitochondrial function at higher concentrations, it is important to
understand their dose-response effects.

Paradoxically, these types of carriers, which otherwise are essential to facilitate MTA
accumulation inside the mitochondria, can also impair their uptake in damaged cells.
Targeting of the mitochondria using lipophilic cations requires the presence of an intact
MMP for mitochondrial localization [151]. However, it is well established that MMP is
reduced in a range of cell types in COPD [152,153]. This can result in MTAs selectively
targeting healthy cells where the MMP is intact instead of cells involved in the aberrant
production of mtROS. This could destabilize mtROS homeostasis required for healthy cell
function and have unintended detrimental effects.

To prevent the adverse effects of the TPP-conjugated MTAs, newer approaches in
targeting mitochondria have been investigated that do not rely on exploiting the mitochon-
drial potential. For instance, peptide-based MTAs such as SS-31 have been developed,
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using Szeto–Schiller (SS) tetrapeptides, whose cellular uptake is energy independent and
does not rely on MMP [130]. Nonetheless, as the TPP-based compound MitoQ is the most
widely studied MTA and is currently the only compound being tested in clinical trials of
COPD, further studies are needed to compare the safety and efficacy of SS-31 with other
MTAs, such as MitoQ. In addition, alternate approaches to targeting mitochondria have
been suggested, such as liposome-encapsulated MTAs and polymer-based nanocarriers
and nanoparticles [149,154,155].

Another potential limitation of MTAs that has thus far not been studied in the context
of COPD is their interference with physiological ROS functions. A commonly reported issue
with nontargeted antioxidant use is that they may also impair the homeostatic functions
of ROS, such as autophagy, pathogen killing, and resolution of inflammation [23,29–31].
Furthermore, heterogenous ROS are observed in COPD, and specific ROS subtypes may
play a larger role in detrimental disease features. Thus, the generation of novel MTAs
directed at targeting specific detrimental ROS subpopulations is a promising avenue for
drug development.

MTAs are often dispersed throughout the body, despite the fact that oxidative damage
is predominantly localized to the lung in COPD. Consequently, concentrations of MTAs
in the lung of COPD patients may be inadequate, and optimal dosing may be difficult to
achieve. Again, nanocarriers may present a promising way to combat these limitations,
as MTAs can be loaded into nanosized drug carriers that can be engineered to selectively
accumulate in specific disease sites/tissues [156].

Finally, obtaining conclusive evidence from clinical trials in COPD has been historically
limited by inconsistent methodology. As outlined previously, there are a range of known
causes of COPD that produce different phenotypes of disease [4], and often studies exhibit
differences in treatment doses, administration, and disease stage. Future studies and trials
should attempt to minimize uncertainty by addressing these issues and targeting cohorts
with similar COPD phenotypes. Overall, pre-clinical data using animal and cellular models
suggest that MTAs exert beneficial effects in COPD, and MitoQ has been shown to be safely
tolerated and improves vascular dysfunction in COPD patients. However, clinical studies
testing MTAs are still in phase 1, and thus further testing is needed to ascertain the clinical
significance of these compounds for COPD.

7. Conclusions

MTAs have shown promise as effective therapeutics in in vitro and ex vivo models as
well as pre-clinical animal models of COPD and warrant further investigation in clinical
trials. Currently, human clinical trials on MTAs in COPD and other chronic lung diseases
are still ongoing and their findings will provide critical information on the future use of
MTAs as a treatment for COPD. Alongside these trials, various issues should be addressed,
including a better understanding of the most relevant oxidation pathways in COPD, stan-
dardized dosing, and the mechanistic role of MTAs in physiologic ROS processes. Thus, to
fully capitalize on the potential therapeutic benefits of MTAs, more translational research
in human patients with COPD is required to test the feasibility of transitioning from bench
to bedside.
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