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Abstract: Status epilepticus (SE) evokes leukocyte infiltration in the frontoparietal cortex (FPC) without
the blood-brain barrier disruption. Monocyte chemotactic protein-1 (MCP-1) and macrophage inflam-
matory protein-2 (MIP-2) regulate leukocyte recruitments into the brain parenchyma. Epigallocatechin-
3-gallate (EGCG) is an antioxidant and a ligand for non-integrin 67-kDa laminin receptor (67LR).
However, it is unknown whether EGCG and/or 67LR affect SE-induced leukocyte infiltrations in
the FPC. In the present study, SE infiltrated myeloperoxidase (MPO)-positive neutrophils, as well
as cluster of differentiation 68 (CD68)-positive monocytes in the FPC are investigated. Following
SE, MCP-1 was upregulated in microglia, which was abrogated by EGCG treatment. The C–C motif
chemokine receptor 2 (CCR2, MCP-1 receptor) and MIP-2 expressions were increased in astrocytes,
which were attenuated by MCP-1 neutralization and EGCG treatment. SE reduced 67LR expression
in astrocytes, but not endothelial cells. Under physiological conditions, 67LR neutralization did not
lead to MCP-1 induction in microglia. However, it induced MIP-2 expression and extracellular signal-
regulated kinase 1/2 (ERK1/2) phosphorylation in astrocytes and leukocyte infiltration in the FPC.
Co-treatment of EGCG or U0126 (an ERK1/2 inhibitor) attenuated these events induced by 67LR neu-
tralization. These findings indicate that the EGCG may ameliorate leukocyte infiltration in the FPC by
inhibiting microglial MCP-1 induction independent of 67LR, as well as 67LR-ERK1/2-MIP-2 signaling
pathway in astrocytes.
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1. Introduction

The brain is in part isolated from the systemic immune system by the blood-brain
barrier (BBB). Therefore, microglia generally act as the primary immune cells in the brain
parenchyma. Under pathophysiological conditions, activated microglia lead to blood-
derived leukocyte infiltration by releasing various cytokines and chemokines. Infiltrating
leukocytes further exacerbate secondary local inflammation by generating reactive oxygen
species, proteolytic enzymes and cytokines/chemokines [1–5].

BBB disruption is a crucial step in the pathogenesis of several neuroinflammatory
diseases in the brain [6]. Indeed, status epilepticus (SE), prolonged and uncontrolled
seizures, results in the infiltration of neutrophil and monocyte in the rat piriform cortex
(PC), accompanied by severe vasogenic edema [7]. Unlike the PC, SE evokes leukocyte
infiltration in the frontoparietal cortex (FPC) without BBB breakdown. In FPC, SE induces
leukocyte infiltration through inductions of monocyte chemotactic protein-1 (MCP-1) in mi-
croglia and macrophage inflammatory protein-2 (MIP-2) in astrocytes, in an interleukin-1β
(IL-1β)-independent manner [8–10]. Therefore, the FPC is a suitable region to investi-
gate the underlying mechanisms of leukocyte infiltration unaffected by altered vascular
permeability following SE.
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Epigallocatechin-3-gallate (EGCG) is an antioxidant and an anti-inflammatory sub-
stance. EGCG attenuates immune cell infiltration in an experimental autoimmune en-
cephalitis model, by inhibiting the p38 mitogen-activated protein kinase (p38 MAPK) and
nuclear factor-κB (NF-κB) activity [11–15]. Furthermore, EGCG is a ligand of non-integrin
67 kDa laminin receptor (67LR) [16,17]. This receptr is composed of a 37 kDa precursor
and expresses in some neurons, astrocyte and endothelial cells [10,16–20]. It modulates
extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK and NF-κB signaling path-
ways [21–23]. Considering the requirement of p38 MAPK and NF-κB for SE-induced
monocyte infiltration in the FPC [9,10], it is likely that EGCG and/or 67LR may affect
SE-induced leukocyte infiltration, which is largely unknown. Therefore, the present study
was conducted to investigate whether EGCG influences leukocyte infiltration through
67LR-mediated pathways.

Here, we demonstrate that SE infiltrated myeloperoxidase (MPO)-positive neutrophil,
as well as cluster of differentiation 68 (CD68)-positive monocytes in the FPC. Following SE,
microglia showed MCP-1 upregulation, which was abrogated by EGCG treatment. Astro-
cytes exhibited increased C–C motif chemokine receptor 2 (CCR2, MCP-1 receptor) and MIP-
2 expressions, concomitant with reduced 67LR expression. These astroglial responses were
attenuated by MCP-1 neutralization and EGCG treatment. Under physiological condition,
67LR neutralization increased ERK1/2 phosphorylation and MIP-2 expression in astrocytes,
and resulted in MCP-1-independent leukocyte infiltration. These 67LR neutralization-
induced events were abolished by EGCG and U0126 (an ERK1/2 inhibitor). Therefore,
these findings indicate that MCP-1 may regulate CCR2-67LR-ERK1/2-MIP-2 signaling
pathway in astrocytes during leukocyte infiltration, and that EGCG may ameliorate neu-
roinflammation in 67LR-dependent (in astrocyte) and -independent (in microglia) manners.

2. Materials and Methods
2.1. Experimental Animals and Chemicals

Male Sprague-Dawley rats (7 weeks old, 200–220 g), purchased from Daehan biolink
(Umseong, Chungcheongbuk-do, South Korea), were used in all experiments. Animals were
housed under a 12 h dark/light cycle with free access to food and water. All experimental
procedures were approved by the Institutional Animal Care and Use Committee of Hallym
University (Hallym 2021-3, approval date: 17 May 2021). All reagents were obtained from
Sigma-Aldrich (St. Louis, MO, USA), except as noted.

2.2. Surgical Procedures and SE Induction

Rats were implanted with a brain infusion kit 1 (Alzet, Cupertino, CA, USA) into the right
lateral ventricle (coordinates: 1 mm posterior; 1.5 mm lateral; 3.5 mm depth) under Isoflurane
anesthesia (3% induction, 1.5–2% for surgery, and 1.5% maintenance in a 65:35 mixture of
N2O:O2). Thereafter, an Alzet 1007D osmotic pump (Alzet, Cupertino, CA, USA) containing
(1) vehicle, (2) EGCG (50 µM), (3) control anti-mouse IgG (Abcam, #ab37355, Cambridge,
UK, 50 µg/mL) or (4) anti-MCP-1 IgG (Abcam, #ab25124, Cambridge, UK, 50 µg/mL) was
connected to an infusion kit and infused for over 7 days. The infusion needle was secured
to the exposed skull with a dental acrylic. The correct location of the infusion needle into
the ventricle was confirmed during brain sections. In pilot and previous studies [17], each
treatment did not evoke neurological adverse effects and alter the seizure susceptibility and
its severity in response to pilocarpine. Two days after surgery, animals were treated with
LiCl (127 mg/kg, i.p.). The next day, 20 min before pilocarpine administration, atropine
methylbromide (5 mg/kg i.p.) was injected. Thereafter, animals were given pilocarpine
(30 mg/kg, i.p.). Two hours after SE onset, diazepam (Valium; Hoffmann-la Roche, Neuilly-
sur-Seine, France; 10 mg/kg, i.p.) was injected to cease seizure activity and repeated, as
needed. Control animals received saline substituted for pilocarpine.
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2.3. 67LR Neutralization

Animals were implanted with a brain infusion kit (Alzet, Cupertino, CA, USA) into
the right lateral ventricle by the same method described above. Thereafter, an Alzet 1003D
osmotic pump (Alzet, Cupertino, CA, USA) containing (1) control anti-rabbit IgG (Abcam,
#ab37415, Cambridge, UK, 50 µg/mL) + vehicle, (2) anti-67LR IgG (Abcam, #ab133645,
UK, 50 µg/mL) + vehicle, (3) anti-67LR IgG (50 µg/mL) + EGCG (50 µM) or (4) anti-67LR
IgG (50 µg/mL) + U0126 (25 µM) was connected to an infusion kit and infused for over
3 days [19,20,24].

2.4. Tissue Preparation and Immunohistochemistry

Since the neutrophil and monocyte infiltrations peaked in the PFC at 2–3 days and
3–4 days after SE, respectively [8–10], we chose 3 days after SE as the ideal timepoint to
evaluate the effect of EGCG on leukocyte infiltration. Three days after SE or 67LR infusion,
animals were administered urethane anesthesia (1.5 g/kg, i.p.) and perfused with normal
saline followed by 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). The brains
were collected in the same fixative overnight and 30 µm thick coronal sections were made
using a cryostat. Sections were blocked with 3% bovine serum albumin and subsequently
incubated with a cocktail solution containing isolectin B4 (IB4) or primary antibodies
(Table 1) overnight at room temperature. Thereafter, sections were reacted with Brilliant
Violet-, Cy2- or Cy3-conjugated secondary antibodies (for anti-sera) or streptavidin (for
IB4). A negative control test was performed with pre-immune serum in place of the primary
antibody. Experimental procedures in this study were carried out under the same conditions
and in parallel. The random-selected areas (1× 105 µm2), approximately−3.0–3.6 mm from
the bregma, were selected based on the rat brain in stereotaxic coordinates [25]. Thereafter,
the number of infiltrating neutrophils and monocytes was counted, and SMI-71 fluorescent
intensity was measured using AxioVision Rel. 4.8 and the ImageJ software (n = 7 rats
in each group). The fluorescent intensity of MCP-1, MIP-2, 67LR or p-ERK1/2 was also
measured in randomly selected 5–6 cells from each animal. Briefly, images were captured
(gain value = 1) and digitally separated into green, red or blue panels. Each image was
converted to black and white, and the background staining was subtracted automatically.
Thereafter, each signal was normalized by setting the threshold level and represented as
the number of 256 grayscale. Manipulation of the microscope was restricted to automatic
exposure time and threshold adjustments.

Table 1. Primary antibodies used in the present study.

Antigen Isotype Hose Manufacturer
(Catalog Number) Dilution

67LR IgG Rabbit Abcam
(ab133645) 1:100

CCR2 IgG Rabbit Abcam
(ab227015) 1:100

CD68 IgG Mouse Abcam
(ab31630) 1:100

GFAP IgG Mouse
Millipore, Burlington,

MA, USA
($MAB3402)

1:4000

IB4 lectin -
Vector Laboratories, Inc.

Newark, CA, USA
(B-1205)

1:200

MCP-1 IgG Mouse Abcam
(ab25124) 1:100
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Table 1. Cont.

Antigen Isotype Hose Manufacturer
(Catalog Number) Dilution

MIP-2 IgG Rabbit
Invitrogen, Waltham,

MA, USA
(ARC1074)

1:100

MPO IgG Rabbit
Thermo Scientific,

Waltham, MA, USA
(#RB-373-A)

1:100

NeuN IgG Guinea pig Millipore
(#3238431) 1:1000

NF-κB p65 IgG Rabbit Abcam
(ab16502) 1:2000 (WB *)

p-ERK1/2 IgG Rabbit Millipore
(#05-767R) 1:100

p-NF-κB p65 S276 IgG Rabbit Abcam
(ab30623) 1:1000 (WB *)

SMI-71
(endothelial
BBB marker)

IgM Mouse
Covance, Princeton,

NJ, USA
(#SMI-71R)

1:1000

β-actin IgG Mouse
Sigma, St. Louis,

MO, USA
(#A5316)

1:5000 (WB *)

* WB, Western blot.

2.5. Western Blot and Quatitative Real-Time PCR (qRT-PCR)

Three days after SE and 67LR IgG infusion, animals were decapitated and the FPC
was rapidly obtained. Western blot was performed by the standard methods. Briefly,
the proteins were separated by electrophoresis and transferred to nitrocellulose mem-
branes. After the blocking, membranes were incubated with primary antibody (Table 1).
After further reaction with peroxidase-conjugated secondary antibody followed by ECL
solution, immunobands were detected and quantified with the ImageQuant LAS4000 sys-
tem (GE Healthcare Korea, Seoul, South Korea). The density of the immunobands was
calibrated with with β-actin. The ratio of phospho-protein to total protein was also
measured. For qRT-PCR, brain tissues were homogenized, and the total RNA was ex-
tracted using Trizol Reagents (Thermo Fisher Scientific Korea, Seoul, South Korea). Total
RNA was reverse-transcribed into first-strand cDNA using the PrimerScript 1st strand
cDNA synthesis kit (Takara, Shiga, Japan). Quantification of mRNA expression was per-
formed in triplicate using a SYBR Green SuperMix (Bioneer, Taejon, South Korea) and
with the MyiQ Single-Color Real-Time PCR Detection System (Bioneer, Taejon, South
Korea). Primer sequences were 5′-GTGCTGACCCCAATAAGGAA-3′ (forward primer
for rat MCP-1) and 5′-TGAGGTGGTTGTGGAAAAGA-3′ (reverse primer for rat MCP-
1); 5′-TGAAGTTTGTCTCAACCCTGAAGCC-3′ (forward primer for rat MIP-2) and 5′-
AGGTCAGTTAGCCTTGCCTTTGTTC-3′ (reverse primer for rat MIP-2); and 5′-TGGAG
TCTACTGGCGTCTT-3′ (forward primer for rat GAPDH) and 5′-TGTCATATTTCTCGTG
GTTCA-3′ (reverse primer for rat GAPDH). All primers were purchased from Bioneer
(Taejon, South Korea). After initial denaturation at 95 ◦C for 10 min, 50 cycles of primer
annealing and elongation were conducted at 55 ◦C for 45 s, followed by denaturation at
95 ◦C for 1 s. qRT-PCR data for MCP-1 and MIP-2 were normalized to GAPDH determined
from the same experiment.
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2.6. Data Analysis

Data were analyzed using a Mann–Whitney test or Kruskal–Wallis test, followed by
Dunn–Bonferroni post hoc comparison. A p-value of less than 0.05 was considered significant.

3. Results
3.1. EGCG Attenuates SE-Induced Leukocyte Infiltration in the FPC

First, we investigated whether EGCG treatment affects leukocyte infiltration in the FPC
following SE. SE did not alter the BBB (SMI-71) integrity in the FPC (Z = 0.513, p = 0.608,
n = 7 rats, respectively, Mann–Whitney test; Figure 1A,B). In control (non-SE) animals,
MPO-positive neutrophils were undetectable in the parenchyma of the FPC (Figure 1A).
Following SE, the number of MPO-positive neutrophils was ~41 cells/105 µm2 in the FPC
of vehicle-treated rats. EGCG attenuated neutrophil infiltration to ~17 cells/105 µm2 in
this region (Z = 3.130, p = 0.002, n = 7 rats, respectively, Mann–Whitney test; Figure 1A,C).
Similar to MPO-positive neutrophils, CD68-positive monocytes were rarely observed in
the FPC of control animals (Figure 1A). Following SE, round-, spheroid- and ramified-
shaped CD68-positive monocytes were detected in the FPC (Figure 1A). The number of
CD68-positive monocytes was ~51 cells/105 µm2 in the FPC of vehicle-treated rats. EGCG
attenuated monocyte infiltration to ~23 cells/105 µm2 in this region (Z = 3.137, p = 0.002,
n = 7 rats, respectively, Mann–Whitney test; Figure 1A,C). Furthermore, the shape of the
infiltrating monocytes was round or spheroid, rather than ramified (Figure 1A). These
findings indicate that EGCG may ameliorate leukocyte infiltration in the FPC following
SE. Considering that blood-derived monocytes replace the resident microglia [8,26,27], our
findings also suggest that EGCG may inhibit monocyte transformation to microglia.

3.2. EGCG Ameliorates MCP-1 and MIP-2 Expression in the FPC following SE

MCP-1 is a chemokine to recruit monocytes into the brain parenchyma [28–31]. Further-
more, MCP-1/CCR2 signaling regulates MIP-2 expression that is required for neutrophil
infiltration [32,33]. Following SE, MCP-1 is induced in microglia, while MIP-2 is detected
in astrocytes and neurons in the FPC [8]. Therefore, we validated the effect of EGCG on
SE-induced MCP-1, CCR2 and MIP-2 inductions in the FPC following SE.

In control animals, MCP-1 expression was rarely detected in the FPC (Figure 2A).
Following SE, MCP-1 expression was observed in most hypertrophic and amoeboid
isolectin B4 (IB4)-positive microglia (an indicative of activated microglia, Figure 2A).
CCR2 expression was mainly detected in CD68-positive monocytes, as well as astrocytes
(Figure 2B). In EGCG-treated animals, microglia showed hyper-ramified processes that
were covered by thorny spines, indicating the inhibition of microglial transformation to
hypertrophic and amoeboid shapes (Figure 2A). EGCG also reduced MCP-1 expression
in microglia (Z = 6.228, p < 0.001, n = 40 cells in 7 rats, respectively, Mann–Whitney test;
Figure 2A,C). Compatible with immunohistochemistry, the qRT-PCR date revealed that
EGCG effectively diminished MCP-1 mRNA level (Z = 2.309, p = 0.021, n = 4 rats, respec-
tively, Mann–Whitney test; Figure 2D). Since serine (S) 276 phosphorylation of NF-κB
p65 subunit is required for microglial activation and MCP-1 induction [9,10], the effects
of EGCG on NF-κB p65 S276 phosphorylation were also investigated. SE significantly in-
creased the NF-κB p65 S276 ratio in the hippocampus following SE, which was attenuated
by EGCG (χ2

(2) = 16.207, p < 0.001, Kruskal–Wallis test with Dunn–Bonferroni post hoc test,
n = 7 rats, respectively; Figure 2E,F and Supplementary Figure S1). These findings indicate
that EGCG may mitigate MCP-1 expression by inhibiting the NF-κB-mediated pathway
following SE.
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Figure 1. Effects of EGCG on leukocyte infiltration in the FPC following SE. SE leads to leukocyte in-
filtration without altering the BBB integrity. As compared to the vehicle, EGCG attenuates neutrophil
and monocyte infiltration induced by SE. (A) Representative photos of neutrophil (MPO), monocytes
(CD68) and the BBB integrity (SMI-71) in the FPC. (B) Quantification of SMI-71 intensity. (C) Quan-
tification of the number of infiltrating leukocytes. * p < 0.05 vs. vehicle (n = 7 rats, respectively).

On the other hand, MIP-2 expressions were observed in most astrocytes and a few
neurons following SE, although its MIP-2 expression was undetected in the FPC of control
rats (Figure 3A,B). EGCG abolished SE-induced MIP-2 induction in these cell populations
(Z = 6.237, p < 0.001, n = 40 cells in 7 rats, respectively, Mann–Whitney test; Figure 3A,C).
EGCG also inhibited the SE-induced MIP-2 mRNA upregulation in the hippocampus
(Z = 2.309, p = 0.021, n = 4 rats, respectively, Mann–Whitney test; Figure 3D). Taken together,
our findings indicate that EGCG may diminish NF-κB-mediated MCP-1 induction in
microglia following SE, which abolished CCR2-mediated MIP-2 expression in astrocytes.
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Figure 2. SE-induced microglial activation of MCP-1 induction and cellular localization of CCR2
(MCP-1 receptor). SE results in MCP-1 upregulation in activated microglia, which are ameliorated by
EGCG. In addition, CCR2 expression is detected in infiltrating monocytes and astrocytes following
SE. (A) Representative photos of microglia (IB4), MCP-1 expression and MCP-1 intensity in the FPC.
(B) Representative photos of cellular localization of CCR2 in monocyte and astrocytes. (C) Quantifi-
cation of the MCP-1 intensity in microglia. * p < 0.05 vs. vehicle (n = 40 cells in 7 rats, respectively).
(D) Quantification of the MCP-1 mRNA in the hippocampus. *,# p < 0.05 vs. control and vehicle
(n = 4 rats, respectively). (E,F) Representative Western blot data for NF-κB p65 S276 phosphorylation
and quantification of the NF-κB p65 S276 ratio in the hippocampus. *,# p < 0.05 vs. control animal
and vehicle, respectively (n = 7 rats, respectively).
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Figure 3. SE-induced MIP-2 induction and cellular localization of MIP-2. SE induces MIP-2 expression
in reactive astrocytes and a few neurons. EGCG attenuates astroglial MIP-2 upregulation induced
by SE. (A) Representative photos of astrocytes (GFAP), MIP-2 expression and MIP-2 intensity in the
FPC. (B) Representative photos of CCR2 expression in a few neurons. (C) Quantification of the MIP-2
intensity in astrocytes. * p < 0.05 vs. vehicle (n = 40 cells in 7 rats, respectively). (D) Quantification
of the MIP-2 mRNA in the hippocampus. *,# p < 0.05 vs. control animal and vehicle, respectively
(n = 4 rats, respectively).
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3.3. SE Reduces 67LR Expression in Astrocytes, but Not in Endothelial Cells, in the FPC

Since EGCG is a 67LR ligand [16,17], we investigated whether SE alters 67LR expres-
sion in the FPC. Compatible with previous studies [17,19,20,24], 67LR expression was ob-
served in astrocytes and endothelial cells in the FPC (Figure 4A). Following SE, 67LR expres-
sion was diminished in astrocytes, which was ameliorated by EGCG (Z = 5.771, p < 0.001,
n = 40 cells in 7 rats, respectively, Mann–Whitney test; Figure 4A,B). However, SE did not
change 67LR expression in endothelial cells, which was unaffected by EGCG (Z = 0.583,
p = 0.56, n = 40 cells in 7 rats, respectively, Mann–Whitney test; Figure 4A,B). Therefore, it
is likely that EGCG may attenuate SE-induced 67LR downregulation in astrocytes.
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Figure 4. Effects of EGCG on 67LR expression in the FPC following SE. The 67LR expression is
observed in astrocyte and endothelial cells in control animals. Following SE, 67LR expression is
reduced in astrocytes, but not in endothelial cells, which is attenuated by EGCG. (A) Representative
photos of GFAP, SMI-71 and 67LR in the FPC. (B) Quantification of 67LR intensity in astrocyte and
endothelial cells. * p < 0.05 vs. vehicle (n = 40 cells in 7 rats, respectively).
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3.4. MCP-1 Neutralization Abolishes MIP-2 Expression, Leukocyte Infiltration and 67LR
Downregulation Induced by SE

Next, we applied MCP-1 neutralization to confirm the role of MCP-1 in the regulation
of MIP-2 and 67LR following SE. MCP-1 neutralization did not affect microglial activation
and MCP-1 expression in the FPC following SE (Z = 1.613, p = 0.107, n = 40 cells in 7 rats,
respectively, Mann–Whitney test; Figure 5A,B). However, MCP-1 neutralization effectively
ameliorated SE-induced infiltration of neutrophils (Z = 3.13, p = 0.002, n = 7 rats, respec-
tively, Mann–Whitney test; Figure 5A,C) and monocytes (Z = 3.13, p = 0.002, n = 7 rats,
respectively, Mann–Whitney test; Figure 5A,C). MCP-1 neutralization abrogated MIP-2 in-
duction in astrocytes (Z = 6.372, p < 0.001, n = 40 cells in 7 rats, respectively, Mann–Whitney
test; Figure 6A,B) and MIP-2 mRNA expression in the hippocampus (Z = 2.309, p = 0.021,
n = 4 rats, respectively, Mann–Whitney test; Figure 6C). In addition, MCP-1 neutraliza-
tion restored 67LR in astrocytes (Z = 7.653, p < 0.001, n = 40 cells in 7 rats, respectively,
Mann–Whitney test; Figure 6A,D). These findings indicate that MCP-1 released from mi-
croglia may evoke 67LR downregulation and MIP-2 induction in astrocytes.

3.5. Neutralization of 67LR Leads to ERK1/2-MIP-2-Mediated Leukocyte Infiltration in the FPC
under Physiological Conditions

To directly validate the role of astroglial 67LR downregulation in leukocyte infiltra-
tion, we also applied 67LR neutralization in control animals. Consistent with previous
studies [19,20,24], 67LR neutralization did not change 67LR expression in astrocytes and
endothelial cells (Figure 7A). However, 67LR neutralization evoked MIP-2 induction and
leukocyte infiltration in the FPC without MCP-1 induction (Figure 7A). EGCG co-treatment
attenuated the infiltration of neutrophils (χ2

(2) = 13.57, p = 0.001, Kruskal–Wallis test;
p < 0.001, Dunn–Bonferroni post hoc test, n = 7 rats, respectively; Figure 7A,B) and mono-
cytes (χ2

(2) = 9.822, p = 0.007, Kruskal–Wallis test; p = 0.003, Dunn–Bonferroni post hoc
test, n = 7 rats, respectively; Figure 7A,B). EGCG co-treatment also mitigated astroglial
MIP-2 induction induced by 67LR neutralization (χ2

(2) = 80.828, p < 0.001, Kruskal–Wallis
test; p < 0.003, Dunn–Bonferroni post hoc test, n = 40 cells in 7 rats, respectively; Figure 7A,C).
These findings indicate that 67LR downregulation/inhibition may be involved in leukocyte
infiltration by inducing MIP-2 production in astrocytes, which would be ameliorated by
EGCG co-treatment.

ERK1/2 is one of the upstream regulators of MIP-2 expression [34,35]. Neutralization
by 67LR increases ERK1/2 activity in astrocytes [20,24]. In addition, EGCG inhibits MIP-2
production and ERK1/2 activation induced by lipopolysaccharide (LPS) treatment [36].
Therefore, it is likely that 67LR neutralization may result in astroglial MIP-2 induction
mediated by ERK1/2 activation. To confirm this, we co-applied U0126 with 67LR antibody
to inhibit ERK1/2 activity. Compatible with previous studies [20,24], 67LR neutralization
enhanced ERK1/2 phosphorylation, indicating the increased kinase activity. U0126 co-
treatment effective attenuated the upregulated phospho(p)-ERK1/2 level in astrocytes
induced by 67LR neutralization (χ2

(2) = 80.896, p < 0.001, Kruskal–Wallis test; p < 0.001,
Dunn–Bonferroni post hoc test, n = 40 cells in 7 rats, respectively; Figure 7A,C). U0126 co-
treatment also ameliorated infiltration of neutrophils (χ2

(2) = 13.57, p = 0.001, Kruskal-Wallis
test; p < 0.001, Dunn-Bonferroni post hoc test, n = 7 rats, respectively; Figure 7A,B) and
monocytes (χ2

(2) = 9.822, p = 0.007, Kruskal–Wallis test; p = 0.015, Dunn–Bonferroni post
hoc test, n = 7 rats, respectively; Figure 7A,B). In addition, U0126 co-treatment attenuated
astroglial MIP-2 upregulation induced by 67LR neutralization (χ2

(2) = 80.828, p < 0.001,
Kruskal–Wallis test; p < 0.001, Dunn–Bonferroni post hoc test, n = 40 cells in 7 rats, respec-
tively; Figure 7A,C). EGCG co-treatment also diminished the p-ERK1/2 level (p < 0.001 vs.
vehicle, p = 0.097 vs. U0126, Dunn–Bonferroni post hoc test, n = 40 cells in 7 rats, respectively;
Figure 7A,C). qRT-PCR data revealed that co-treatment of EGCG or U0126 ameliorated MIP-
2 mRNA upregulation induced by 67LR neutralization (χ2

(2) = 9.846, p = 0.007, Kruskal–
Wallis test with Dunn–Bonferroni post hoc test, n = 4 rats, respectively; Figure 7D). These
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findings indicate that EGCG may suppress leukocyte infiltration through 67LR-ERK1/2-
MIP-2 signaling pathway, independent of MCP-1.
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FPC following SE. (B) Quantification of the MCP-1 intensity in microglia (n = 40 cells in 7 rats,
respectively). (C) Quantification of the number of infiltrating leukocytes. * p < 0.05 vs. control IgG
(n = 7 rats, respectively).
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Figure 6. Effects of MCP-1 neutralization on MIP-2 and 67LR expressions in the FPC following
SE. As compared to control IgG, MCP-1 neutralization ameliorates MIP-2 induction and increases
67LR expression in astrocytes. (A) Representative photos of MIP-2 and 67LR expressions in the
FPC following SE. (B) Quantification of the MIP-2 intensity in astrocytes (n = 40 cells in 7 rats,
respectively). * p < 0.05 vs. control IgG (n = 7 rats, respectively). (C) Quantification of the MIP-
2 mRNA in the hippocampus. *,# p < 0.05 vs. control animal and vehicle, respectively (n = 4 rats,
respectively). (D) Quantification of 67LR intensity in astrocytes. * p < 0.05 vs. control IgG (n = 40 cells
in 7 rats, respectively).
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Figure 7. Effects of 67LR neutralization and co-treatment of EGCG or U0126 on leukocyte infiltration,
MIP-2 expression and p-ERK1/2 level in the FPC under physiological condition. Although 67LR
neutralization does not alter 67LR expression, it induces MIP-2 induction, leukocyte infiltration and
p-ERK1/2 upregulation in the FPC without MCP-1 induction, which are ameliorates by co-treatment
of EGCG or U0126. (A) Representative photos of 67LR, MCP-1, MIP-2 and p-ERK1/2 expressions in
the FPC induced by 67LR neutralization. (B) Quantification of the number of infiltrating leukocytes.
* p < 0.05 vs. vehicle co-treatment (n = 7 rats, respectively). (C) Quantification of MIP-2 and
p-ERK1/2 levels in astrocytes. *,#p < 0.05 vs. co-treatment (n = 40 cells in 7 rats, respectively).
(D) Quantification of the MIP-2 mRNA in the hippocampus. *,#,$ p < 0.05 vs. control, vehicle and
EGCG, respectively (n = 4 rats, respectively).
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4. Discussion

Infiltrating leukocytes develop detrimental inflammatory responses by releasing pro-
inflammatory cytokines [37,38]. They also produce chemoattractants for the subsequent
monocyte chemotaxis, such as human cationic antimicrobial protein (hCAP18, also known
as LL-37) and cathepsin G [39,40]. Therefore, inhibition of leukocyte infiltration prevents or
reduces the secondary brain damage induced by neuroinflammation [37].

MCP-1 and its receptor CCR2 is the first characterized chemokine system in hu-
mans [41]. MCP-1 activates monocyte recruitment by itself, and also promotes neutrophil
infiltration [30,31,42,43]. In the brain, microglia rapidly induce MCP-1 expression in re-
sponse to harmful stresses via NF-κB- and p38 MAPK signaling pathways that are also in-
volved in microglial activation (transformation) [9,10,13,14,44]. Indeed, NF-κB p65 protein
level increases in the brain following acute seizures [45–47]. Furthermore, p65 S276 phos-
phorylation of NF-κB p65 subunit is required for microglial activation and MCP-1 induction
following SE, which plays an important role in leukocyte infiltration in the FPC [9,10]. Con-
sistent with these reports, the present data showed that SE elevated total p65 protein and its
S276 phosphorylation levels. Since SE enhanced p65 S276 phosphorylation more than the
total p65 protein upregulation, the p65 phosphorylation ratio was increased as compared to
the control animals. In addition, EGCG attenuated SE-induced leukocyte infiltration in the
FPC by diminishing the total p65 protein, its S276 phosphorylation and MCP-1 expression
in microglia. EGCG also inhibited the transformation of resident microglia and infiltrat-
ing monocytes in the brain parenchyma. Considering that EGCG abrogates p38 MAPK
and NF-κB signaling pathways [11,12], the present data indicate that EGCG may inhibit
microglial activation, and in turn, ameliorate MCP-1 transcription following SE.

The roles of 67LR in EGCG-mediated MCP-1 regulation in peripheral macrophages in
response to LPS are controversial: EGCG induces MCP-1 expression through p38 MAPK-c-
Jun NH2-terminal kinase (JNK) signaling axis following LPS treatment, which is abrogated
by 67LR neutralization [48]. In contrast, EGCG suppresses MCP-1 expression in response
to LPS via the ERK1/2, p38 MAPK, JNK and NF-κB pathways, which is abolished by
67LR neutralization [12]. In the present study, 67LR expression was mainly observed in
astrocytes and endothelial cells, but not in microglia and neurons, in the intact brain. SE
reduced 67LR expression in astrocytes. Furthermore, 67LR neutralization led to leukocyte
infiltration without microglial MCP-1 induction under physiological conditions. Of note,
EGCG diminished leukocyte infiltration following SE and 67LR neutralization. Therefore,
our findings suggest that in the brain, EGCG may inhibit MCP-1 induction through NF-
κB-dependent and 67LR-independent pathways in microglia following SE, unlike fully
differentiated peripheral macrophages in response to LPS.

As aforementioned, MCP-1 also recruits neutrophils in MIP-2-dependent and -independent
manners [30,42,43]. In a previous study [48], EGCG did not directly induce leukocyte
migration, but induced MIP-2 in peripheral macrophages mediated by 67LR following
LPS treatment. In contrast to this report, the present data demonstrate that SE resulted
in astroglial MIP-2 induction with 67LR downregulation, which was mitigated by EGCG
treatment and MCP-1 neutralization. These findings indicate that MCP-1 released from
activated microglia may cause 67LR downregulation and the subsequent MIP-2 induction
in astrocytes following SE. The present study also reveals that 67LR neutralization led to
astroglial MIP-2 induction and leukocyte infiltration without microglial MCP-1 induction
under physiological conditions, which was attenuated by EGCG co-treatment. These
findings suggest that 67LR may play an inhibitory role in MIP-2-mediated leukocyte
infiltration in the FPC.

The activation of MCP-1/CCR2 system enhances ERK1/2 activity in astrocytes that
increases MIP-2 expression [34,35,49,50]. Interestingly, 67LR neutralization increases
ERK1/2 activity in astrocytes [20,24]. In addition, EGCG inhibits MIP-2 production and
ERK1/2 activation induced by the LPS [36]. Compatible with these previous studies, the
present data show that 67LR neutralization increased ERK1/2 phosphorylation, which was
abrogated by EGCG co-treatment. Furthermore, U0126 co-treatment ameliorated astroglial
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MIP-2 induction and leukocyte infiltration induced by 67LR neutralization. Thus, our find-
ings suggest that 67LR downregulation/dysfunction may result in leukocyte infiltration
via the ERK1/2-MIP-2 signaling pathway in astrocytes.

Exogenous soluble laminin and EGCG inhibit ERK1/2 phosphorylation mediated by
67LR [23,51]. Ku et al. [52,53] reported that 67LR neutralization abrogates the inhibitory ef-
fects of EGCG on ERK1/2 phosphorylation. Thus, they speculated that 67LR neutralization
might prevent the EGCG-67LR interaction through sterical hindrance [52,53]. However,
the present data demonstrate that 67LR neutralization increased ERK1/2 phosphorylation,
which was attenuated by EGCG or U0126 co-treatment. Furthermore, both EGCG and
U0126 attenuated leukocyte infiltration and ERK1/2 and MIP-2 upregulation induced by
67LR neutralization. In the present study, we used the antibody recognizing the amino
acid 250–350 regions on 67LR for neutralization. Since amino acid 272–280 regions on 67LR
are the inhibition site of its functions by neutralization [54] and 161–170 regions are the
EGCG binding site, respectively [55], it is likely that 67LR neutralization may not affect
EGCG–67LR binding in the present study. Adversely, EGCG and 67LR antiserum could
competitively bind to 67LR in the present study.

In previous studies [9,10], we have reported that roscovitine, a cyclin-dependent kinase
5 (cdk5) inhibitor, attenuates SE-induced leukocyte infiltration in the FPC by inhibiting
p38 MAPK [9]. Furthermore, 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl
ester (CDDO-Me), a synthetic triterpenoid, also inhibits monocyte infiltration in this region
by abrogating NF-κB- and p38 MAPK-mediated signaling pathways following SE [10].
Similar to CDDO-Me, EGCG attenuates immune cell infiltration by inhibiting p38 MAPK
and NF-κB activity in an experimental autoimmune encephalitis model [11–15]. Since
oxidative stress increases CDK5 activity to activate the NF-κB-mediated pathway [56,57]
and CDDO-Me acts as an antioxidant and a NF-κB inhibitor [10], it is plausible that the
antioxidant properties of EGCG may have a key role in the attenuation of leukocyte
infiltration through NF-κB inhibition. Unlike roscovitine and CDDO-Me, however, EGCG
can bind to 67LR and inhibit ERK1/2 activation [16,17,23,51]. Therefore, our findings
suggest that the preservation of 67LR functionality may be an additional therapeutic
approach against neuroinflammation.

On the other hand, the cortical insults caused by trauma, bleeding and infection result
in SE and acquired epilepsy [58,59]. Indeed, post-traumatic injury (TBI) is one of the
causes of acquired epilepsy [58]. TBI leads to a subsequent neuronal damage resulting
from neuroinflammation, which contributes to synchronized hyperexcitability and robust
spontaneous seizures [58]. Furthermore, cobalt-induced neocortical injury leads to focal
seizures, which are developed into SE induced by homocysteine (a N-methyl-D-aspartate
receptor agonist) administration [59]. Cobalt-induced lesions render the cerebral cortex
sensitive to BBB disruption induced by homocysteine [59]. Considering these reports, it is
likely that SE-induced leukocyte infiltration into the FPC may affect epileptogenic events
without vasogenic edema. Further studies are needed to elucidate the roles of leukocyte
infiltration and/or vasogenic edema in the neocortex in epileptogenesis.

In the present study, EGCG effectively attenuated SE-induced NF-κB S276 phospho-
rylation. Under resting condition, NF-κB is sequestered in the cytoplasm through direct
binding with the inhibitor of the κB (IκB) family. IκB kinase (IKK) activation phosphory-
lates IκB, which leads to IκB degradation, liberates NF-κB from the NF-κB-IκB complex
and evokes nuclear NF-κB translocation [60]. Interestingly, N-acetylcysteine (NAC, an
antioxidant) abolishes nuclear NF-κB translocation by directly inhibiting NF-κB p65 phos-
phorylation without affecting IκB degradation [61]. Furthermore, CDDO-Me abrogates
NF-κB-mediated signaling pathways by direct inhibition of IKK [62]. Considering that
EGCG decreases IκB phosphorylation [63–65], it is likely that inhibition of NF-κB canonical
pathway by regulating IKK activity may also be relevant to the anti-inflammatory properties
of EGCG, which would regulate chemokine and cytokine syntheses. With respect to these
previous reports. Furthermore, it is postulated that a general mechanism of antioxidants
against inflammation may regulate the early step of NF-κB signaling pathway (inhibi-
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tions of IKK activation, IκB phosphorylation, IκB degradation and p65 phosphorylation),
although their specific targets would be distinct and unidentified.

5. Conclusions

The present study reveals for the first time that MCP-1 regulated the 67LR-ERK1/2-
MIP-2 signaling pathway in astrocytes following SE, which elicited leukocyte infiltration
in the FPC independent of vascular permeability. In addition, 67LR neutralization led to
leukocyte infiltration via an MCP-1-independent manner under physiological conditions.
Furthermore, EGCG attenuated leukocyte infiltration by inhibiting microglial MCP-1 in-
duction and astroglial MIP2 upregulation following SE and 67LR neutralization. Therefore,
our findings suggest that the inhibition of MCP-1 induction (in microglia) and/or preser-
vation of 67LR functions (in astrocytes) may be a strategy to mitigate neuroinflammation
(Figure 8).
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