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Abstract: Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal
inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with
oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress
can affect the progression and development of IBD by regulating the homeostasis of the gut micro-
biota and immune response. Therefore, redox-targeted therapy is a promising treatment option for
IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural
antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut
microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for
implementing natural antioxidants as potential IBD candidate medications. In addition, we demon-
strate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived
polyphenols, including novel delivery systems, chemical modifications, and combination strategies.

Keywords: inflammatory bowel disease; oxidative stress; redox homeostasis; polyphenol; antioxidant;
gut microbiota

1. Introduction

Inflammatory bowel disease (IBD), a chronic inflammatory disease primarily affecting
the intestinal tract, includes Crohn’s disease (CD) and ulcerative colitis (UC) [1,2]. Both CD
and DC share similar characteristics of intestinal mucosa inflammation caused by aberrant
interaction between the immune response and the gut microbiota in genetically susceptible
individuals [3]. The etiology of IBD remains elusive, but recent studies highlight the
concept of an intriguing interface between oxidative stress, gut microbiota, and immune
response [4,5]. Reactive oxygen species (ROS), the hallmark and executor of oxidative
stress, exert dual functions to affect the progression of cells and tissues [6,7]. Moderate
ROS (at physiological levels in the body) can act as second messengers to regulate cellular
physiological processes involving endogenous homeostasis maintenance and biological
functions such as redox signal transduction, gene expression, and receptor activation,
which is beneficial for tissue turnover and cell proliferation [8,9]. Excessive ROS (above
the toxic threshold) can damage cellular molecules such as DNA, proteins, and lipids, thus
causing cell senescence or death [10]. In general, the occurrence and development of IBD
are accompanied by persistent oxidative stress and inflammatory responses induced by
dysbiosis of the gut microbiota [11,12]. A high-fat diet, smoking, circadian rhythms, and
drug intervention can disturb the intestinal microbiota [13]. This plays a crucial role in
host immune responses, reducing bacterial diversity, inhibiting gut microbiota regulatory
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properties, and raising intestinal ROS [14]. These excessive ROS can act as upstream
stimuli to evoke aberrant activation of the intestinal immune system, causing damage to the
intestinal mucosal barrier, including a decrease in mucous secretion, antimicrobial peptide
secretion, and the destruction of tight junctions [15]. Importantly, radical immune cells
activate inflammatory signaling pathways such as NF-κB, JAK/STAT, and MAPK signaling
pathways [16–18], promote the release of proinflammatory factors (e.g., TNF-α, IL-6, and
IL-1β) and oxidases (e.g., iNOS, COX-2, and NOX [19,20]), and further increase the level of
oxidative stress in the intestinal tract [21], which will remold the gut microbiota and form a
loop of oxidative stress–ROS–inflammation–ROS–oxidative stress (Figure 1). Accordingly,
such a loop can be used as a potential therapeutic target to avoid the occurrence and
progression of intestinal inflammation by alleviating oxidative stress in the intestine and
reducing the stimulation of gut microbiota and immune cells by ROS, thereby recovering
the intestinal mucosal barrier.
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Figure 1. The pathogenic mechanisms of IBD. External pressures (high-fat diet, smoking, circadian
rythms, and drug intervention) induce oxidative stress and can lead to gut dysbiosis and damage
to the intestinal mucosal barrier, thus triggering a radical inflammatory response, which in turn
stimulates the release of chemokines and cytokines, causing further oxidative stress and subsequent
progression of IBD.

Current therapeutics for IBD treatment have focused on targeting the immune system
and intestinal bacteria. For example, monoclonal antibodies (such as infliximab, ustek-
inumab, and risankizumab) have been used to neutralize proinflammatory cytokines [22–24],
and immune cell infiltration inhibitors (e.g., ozanimod) [25] or inflammatory signaling
pathway inhibitors (e.g., tofacitinib) have been used to attenuate the migration of lym-
phocytes and block the JAK/STAT signaling pathway [26]. Some sphingolipids, such as
SphK1 inhibitors and S1PRs antagonists have been developed as novel anti-inflammatory
agents [27]. Additionally, corresponding studies have found that probiotics and prebiotics,
e.g., Bifidobacterium, Lactobacillus, and fructooligosaccharides, can alter the composition of
intestinal bacteria, which is also beneficial for the attenuation of inflammation and oxidative
stress [28–30]. Indeed, all these therapeutic options generate positive effects in patients with
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IBD. However, limitations such as poor response, systemic side effects, high recurrence
rate, and high cost still need to be addressed [31,32]. Recently, an increasing number of
studies have applied antioxidants to alleviate oxidative stress and inflammation in the
intestinal tract and have received some favorable feedback for the treatment of IBD [33].
Therefore, exploiting pathogenesis-based therapeutics remains attractive for new drug
discovery and development.

Polyphenols, a broad family of natural products, are the most common natural an-
tioxidants and are characterized by multiple phenolic units in their structures [34,35].
Polyphenols can be classified into four major categories: flavonoids, phenolic acids, lignans,
and stilbenes [36,37]. The chemical structures of some of the polyphenols are depicted
in Figure 2. Natural polyphenols are commonly present in many plants, such as dietary
sources (e.g., vegetables, fruits, spices, and plant-derived beverages) and herbal medicines,
especially Chinese herbal medicines (CHMs), which share the holistic principles of “homol-
ogy of medicine and food” found in traditional Chinese medicine (TCM) and have versatile
biological properties [38,39]. Due to the hydroxyl group in their structure, polyphenols
are endowed with inherent antioxidant activity, allowing them to scavenge radicals by hy-
drogen atom transfer or single-electron transfer reactions [40,41]. In recent years, multiple
studies have confirmed the antioxidant and anti-inflammatory activities of polyphenols
in IBD [42]. However, the limitations of polyphenols in delivery, stability, and target-
ing impede their further preclinical research and clinical evaluations. Therefore, recent
studies have focused on optimizing the application of polyphenols using modification
or nanotechnology.
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Our search approach was centered on the utilization of several public databases,
namely, PubMed, ClinicalTrials, Google Scholar, and Web of Science, for sourcing data
available up to April 2023. The search terms employed included Inflammatory Bowel
Disease, Oxidative Stress, Redox, ROS, Gut Dysbiosis, Gut Microbiota, and Polyphenols.
The selection process entailed the application of specific inclusion and exclusion criteria.
The inclusion criteria were as follows: (1) only papers published in the English language
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and within the last 20 years; (2) articles with a high citation rate; (3) studies with broad
application prospects. On the other hand, the exclusion criteria were as follows: (1) articles
with low credibility ratings; (2) papers published in languages other than English; (3) arti-
cles that were not available in full-text format. In this review, we summarize the underlying
therapeutic mechanisms of polyphenols for modulating redox homeostasis to repair the
intestinal mucosal barrier and focus on the application of polyphenols as potential pro-
tective and therapeutic drugs in IBD treatment based on redox-targeted therapeutics. In
addition, we also discuss novel technologies or methods for overcoming the limitations of
polyphenols for effective IBD treatment and prevention.

2. Gut Dysbiosis Causes IBD through Oxidative Stress and the
Inflammatory Response

The gut microbiota in the human intestinal tract has a rich diversity and contains
more than 1000 species [43,44], 90% of which are composed of four major phyla: Firmicutes
(49–76%), Bacteroidetes (16–23%), Proteobacteria, and Actinobacteria [45,46]. Gut micro-
biota plays a range of roles in mineral absorption and carbohydrate degradation [47,48],
as well as the synthesis of amino acids and vitamins [49,50], all of which are essential for
the hosts’ biological function [51]. The immunomodulatory effects of the gut microbiota
are mainly expressed in the synthetic pathway of short-chain fatty acids (SCFAs) and the
metabolism of tryptophan, bile acid, succinate, and sphingolipids.

Briefly, the gut microbiota can metabolize dietary fiber into SCFAs [52], such as
butyrate, propionate, and acetate, which can enhance mucosal immunity tolerance and
maintain the intestinal barrier function by activating G protein-coupled receptors (GPCRs)
and, subsequently, T regulatory cells (Tregs) [53,54]. In addition, indoles and their deriva-
tives, which are tryptophan metabolites produced by the intestinal commensal Clostridium
sporogenes, can regulate intestinal inflammation by activating the aryl hydrocarbon recep-
tor [55]. Interestingly, some specific indole derivatives, such as indoleacrylic acid, can lead
to mucin gene expression and stimulate the Nrf2 signaling pathway, thus increasing the
antioxidant ability of the intestinal tract [56]. Moreover, the gut microbiota promotes bile
acid metabolism, resulting in secondary bile acids that can be sensed by the farnesoid X
receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5), and induces gene expres-
sion related to microbial defense, immune cell maturation, and cytokine release [57,58].
Similarly, succinate, the fuel for butyrate and ATP production, is a metabolite of the Bac-
teroides species with dietary fiber [59]. Importantly, it is able to drive IL-1β production
by stabilizing hypoxia-inducible factor-1α (HIF-1α) and activating dendritic cells to pro-
mote inflammatory progression [60]. Sphingolipids, the most notable ceramide, can be
synthesized by Bacteroidetes via bacterial serine-palmitoyl transferase, and they can act
as signaling molecules to modulate inflammatory pathways and lead to resolution of in-
flammation in host cells [61–63]. By contrast, the immunomodulatory function of the gut
microbiota is significantly different in IBD.

The host provides an indispensable nutrient environment for the gut microbiota, which
in turn feeds back essential vitamins, neurotransmitters, and SCFAs to form a symbiotic
relationship [64]. Notably, decreased gut microbial diversity and dysbiosis are hallmarks in
patients with IBD. Related research has indicated that the proportions of Firmicutes and
Bacteroidetes are significantly reduced in IBD patients, while the ratio of Proteobacteria is
increased [65]. Similarly, metagenomics sequencing of gut microbes also demonstrated that
the microbial diversity in IBD patients is obviously attenuated compared to that in healthy
individuals, especially beneficial bacteria, such as Bacteroides, Lactobacillus, and Eubacterium,
causing oxidative stress and leading to gut dysbiosis and inflammation [66,67]. In parallel,
some incremental pathogenic bacteria, such as adherent invasive Escherichia coli (E. coli) [68],
can lead to damage to the intestinal mucosal epithelium and enhance intestinal permeability,
causing gut metabolic wastes (e.g., cadaverine, taurine) and bacterial metabolic toxins,
such as lipopolysaccharide (LPS), to permeate into the blood and eventually aggravating
IBD [69–71]. In summary, therapeutic strategies that restore gut microbiota homeostasis
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by regulating the ratio of beneficial bacteria to pathogenic bacteria and relieving oxidative
stress and inflammation have great promise.

3. Polyphenols Retard Oxidative Stress and Inflammation via Modulation of
Gut Microbiota

Prebiotics and probiotics, the conventional adjuvants in treating IBD, have been widely
used to restore gut microbiota diversity. Interestingly, polyphenols have prebiotic-like
properties that enhance the relative abundance of beneficial bacteria, strengthening their
antioxidant capability [72,73]. In addition, the metabolites of polyphenols in the colon
segment catabolized by microbiota results in increased anti-inflammatory activity [74,75].
A great number of studies have shown that polyphenolic compounds positively regulate
antioxidant signaling pathways, such as Nrf2 [76,77], to intensify the intestinal mucosal
barrier, which is also beneficial for the homeostasis of the gut microbiota [78–80]. Intrigu-
ingly, some microbial phenolic metabolites, which are generated through the interaction
of undigested phenolic compounds and the microbiota found in the colon, have greater
relevance and bioavailability than their precursors [12]. In this section, polyphenolic com-
pounds such as curcumin, quercetin, resveratrol, and epigallocatechin-3-gallate (EGCG)
or corresponding microbial metabolites will be reviewed for the underlying mechanisms
which can modulate the gut microbiota for IBD treatment (Figure 3).
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Figure 3. Polyphenols retard inflammation and restore redox homeostasis of the gut by regulating
microbiota. Polyphenol intervention increases the diversity of gut microbiota, which is essential for
maintaining the intensity of the intestinal mucosal barrier, thus promoting the antioxidative defense
through activating Nrf2, elevating the content of SOD and GSH, and weakening the activity of NF-κB.
In this process, the gut microbiota metabolite SCFAs assist differentiation of Treg cells, counteracting
excessive inflammation caused by activation of effector T cells.
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3.1. Curcumin

Curcumin, a widely applied natural polyphenol mainly derived from CHMs (e.g.,
Crocus sativus L., and Curcuma longa L.) [81,82], has been reported to have promising pharma-
cologic activities in IBD therapy [83]. The antioxidant, anti-inflammatory, and antimicrobial
properties of curcumin endow it with an enormous advantage in modulating the gut micro-
biota and alleviating oxidative stress and inflammation, thus protecting the intestinal mu-
cosal barrier. In the clinical setting, curcumin increases approximately 69% of detected gut
bacterial species in the human gastrointestinal tract, such as Clostridium and Bacteroides [84].
In experimental animals, curcumin can promote the diversity and relative abundance
of gut microbiota in mice with UC, which potentially weakens the activity of Th17 cells
(proinflammation) and enhances the response of Treg cells (anti-inflammation) [85]. A
curcumin-supplemented diet can also improve gut bacterial homeostasis, including main-
taining the abundance of Lactobacillales and decreasing the proportion of Coriobacterales in
azoxymethane (AOM)-induced persistent colitis [86]. Interestingly, curcumin can increase
butyrate levels by modulating the gut microbial structure, therefore expanding the ratio
of regulatory T cells and dendritic cells in the colonic mucosa and inhibiting the onset of
IBD [87]. A recent report exhibited multiple protective effects of curcumin by modulating
the gut microbiota. Thus, oral administration of curcumin restored impaired bacterial
diversity caused by dextran sulfate sodium (DSS), enhanced the expression of tight junction
proteins such as occludin and ZO-1, promoted the activity of the antioxidase superoxide
dismutase (SOD), and inhibited the MAPK/NF-κB/STAT3 pathway and caspase-3-induced
apoptosis [88].

3.2. Quercetin

Quercetin has been shown to have excellent modulation potential on bacteria in many
types of diseases, including neurodegenerative disease, metabolic disease, and IBD [89–92].
As an important constituent of CHM-derived polyphenols, quercetin prevents the onset
of IBD by inhibiting oxidative stress and inflammation, in which gut bacteria are indis-
pensable players. For example, quercetin has been identified as having a protective effect
on Caco2 cells against hydrogen peroxide (H2O2)-induced oxidative damage by elevating
intracellular glutathione (GSH) content. This is in concordance with the in vivo model [93].
Similarly, a study reported that quercetin could ameliorate DSS-induced colitis in a mouse
model by remodeling macrophages’ proinflammatory activity via a heme oxygenase-1 (HO-
1)-dependent pathway and maintaining gut microbial diversity and commensal microbe
homeostasis [94]. DSS-induced colitis can enhance the activity of myeloperoxidase (MPO)
and malondialdehyde (MDA), reduce GSH, and downregulate gut microbiota diversity,
whereas quercetin administration can attenuate oxidative stress in the intestinal tract and in-
crease gut microbial diversity [95]. In general, the administration of quercetin can improve
the abundance of beneficial bacteria such as Bacteroides, Bifidobacterium, Clostridium, and
Lactobacillus, and in turn, it distinctly weakens that of Enterococcus and Fusobacterium [96].
Quercetin exerts a profound impact on the diversity of the gut microbiota, while the gut mi-
crobiota also influences the production and degradation of quercetin. For example, the gut
microbiota express β-glucosidase, which has the ability to efficiently deglycosylate lignans
and flavonoids [97]. Some specific bacterial strains, such as Clostridium and Bacteroides, are
able to induce cycloreversion of quercetin and release critical microbial metabolites (e.g.,
3,4-dihydroxyphenyl acetic acid and protocatechuic acid) [98], which also act as critical
players in the progression of IBD [99,100].

3.3. Resveratrol

Resveratrol is a well-known polyphenolic compound extracted at high levels from
grape skins, peanuts, blueberries, and the roots of some CHMs, especially Polygonum
cuspidatum, Morus alba L., and Panax notoginseng (Burkill) [101,102]. Due to its multiple
anti-inflammatory, antioxidant, antitumor, and antimicrobial biological effects, resveratrol
has been proven beneficial in various diseases, such as diabetes mellitus, obesity, cancer,
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and IBD [103–105]. The antimicrobial activity of resveratrol could impair the homeostasis
of gut microbiota. Recent evidence has confirmed that resveratrol can interact with the gut
microbiota in vitro and in vivo to acquire essential pharmacological activities, including an-
tioxidant and anti-inflammatory capabilities [106]. In addition, resveratrol administration
can regulate intestinal bacteria composition resulting in therapeutic potential. According
to a corresponding study, resveratrol treatment can restore 2,4,6-trinitrobenzenesulfonic
acid (TNBS)-induced murine colitis by increasing the ratio of Bacteroides acidifaciens, while
downregulating Ruminococcus gnavus and Akkermansia mucinphilia and reducing SCFAs to
homeostatic levels [107]. Likewise, resveratrol treatment can lead to an anti-inflammatory
T cell response by altering the gut microbiome and SCFAs, eliminating DSS-induced in-
flammation, and preventing inflammation-mediated colorectal cancer [108]. As a universal
dietary supplement, whether resveratrol can exert pharmacological activity in vivo at an
attainable dietary dose is of great importance. In a DSS-induced colitis rat model, a low
dose of dietary resveratrol mitigates intestinal oxidative stress and inflammation and re-
stores beneficial bacteria such as lactobacilli and bifidobacteria [109]. In a clinical setting,
supplementation with resveratrol in patients with UC is efficacious in reducing plasma
levels of TNF-α, high sensitivity-CRP, and NF-κB activity compared to a placebo [110].
Additionally, the microbial metabolites of resveratrol, specifically 3-(4-hydroxyphenyl)-
propionic acid, have been shown to effectively attenuate the inflammatory responses of
DSS-induced colitis. This result provides new insights to understand the protective effects
of resveratrol against IBD [106].

3.4. Other Agents

Many other polyphenolic compounds can be effective in IBD treatment and prevention
by regulating the gut microbiota. For example, green tea is one of the most consumed
beverages and widely used CHMs worldwide. It contains abundant tea polyphenols,
such as epigallocatechin, epicatechin-3-gallate, epicatechin, and EGCG [111,112]. Notably,
tea polyphenols, especially EGCG, have attracted significant attention for delaying ag-
ing, reducing cholesterol, and preventing cancer due to their outstanding antioxidative
ability. EGCG has been reported to reinforce GSH production and SOD activity, decrease
the content of NO and malonaldehyde (MDA), and restrain TNF-α, IFN-γ, and NF-κB
production to relieve the inflammatory status of the intestinal mucosa [113,114]. In fact,
oral EGCG can attenuate colitis in a gut microbiota-dependent manner by enhanced Akker-
mansia abundance and butyrate production [115]. Similarly, ellagic acid (EA), a natural
polyphenol found in pomegranate (Punica granatum L.) peel, has shown anti-inflammatory
and antioxidant properties in many disorders. EA can regulate the NF-κB signaling path-
way, intimately related to inflammation and oxidative stress, to decrease the expression of
COX-2 and iNOS and phosphorylated MAPKs and impair nuclear NF-κB translocation,
thus assuaging chronic colonic inflammation and oxidative stress in rats [116]. Meanwhile,
EA has been identified to regulate the microbiome to prevent infectious colitis [117,118]
and has also been applied in IBD prevention by reducing Streptococcus abundance in the
gut [119]. In addition, urolithin A, a microbial metabolite of EA, exhibits antioxidant and
anti-inflammatory effects by regulating the Nrf2 pathway, thereby enhancing the gut barrier
integrity [120]. (Table 1).
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Table 1. Effects of polyphenols on oxidative stress and inflammation by modulation of gut microbiota
in IBD.

Polyphenolic
Compound Model Dose Duration Effects References

Curcumin

type 2 diabetic
mice with colitis 100 mg/kg/day 21 days

Restoring the homeostasis
of Th17/Treg and

improving the composition
of the intestinal microbiota

[85]

Azoxymethane-
induced Il10−/−

mice model
8–162 mg/kg/day 15 weeks

Increasing bacterial richness,
preventing age-related

decrease in alpha diversity,
increasing the relative

abundance of Lactobacillales,
and decreasing

Coriobacterales order

[86]

Dextran sodium
sulphate

(DSS)-induced
colitis mice model

- 11 days

Increasing the abundance of
butyrate-producing bacteria

and fecal butyrate level;
inhibiting the expression of

inflammatory mediators;
suppressing the activation

of NF-κB

[87]

DSS-induced
colitis mice model

50 mg/mL or
150 mg/mL 7 days

Mitigating intestinal
inflammation via inhibiting
the MAPK/NFκB/STAT3

pathway; enhancing
intestinal barrier and

modulating abundance of
some bacteria (Akkermansia,

Coprococcus, etc.)

[88]

Quercetin and its
metabolites

DSS-induced
colitis mice model 500–1500 ppm 6 days

Upregulating transcription
of GCLC to eliminate

excessive ROS; inhibiting
AQP3 and upregulating

NOX1/2

[93]

DSS-induced
colitis mice model

10 mg/kg body
weight 7 weeks

Enhancing the
anti-inflammatory and
bactericidal effects of
macrophages via the
Nrf2/HO-1 pathway;

rebalancing the function of
enteric macrophages

[94]

DSS-induced
colitis mice model

0.21% quercetin
preparation

comprising 0.15%
polyphenols

8 days

Increasing the concentration
of MPO, GSH, MDA, NO;
revising the decrease in

Chao1 and ACE

[95]

Quercetin and its
metabolites

Citrobacter
rodentium-

induced colitis
mouse model

- 2 weeks

Enhancing the populations
of Bacteroides,

Bifidobacterium, Lactobacillus,
and Clostridia and reducing
those of Fusobacterium and
Enterococcus; suppressing

the production of
pro-inflammatory cytokines

[96]
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Table 1. Cont.

Polyphenolic
Compound Model Dose Duration Effects References

DSS-induced
ulcerative colitis

rat model
10 mg/kg 5 days

Inhibiting COX-2 and iNOS
protein expression;
increasing levels of

pro-inflammatory cytokines
in the plasma

[99]

Resveratrol
DSS-induced

ulcerative colitis
rat model

100 mg/kg/day 10 days

Reducing paracellular
permeability and the

secretion of
proinflammatory cytokines

and upregulating tight
junction proteins via

AMPK-mediated activation
of CDX2 and the
regulation of the

SIRT1/NF-κB pathway

[103]

DSS-induced
colitis in

pseudo-germ-free
mice

100 mg/kg 19 days

Attenuating the
inflammatory response by

regulating MAPK and
NF-κB pathways

[106]

2,4,6-
trinitrobenzenesulfonic

acid
(TNBS)-induced

colitis mice model

100 mg/kg 5 days

Increasing the production of
i-butyric acid; ameliorating
imbalance of gut microbiota
induced by TNBS; inducing

Tregs while
suppressing inflammatory

Th1/Th17 cells

[107]

AOM/DSS-
induced CRC
mice model

100 mg/kg 10 weeks

Inhibiting histone
deacetylases (HDACs);
inducing Tregs while

suppressing inflammatory
Th1/Th17 cells

[108]

DSS-induced
ulcerative colitis

rat model
1 mg/kg/day 25 days

Increasing lactobacilli and
bifidobacteria and

diminishing the increase
in enterobacteria

[109]

protocatechuic
acid

TNBS-induced
colitis in mice

30 mg/kg and
60 mg/kg 5 days

Decreasing
oxidized/reduced

glutathione ratio; increasing
the expression of Nrf2 and
inhibiting the expression of
proinflammatory cytokines

[100]

EC, EGC, ECG,
EGCG, etc.

TNBS-induced
colitis rat model _ 14 days

Downregulating the
expression of TNF-α, NF-κB,

IL-1β, and IL-6; resisting
oxidative stress via both

non-canonical and canonical
NF-kB pathway

[114]

EGCG
DSS-induced

ulcerative colitis
mice model

50 mg/kg 3 days
Increasing

SCFAs-producing bacteria,
such as Akkermansia

[115]
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Table 1. Cont.

Polyphenolic
Compound Model Dose Duration Effects References

Ellagic acid and
pomegranate
extract (PE)

TNBS-induced
colitis rat model 10 mg/kg/day 2 weeks

Reducing MPO activity and
the TNF-α levels; alleviating

COX-2 and iNOS
overexpression, reducing

MAPKs phosporylation and
preventing the nuclear

NF-κB translocation

[116]

Pomegranate
peel extract

Citrobacter
rodentium-

induced colitis
mice model

0.2 mL twice a day 2 weeks

Decreasing the
Firmicutes/Bacteroidetes

ratio, increasing the
abundance of Proteobacteria

and Verrucomicrobiae

[117]

4. Inflammatory Response and Oxidative Stress in IBD

According to the above findings, oxidative stress and unbalanced gut microbiota
are the most significant phenotypes in the occurrence and progression of IBD. However,
inappropriate inflammatory responses also play a core role in IBD pathogenesis. The
initiation of the inflammatory response requires specific stimuli, such as pathogens and
antigens, to activate the host defense. Innate immune cells such as dendritic cells and
macrophages can recognize invariant microbial molecular patterns (pathogen-associated
molecular patterns (PAMPs)) and endogenous damage-associated molecular patterns
(DAMPs) through germline-encoded pattern recognition receptors (PRRs), including Toll-
like receptors (TLRs) and nucleotide oligomerization domains (NODs), to distinguish
“self” from “nonself” [121–123]. The occurrence of IBD is based on the recognition of gut
microbiota-related PAMPs and oxidative stress-related DAMPs and the subsequent inflam-
matory response. For example, gut microbiota-originated metabolic toxins, such as LPS,
can act as PAMPs to activate immune cells [123,124]. In parallel, drug-, smoking-, and
circadian rhythm-induced oxidative stress can damage intestinal epithelial cells (IECs),
such as Paneth cells and goblet cells, releasing cell debris, calreticulin, heat shock proteins
(HSPs) and ATP, which can act as DAMPs to promote the progression of inflammation
and subsequent pyroptosis and necroptosis [125–128]. Immune cells secrete products that
are actively involved in the initiation and preservation of inflammation, leading to gut
tissue damage.

Many immune tissue cells reside in the different layers of the intestinal tract, acting
as guardians for intestinal immune homeostasis [128,129]. The gatekeepers, macrophages,
are not homogenous but have two distinct subsets: proinflammatory (M1) macrophages
and anti-inflammatory (M2) macrophages [130]. M1 macrophages secrete high levels
of proinflammatory cytokines such as IL-1β, IL-6, IL-8, IL-12, and TNF, which can pro-
duce high levels of ROS to trigger further inflammation and disrupt the intestinal ep-
ithelial barrier [131,132]. Conversely, M2 macrophages produce significant amounts of
anti-inflammatory cytokines, including IL-10, TGF-β, EGF, and VEGF, and promote the
resolution of inflammation and recovery of the intestinal epithelial barrier [129]. Therefore,
stimulating macrophage M2 polarization is a potential strategy for IBD treatment. IECs
and macrophages can release IL-1α during inflammation, which recruits neutrophils that
upregulate PRRs to fight inflammogens [133]. Neutrophils can phagocytize and eliminate
pathogens through ROS from the respiratory burst and release extracellular neutrophil
traps (NETs), which produce the bactericidal oxidant hypochlorous acid (HOCl), causing
tissue damage when unregulated [133–135]. Dendritic cells (DCs) are the most important
antigen-presenting cells (APCs) and can link innate and adaptive immunity through their
phenotypic heterogeneity and functional plasticity. In IBD, PAMPs and DAMPs can be
recognized by DCs with high RPPs expression, sequentially activating naive T cells, stimu-
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lating proliferation, and thus impairing gut barrier function [136–138]. T cells comprise the
largest proportion of immune cells and have two main subgroups, CD4+ T cells and CD8+
T cells, in which CD8+ T cells exert cytotoxic functions [139]. CD4 T cells can be divided
into effector and regulatory cells (Tregs). The ratio of Treg/Th17 affects the outcomes
of inflammation [140]. As the most important counterbalance to the proinflammatory
environment of the immune system, Treg cells secrete cytokines such as TGF-β and IL-10
to mediate tissue repair and epithelial cell differentiation and interact with APCs to sup-
press inflammation and maintain intestinal homeostasis [141,142]. These immune cells are
triggered by DAMPs or PAMPs and interact with varying function, leading to alterations
in the immune tolerance environment, thereby causing persistent oxidative stress and
inflammation and subsequent tumorigenesis in the gut [143,144].

As mentioned above, immunomodulators, monoclonal antibodies, and corticosteroids,
which affect proinflammatory cytokines and immune cells, have been routinely used as
therapeutics for IBD treatment. However, poor response and systemic side effects still limit
the development of curative treatment schemes and impair their therapeutic effect.

5. Polyphenols Regulate the Immune Response and Oxidative Stress to Restrain IBD

Polyphenols have exhibited excellent pharmacodynamic functions, including antioxi-
dant and anti-inflammatory functions, by reducing oxidative stress, regulating the Nrf2
and NF-κB signaling pathways, and modulating the immune system [76,145,146]. Recent
evidence has also shown that some polyphenols exert direct effects on supporting the
intestinal mucosal barrier integrity. Interestingly, it seems that natural polyphenolic com-
pounds influence all pivotal mechanisms involved in the pathogenesis of IBD [31]. An
increasing number of studies have verified that natural polyphenols effectively alleviate the
severity of intestinal inflammation and oxidative stress during the onset of IBD. Exploiting
such antioxidant- and anti-inflammation-based therapeutics using polyphenols is favorable
for patients with IBD. In this section, some polyphenols, including curcumin, quercetin,
resveratrol, and EGCG, will be discussed for their potential therapeutic effect through the
regulation of oxidative stress and inflammation in IBD prevention and treatment. (Figure 4).

5.1. Curcumin

Dietary curcumin has been suggested as a daily adjuvant to maintain body health. In
IBD, the pharmacologic properties of curcumin not only modulate the gut microbiota but
also promote homeostasis between oxidative stress and inflammation. Primarily, curcumin
is able to enhance the expression of tight junction proteins, such as occludin, ZO-1, and
claudin-3, and maintain the integrity of the intestinal mucosal barrier by preventing en-
doplasmic reticulum stress-mediated IEC apoptosis [31,147]. In addition, a recent study
verified that curcumin could impair ROS (H2O2)-induced oxidative damage by stimu-
lating the heme oxygenase-1 (HO-1) signaling pathway [147]. Curcumin is also capable
of affecting the outcomes of inflammation by altering the status of immune cells. For
example, curcumin modulates the differentiation of naive T cells and changes the ratio
of central memory T (TCM) cells and effector memory (TEM) cells in experimental colitis,
which downregulates the levels of proinflammatory cytokines such as IL-7, IL-15, and
IL-21 by inhibiting the JAK1/STAT5 signaling pathway [148]. Likewise, another study
demonstrated that curcumin could regulate the balance of follicular helper T cells (Tfh)
and follicular regulatory T cells (Tfr) in the intestinal tract by suppressing the synthesis of
IL-21 [149]. As mentioned above, macrophages can produce ROS to accelerate the develop-
ment of intestinal inflammation, so targeting macrophages may be a potential strategy to
eliminate oxidative stress and inflammation. In a recent study, curcumin intervention was
found to reduce the concentration of IL-1β, as well as the production of intracellular ROS
in macrophages [149]. Furthermore, curcumin supplementation can change macrophage
polarization from M1 to M2 and decrease the expression of PRRs such as TLR2, TLR4,
and NF-κB in the colon tissue of mice with IBD [150]. Accordingly, these results illus-
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trate the dual function of curcumin in restraining oxidative stress and inflammation in
IBD treatment.
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Figure 4. Polyphenols regulate immune response and oxidative stress to treat IBD. Polyphenol
treatment reinforces the intestinal mucosal barrier by enhancing the tight junction proteins. In
addition, polyphenols can eliminate ROS and evoke antioxidative signaling pathways to alleviate
oxidative damage. Similarly, administration with polyphenols can regulate the differentiation of
immune cells and attenuate active immune response, thus inducing IBD remission.

5.2. Quercetin

Quercetin has been investigated as a significant adjuvant for IBD treatment or pre-
vention due to its acknowledged antioxidant and anti-inflammatory characteristics. Oral
administration of quercetin works on the intestinal mucosa, thus exerting its therapeutic
effects. Quercetin can strengthen the intestinal mucosal barrier by promoting the expression
of tight junction proteins, such as ZO-1 and claudin-1, thereby attenuating the hyperper-
meability of the intestine during the development of IBD [151,152]. In addition, quercetin
can promote the proliferation of intestinal cells [93] and increase the population of gob-
let cells through the activation of the PKCα/ERK1-2 signaling pathway to upregulate
mucus production and secretory capacity [153]. Oxidative stress clearly can accelerate
the development of IBD and exacerbate clinical symptoms [93]. Quercetin is able to pro-
mote the synthesis of GSH and the expression of Nrf2, which are efficient in abrogating
oxidative stress-induced lipid peroxides and elevating MPO, MDA, and NO [95,154]. As de-
tailed above, the infiltration of immune cells stimulates the exacerbation of IBD. Quercetin
can impair the recruitment of neutrophils and reduce the infiltration of neutrophils and
macrophages [152], which may produce ROS and induce oxidative stress and inflammation
in the colon tissue of IBD patients [135]. Surprisingly, in colitis, quercetin promotes M2
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macrophage polarization to decrease the secretion of proinflammatory cytokines such as
TNF-α, IL-23, and IL-12 in colonic tissue [94]. Moreover, quercetin can affect some tran-
scription factors, such as CCAAT/enhancer-binding protein β (C/EBP-β), to inhibit the
production of downstream cytokines, including TNF-α and IL-6, in dendritic cells, thereby
attenuating colitis in mouse models of IBD [155]. The ratio of Th17/Treg cells changes after
oral administration of quercetin, in which enhanced Treg cells restrain the development of
IBD [152].

5.3. Resveratrol

Resveratrol has the potential to improve the intestinal mucosal barrier. Evidence
suggests that resveratrol can suppress IECs apoptosis while maintaining colonic mucosal
architecture, perhaps sustaining the intestinal mucosal barrier [109,156]. Tight junction
proteins such as occludin, claudin, and ZO-1 in colon tissue can be impaired at the onset
of IBD, but resveratrol intervention can restore their expression to enhance the intestinal
mucosal barrier, which maintains gut homeostasis [157]. Correspondingly, resveratrol
modulates the antioxidant defense system to retard IBD [158]. For example, resveratrol can
reinstate redox homeostasis in colon tissue by preventing lipid peroxide and glutathione
depletion in TNBS-induced ulcerative colitis. Similarly, an analog of resveratrol has been
shown to have a regulatory effect on Nrf2, which can strengthen the antioxidant property
of the intestinal tract against DSS-induced inflammatory damage [158]. As described in
this section, resveratrol favors the intestinal mucosal barrier. Indeed, resveratrol attenuates
the recruitment and infiltration of neutrophils into colon tissue, which may be attributed
to enhanced tight junctions and reduced IL-8 levels [159]. Additionally, the expression of
MHC class I and II molecules on DCs can be inhibited by resveratrol, thus attenuating
the differentiation and maturation of DCs and subsequent failure to activate naive T
cells [160]. Resveratrol also regulates adaptive immunity and aligns with the remission of
gut inflammation. Studies have shown that the administration of resveratrol converts the
ratio of Th1 and Th17 cells and increases the proportion of Treg cells in mouse models of
IBD [107,161].

5.4. Other Agents

The potential modulatory properties of EGCG on the gut microbiota have been illus-
trated previously. EGCG can still affect oxidative stress and the immune response in IBD
treatment. Notably, supplementation with EGCG can thicken the intestinal mucus and
reduce intestinal permeability by enhancing tight junctions. It enhances the thickness of the
mucus of colon tissue and reduces intestinal permeability in experimental colitis [115,162].
In addition, EGCG can intensify the total antioxidant capacity by activating SOD and
glutathione peroxidase and attenuating the levels of MDA and NO in colon tissue [115].
In the immune response, EGCG supplementation can influence multiple immune cells,
including neutrophils, macrophages, dendritic cells, and T cells. In summary, EGCG can
restrict neutrophil infiltration, promote M2 macrophage polarization, weaken dendritic cell
differentiation, and increase the Treg/Th17 ratio [162–166]. (Table 2).

Table 2. Polyphenols regulate the immune response and oxidative stress in IBD.

Polyphenolic Compound Target Effects References

Curcumin APC
Impairing ROS (H2O2)-induced oxidative damage

by stimulating the heme oxygenase-1 (HO-1)
signaling pathway

[147]

naive T cells, TCM, TEM

Downregulating the levels of proinflammatory
cytokines such as IL-7, IL-15, and IL-21 by

inhibiting the JAK1/STAT5 signaling pathway
[148]

Tfh, Tfr Correcting the imbalance in Tfh and Tfr through the
inhibition of IL-21 [149]
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Table 2. Cont.

Polyphenolic Compound Target Effects References

Macrophage
Changing macrophage polarization from M1 to M2
and decrease the expression of PRRs such as TLR2,

TLR4, and NF-κB
[150]

Quercetin Treg cell, Macrophage Reducing significantly gut inflammation, increase
Treg cells and reduce Th17 cells [152]

Intestinal goblet cell
Regulating the secretory function of intestinal

goblet cells and mucin levels via acting
PKCα/ERK1-2 signal pathway

[153]

Promoting the synthesis of GSH and the expression
of Nrf2 to alleviate oxidative stress [95]

Macrophage
Promoting M2 macrophage polarization to decrease
the secretion of proinflammatory cytokines such as

TNF-α, IL-23, and IL-12 in colonic tissue
[94]

Dendritic cells
Affecting C/EBP-β to inhibit the production of

downstream cytokines, including TNF-α and IL-6
in dendritic cells, thereby attenuating colitis

[155]

Resveratrol Intestinal epithelial cell

Decreasing the production of the inflammatory
cytokine tumor necrosis factor-α, interleukin-6, and

interleukin-1β; increasing tight junction proteins
occludin and ZO-1

[157]

Gut epithelial cell Reversing the inflammatory effects of TNF-α by
reducing IL-1β and increasing IL-11 production [158]

Neutrophil

Attenuating the recruitment and infiltration of
neutrophils into colon tissue, which may be

attributed to enhanced tight junctions and reduced
IL-8 levels

[159]

DCs

Inhibiting the expression of MHC class I and II
molecules on DCs, thus attenuating the

differentiation and maturation of DCs and
subsequent failure to activate naive T cells

[160]

Treg cell, Th17 cell
Converting the ratio of Th1 and Th17 cells and
increasing the proportion of Treg cells in mouse

models of IBD
[161]

EGCG Mucus epithelial cell
Enhancing the thickness of the mucus epithelial

cells of colon tissue and reduce intestinal
permeability in experimental colitis

[162]

Neutrophils, macrophages,
dendritic cells, and T cells

Restricting neutrophil infiltration, promoting M2
macrophage polarization, weakening dendritic cell
differentiation, and increasing the Treg/Th17 ratio

[163–165]

6. Emerging Strategies Promote the Application of Polyphenols in IBD Therapy

Due to their versatility, polyphenols are increasingly used in bioimaging, therapeutic
delivery, and other biomedical applications [167,168]. This is because polyphenols possess
a number of desirable characteristics, including inherent biocompatibility, bioadhesion,
antioxidant activity, and antibacterial activity [167]. Although numerous polyphenols have
been explored in preclinical or clinical trials, their practical application in IBD treatment
remains challenging due to photothermal instability, poor solubility, nonspecific selectivity,
and variable oral bioavailability [169,170]. For example, polyphenols spontaneously oxidize
based on their phenolic hydroxyl groups and the catechol ring [171], which leads to the loss
of stability and an increasing probability of degradation [172]. Moreover, the single use of
polyphenols, compared with combination with other drugs, exhibits limited therapeutic
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effects in cancer treatment [173]. To surmount these limitations of polyphenols, multiple
strategies have been explored and developed to achieve the efficient implementation of
polyphenols in IBD treatment.

6.1. Chemical Modification

Recently, structural modifications, including esterification, methylation, glycosylation,
and other chemical modifications, have been developed which exhibit superior properties
to circumvent the natural weakness of polyphenols and thus expand their application in
antioxidant and anti-inflammatory therapy. For instance, compared to the parent curcumin,
the hydrophilicity and bioavailability of the curcumin–alginate esterification products are
markedly increased. The ester bond between curcumin and alginate is dissolved with
the help of esterases secreted by the commensal anaerobes of the colon, releasing the
antioxidant curcumin to treat UC [174]. Similarly, hybrid derivatives of β-ionone and
curcumin can enhance anti-inflammatory activity by inhibiting the production of NO and
ROS, thus alleviating colon length shortening and protecting against colon injury [175].
In addition, some mono-carbonyl curcumin derivatives were designed to improve cur-
cumin’s biological activities, namely, metabolic stability, high lipid solubility, and bioavail-
ability. For instance, ortho-substituted mono-carbonyl curcumin derivatives (2-methoxy-
and 2-trifluoromethoxy- derivatives and 2-methoxy- and 2-trifluoromethoxy-substituted
derivatives) demonstrated the ability to inhibit the production of RNS and ROS against
oxidative and nitrosative stress in a mouse colitis model [176–178]. Furthermore, the
benzene ring in these derivatives can be substituted by other rings, namely, the pyridine
ring, furan ring, naphthalene ring, and lactam ring, and has been used to prevent and
treat various diseases [179,180]. Interestingly, when compared with crude resveratrol, both
resveratrol-3-O-(6′-O-butanoyl)-β-d-glucopyranoside and resveratrol-3-O-(6′-O-octanoyl)-
β-d-glucopyranoside revealed better clinical efficacy in IBD treatment by slowing the
metabolism of resveratrol, restoring the imbalance of the intestinal mucosal barrier, and
preventing diarrhea [181]. Moreover, some glucosyl, glucosylacyl, and glucuronide deriva-
tives of resveratrol also play a significant role in the adhesion of some intestinal bacteria by
inhibiting IL-8 secretion, which can potentially be employed in the prevention of IBD [182].
Overall, the modification of polyphenols could circumvent rapid degradation and en-
hance their accessibility, thus providing potential strategies to facilitate the application of
polyphenols in IBD therapy (Figure 5).

6.2. Nano-Strategies

In addition to chemical modification, lipid nanocarriers and liposomes, biodegradable
polymeric nanoparticles, nanoemulsions, micelles, and protein-based nanocarriers have
been employed to form polyphenol-containing nanoparticles to overcome the shortcomings
of polyphenols [183]. Due to their biocompatibility, biodegradability, and immunomodu-
latory capabilities, nanostructured lipid carriers were utilized to deliver curcumin in the
treatment of IBD, displaying improved efficacy over direct administration of curcumin [184].
Similarly, another polyphenol, oleuropein, was encapsulated into nanostructured lipid
carriers to make nanoparticles with improved anti-inflammatory and ROS-scavenging
activity [185]. Coincidentally, in terms of the unique physical properties of hydrogels,
various hydrogels have also been developed to deliver polyphenols with the aim of con-
trollable and continuous release of packaged drugs. A pH-sensitive hydrogel has been
formed from composite hyaluronic acid/gelatin containing carboxymethyl chitosan micro-
spheres, which showed potential for the effective delivery of curcumin in the treatment of
colitis [186]. In another study, instead of directly loading curcumin, Cur-FFEYp, the Cur
precursor Cur–Phe–Phe–Glu–Tyr (H2PO3)–OH, was capable of local self-assembly into
hydrogels via dephosphorylation and then disassembly for release by esterase in inflamed
regions. This novel strategy can markedly enhance the anti-inflammatory effect of curcumin
and was found to alleviate two types of IBD [187]. Human serum albumin (HSA), a U.S.
FDA-approved nanomaterial, possesses various advantages, including good biocompati-
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bility, biodegradation, water solubility, low cytotoxicity, and non-immunogenicity. Tannic
acid-coated HSA was used to encapsulate curcumin via the crosslinking action of genipin,
leading to increased efficiency of curcumin oral administration in treating UC [188]. In
addition, codelivery of polyphenol nanoparticles and other drugs have been developed
to improve IBD therapy efficiency. For instance, curcumin and siCD86 were simultane-
ously encapsulated by PLGA and chitosan to achieve combinational therapeutic effects
for UC [189]. Interestingly, in a recent study, two different polyphenols, quercetin and
epigallo-catechin 3-gallate (EGCG) were both encapsulated by hydrolytic quinoa protein
(HQP) and cationic lotus root starch (CLRS) in a layer-by-layer assembly method. Quercetin
was entrapped within the hydrophobic core of HQP micelles, and then EGCG bound to the
hydrophilic surface, while CLRS was used to cover this carrier (Quercetin-HQP-EGCG)
as a favorable coating layer, enhancing the stability and bioavailability of the resulting
nanoparticle [190]. Taken together, nanostrategies can effectively address the limitations of
polyphenols, improving the viability of their application in the clinical treatment of IBD
(Figure 6).
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6.3. Combination with Other Agents

Recent evidence has highlighted that single drug administration sometimes cannot
achieve successful therapeutic goals in IBD treatment [191]. Due to the complex and
diverse clinical features of IBD patients, individualized treatment based on drug combi-
nations is gradually being applied in clinical practice. To address drug resistance and
side effects in IBD therapy, an increasing number of studies have been dedicated to com-
bining polyphenols with conventional medications. For example, based on its ability to
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ameliorate murine experimental colitis, curcumin combined with mesalamine, a front
line treatment for mild to moderate UC, effectively maintained remission in UC patients
while causing no obvious adverse effects, and outperformed the combination of placebo
and mesalamine [192]. Osteoporosis, or bone loss, is a common extraintestinal side effect
when treating IBD with steroids, especially glucocorticoids. A recent study found that
naringin, a natural polymethoxylated flavonoid, can reverse the downregulated expression
of bone formation-related genes in dexamethasone-treated IBD rats by impeding oxidative
stress [193]. Interestingly, in another study, a novel strategy of combining resveratrol and
Ligilactobacillus salivarius Li01 (Li01), a probiotic strain capable of promoting the recovery of
the gut microbiota and gut barrier, showed favorable synergetic effects in treating colitis
mice. Resveratrol promotes the growth of Li01 in vivo, which in turn affects the turnover of
resveratrol into more bioactive metabolites, such as dihydroresveratrol, which can facilitate
the suppression of inflammation by activating the environmental sensor mammalian aryl
hydrocarbon receptor (AHR) and affecting the serotonin pathway [194]. In another ap-
proach, the combination of polysaccharides (TPS) with tea polyphenols (TPP) decreased the
relative abundance of intestinal probiotics, including Lactobacillaceae and Lactobacillus, and
thus improved the intestinal barrier function, thereby alleviating colitis [195]. In addition,
other studies have focused on combining different polyphenols or combining polyphenols
with other drugs in IBD therapy, such as the combination of resveratrol with melatonin
and the combined application of baicalin and emodin [196,197]. Collectively, these novel
strategies have the potential to eliminate the drawbacks of polyphenols per se and thus
accelerate the development of polyphenol-based agents with increased anti-inflammatory
ability and decreased side effects to overcome IBD (Figure 7).
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7. Conclusions and Perspective

The pathogenesis of IBD is extremely complex and is related to the genes, environ-
ment, immune system, oxidative stress, gut microbiota, and other psychological factors.
Common symptoms (e.g., abdominal pain, diarrhea, blood in the stool, malabsorption
of nutrients, fatigue, and anemia) aggravate the risk of depression and anxiety [198]. In
addition, persistent oxidative stress, dysbiosis, inflammation, infection, and malnutrition
increase the risk of developing colorectal cancer [199]. In the clinic, the major goal of
IBD treatment is to prolong the remission period and prevent a recurrence. Conventional
therapeutics such as medicines (e.g., 5-aminosalicylic acid, infliximab) and steroid hor-
mones are effective for IBD treatment. Nevertheless, these therapeutic regimens have side
effects and limitations that reduce the quality of life of IBD patients. Importantly, natural
polyphenols can effectively overcome these side effects and limitations in treating IBD. In
this review, from the perspective of oxidative stress, inflammation, and the gut microbiota,
we have summarized the corresponding potential mechanisms of pathogenesis of IBD. In
addition, we have detailed several polyphenols that can function in IBD by mitigating
oxidative stress, restoring gut microbial diversity, and assuaging inappropriate immune
responses. We have also discussed novel strategies to drive polyphenols as ideal agents
for IBD treatment, including chemical modification, nanotechnology, and combination
treatment. As numerous preclinical and clinical trials have been implemented in recent
years [NCT00718094, NCT03408847], the administration of polyphenols will become a
novel therapeutic regimen against IBD.
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IBD: Inflammatory bowel disease; IECs: Intestinal epithelial cells; iNOS: Inducible nitric oxide
synthase; Li01: Ligilactobacillus salivarius Li01; LPS: Lipopolysaccharide; MDA: Malondialdehyde;
MPO; Myeloperoxidase; NETs: Neutrophil traps; NODs: Nucleotide oligomerization domains; NOX:
NADPH Oxidases; PAMPs: Pathogen-associated molecular patterns; PRRs: Pattern recognition
receptors; ROS: Reactive oxygen species; SCFAs: short-chain fatty acids; SOD: Superoxide dismutase;
TCM: traditional Chinese medicine; TCM: Central memory T cells; TEM: Effector memory T cells; Tfh:
Follicular helper T cells; Tfr: Follicular regulatory T cells; TGR5: Takeda G protein-coupled receptor
5; TLR: Toll-like receptors; TNBS: 2,4,6-trinitrobenzenesulfonic acid; TPP: Tea polyphenols; TPS: Tea
polysaccharides; Tregs: T regulatory cells; UC: Ulcerative colitis.
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