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Abstract: Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while
antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects
in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols,
flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids,
phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These
compounds are present in most plants, are abundant in nature, and contribute to the bitterness and
color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in
sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other
kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects
still exist. The antioxidant activities of phenolic compounds may be beneficial for human health.
On the other hand, metabolism by intestinal bacteria changes the structures of these compounds
with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years,
it has become possible to analyze the composition of the intestinal microbiota. The augmentation
of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease
prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication
system between the gut microbiome and brain, is attracting increasing attention, and research has
revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this
review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against
some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal
microflora, and their effects on the brain–gut axis.

Keywords: phenolic compounds; antioxidant; gut microbiota

1. Introduction

Phenolic compounds are components that contribute to the bitterness, astringency, and
pigmentation of most plants. In addition to providing color to flowers, the physiological
role of these compounds in plants is to confer biological protection against damage caused
by ultraviolet rays, feeding by insects and herbivores, and pathogenic microorganisms.
The type of phenolic compounds is dependent on its chemical structure [1] and includes
well-known “catechins”, “isoflavones”, and “anthocyanins”. Phenolic compounds and
their analogs have a wide variety of molecular sizes and structures (Figure 1).

Previous studies on the antioxidant activity of phenolic compounds confirmed their
role in the detoxification of excess reactive oxygen species (ROS) and the prevention of
lifestyle-related diseases. The biological effects of phenolic compounds depend on the
amount consumed and their digestion, absorption, and bioavailability. The majority of these
compounds are not absorbed in the small intestine and reach the colon, in which glycosides
are hydrolyzed and degraded by intestinal bacteria, generating various catabolites [2].
These catabolites have been found to contribute to human health.
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Among health issues, lifestyle diseases and neurodegenerative diseases are of great
concern. As a dietary method that contributes to health, there is a ketogenic diet that
mainly consists of lipids which is useful for Alzheimer’s disease relief [3] or prevention of
obesity and diabetes [4]. In addition to these kinds of diet, dietary phenolic compounds
and their catabolites also have health benefits in cardiovascular diseases [5], rheumatoid
arthritis [6,7], depression [8,9], and eye diseases [10].

Research on intestinal bacteria has evolved in the past 20 years. The types and compo-
sition of bacteria that make up the intestinal flora may be investigated using a 16S rRNA-
based metagenomic analysis. The type and composition of intestinal bacteria change under
different disease states or with damage, which affects the regulation of metabolism and the
immune system by these bacteria. In recent years, it has become possible to investigate the
mechanisms by which the ingestion of phenolic compounds derived from various foods
change the composition of intestinal bacteria and also their effects on the body. Dysbiosis
of the intestinal microbiota is attracting attention as one of the pathogenic mechanisms
of neurodegenerative diseases [11,12]. In the past decade, oxidative stress, inflammation,
and impaired autophagy have been identified as pathogenetic factors for neurodegenera-
tive diseases, such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral
sclerosis [13–16]. Phenolic compounds, which are expected to exert antioxidant effects
in vivo, may be involved in the attenuation or prevention of neurodegenerative diseases.

In our recent study in mice, administration of persimmon-derived tannin, a type of
phenolic compound, suppressed the symptoms of Mycobacterium Avium Complex (MAC)
infection [17], and decreased the severity of ulcerative colitis [18]. Furthermore, it is ex-
pected that persimmon-derived tannin is degraded by intestinal bacteria and the catabolites
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showed antioxidant activities in vivo [19]. In this review, we summarized the findings
of studies in which the administration of phenolic compounds augmented the intestinal
flora in vivo and exerted beneficial effects on health. Furthermore, we discussed some
phenolic compounds that are indigestible and those with active substances that currently
remain unknown.

2. Flavan-3-Ols

Flavan-3-ols (flavanols) are a group of flavonoids that have a 2-phenyl-3,4-dihydro-2H-
chromen-3-ol skeleton. Dietary flavan-3-ols are abundant in cocoa, tea, apples, grapes (in-
cluding red wine), berries, plums, apricots, and nuts. Flavan-3-ols are complex flavonoids
in which monomers, such as catechins and epicatechins, make up units to form oligomers
and polymers. They are components of proanthocyanidins, and many analogs exist in
nature. Catechins, major dietary monomers, are abundant in tea leaves, and many studies
have investigated their antioxidant properties [20,21]. Unlike other classes of flavonoids,
flavan-3-ols are not present in a glycosylated form in foods [22] and monomeric flavan-3-ols
are quickly absorbed in the small intestine. The galloylation and polymerization of flavan-3-
ols were shown to significantly delay intestinal absorption [23]. Therefore, when oligomers
and polymers reach the colon, they need to be metabolized by the colonic microbiota to
provide health benefits.

The mechanisms underlying the antioxidant effects of monomers have been reported [24].
The antioxidant capacity of flavan-3-ol monomers is exerted through phenolic hydroxyl
groups that trap ROS and the chelation of iron ions to prevent lipid peroxidation [25,26].
By indirectly employing antioxidant pathways, flavan-3-ols regulate the synthesis of
antioxidant-related enzymes and the signaling pathways of oxidative stress [27]. However,
the mechanisms of action of oligomers and polymers remain unclear.

2.1. Dietary Source and Metabolism of Flavan-3-Ols
2.1.1. Tea

Tea is a major source of catechins. Various types of tea are available from the
Camellia sinensis (L.) plant, depending on the harvesting and processing of its leaves. Green
tea is unfermented tea; black tea is completely fermented tea; white tea and oolong tea
are tea types with different degrees of fermentation [28]. There are five main types of
catechins present in tea: (+)-catechin, (−)-epicatechin (EC), (−)-epigallocatechin (EGC),
(−)-epicatechin gallate (ECG), and (−)-epigallocatechin gallate (EGCG) (Figure 2) [29,30].
EGCG is the most abundant catechin in unfermented teas (green tea and white tea) [31].
During the fermentation of black tea, catechins are oxidized by polyphenol oxidase to
complex structures, such as theaflavin dimers and thearubigin polymers [32]. Tea pheno-
lic compounds and their metabolites possess antibacterial properties against pathogenic
bacteria, such as Clostridium perfringens, C. difficile, Escherichia coli, Salmonella, and
Pseudomonas, and enhance the activities of probiotics, including Bifidobacterium and
Lactobacillus species, thereby improving the overall balance of intestinal microbes [33,34].
The products of the intestinal bacterial catabolism of major tea catechins are shown in
Figure 3 [35].

Theaflavins and theasinensins are catechin dimers that are not absorbed in the small
intestine to the same extent as catechin; they reach the large intestine and are metabolized
by intestinal bacteria enzymes [36–38]. Four theaflavins exist in black tea: theaflavin
(TF), theaflavin-3-gallate (TF3G), theaflavin-3′-gallate (TF3′G), and theaflavin-3,3′-digallate
(TFDG) (Figure 2), with TFDG being the most abundant [39]. TFDG alters the composition
of the intestinal flora, similar to EGCG; however, the metabolic profile was significantly
different [38]. The accumulation of further findings from in vivo studies is expected.
Theasinensins are also catechin dimers with two galloyl groups; five theasinensins in
fermented tea have been identified and named theasinensins A, B, C, D, and E (Figure 2) [40].
Theasinensin A is the most abundant among the five compounds [37]. The galloyl group
is easily removed by intestinal bacteria and decomposed into theasinensin C. However,
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the progression of the subsequent reaction is slower than that of EGCG, and the whole
picture remains unclear. In vivo studies are needed on these compounds, and the findings
obtained will contribute to human health [37].
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2.1.2. Cocoa

Cocoa is generally produced by fermenting and roasting the seeds of Theobroma cacao
and then pulverizing the cocoa cake obtained by removing the fat content. Although
flavan-3-ols are relatively abundant in cocoa, its components vary depending on the type of
cacao, place of origin, time of harvest, and processing of cocoa [41–43]. Cocoa flavan-3-ols,
along with (+)-catechin and procyanidin B1 and B2 (Figure 4), as well as trace amounts of
other flavanols [44], mostly exist as EC.
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EC and procyanidin B1 in cocoa powder are metabolized in the intestines (Figure 5) [45].
Phenolic compounds in cocoa are metabolized in both the small and large intestine to
produce metabolites that affect human health. [41,45,46].
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2.2. Health Benefits of Flavan-3-Ols
2.2.1. Tea

A well-established causal relationship has been reported between the intake of EC and
the regulation of cardiovascular function [47,48]. EC is rapidly absorbed, and its metabolites
are excreted in the urine 72 h after consumption [49]. Although EC does not affect the
composition of the microbial flora [50], EC phase II and gut microbiota metabolites may
induce complex nutrigenomic/epigenomic changes that regulate the function of brain
endothelial cells [49,51]. In other words, the metabolites of EC may reduce the risk of
neurodegenerative diseases by maintaining the integrity of cerebrovascular endothelial
cells, suggesting that the intake of EC contributes to improvements in cognitive ability [51].

The ingestion of tea reportedly attenuates alcoholic liver disease [52]. The administra-
tion of tea extract has been shown to activate antioxidant enzymes in the liver, change the
intestinal flora, and promote liver function [53,54]. Although some types of teas promote
liver function, others exert the opposite effects; therefore, further research on this subject is
required [52,53].

EGCG is the major catechin found in unfermented tea [28] and exhibits the highest
antioxidant activity among the four catechin monomers in vitro [30]. EGCG may attenuate
non-alcoholic fatty liver disease (NAFLD) by regulating the interaction between the gut
microbiota and bile acids [55].

NAFLD is closely associated with the gastrointestinal microflora and its dysbiosis [56,57];
therefore, further research on the treatment and prevention of NAFLD is needed. EGCG
reportedly prevents the occurrence of NAFLD by regulating the intestinal flora. Akkermansia
muciniphila, belonging to the phylum Verrucomicrobia, has been implicated in obesity,
glucose metabolism, and intestinal immunity [58]. The abundance of the genus Akkermansia
has been shown to increase with the intake of phenolic compounds and exerts anti-obesity
effects [59]. Furthermore, EGCG intake increased the abundance of the genus Akkermansia
in mice compared to a high-fat diet [55].

Inflammatory bowel disease (IBD) is an inflammatory disease that collectively refers
to ulcerative colitis (UC) and Crohn’s disease, which are generally considered to have
unknown (non-specific) etiologies. Catechins exhibit anti-inflammatory, antioxidant, and
antibacterial activities, which may improve the abnormal condition of intestinal bacteria
caused by IBD [60–63]. However, depending on the doses of catechin examined, conflicting
findings have been reported; therefore, further research on this subject is needed [27].

Catechins in tea are metabolized into phenyl-γ-valerolactones by the action of intesti-
nal bacteria as shown in Figure 3. Phenyl-γ-valerolactones regulate cellular proteolysis and
exert neuroprotective effects [64]. In cell lines, EGCG, EGC, and ECG have been reported
to inhibit amyloid-β-induced inflammation and neurotoxicity [65–68]. Animal studies
also revealed the beneficial effects of EGCG on neurodegeneration in animal models of
Alzheimer’s disease [69] and Parkinson’s disease [70,71]. Furthermore, EGCG was shown
to affect hypoxia-induced neuroinflammation in cell lines [72]. Based on these findings, the
intake of catechin may be effective against neurodegenerative diseases. However, there
are many issues that need to be considered in clinical studies on humans, such as intake as
food or supplements, dietary habits, and regional characteristics, and thus, further research
is necessary.

2.2.2. Cocoa

Cocoa powder has been shown to affect the gut microbiota by changing their metabo-
lites and promoting the growth of Lactobacillus and Bifidobacterium groups in pigs [73]
Flavanols in cocoa may function as prebiotics to maintain intestinal immunomodulation by
regulating the gut microbiota [74–76]. The ingestion of cocoa powder was previously sug-
gested to change the intestinal flora of the diabetic Zucker rat model, by strengthening the
intestinal barrier and ameliorating colonic inflammation, thereby attenuating diabetes [77].
Cocoa powder was also shown to down-regulate inflammation markers and suppress
inflammation-related colon carcinogenesis; therefore, its consumption may be promising
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for the prevention of intestinal inflammation and related cancers [78]. Cocoa flavanols
also exert endothelium-dependent vasodilatory effects [79], suggesting their potential to
ameliorate cardiovascular diseases [80].

Flavan-3-ols derived from cacao are metabolized into phenyl-γ-valerolactones by
the action of intestinal bacteria, similar to the above-described tea catechins (Figure 5).
Therefore, they may be effective against neurodegenerative diseases [81–83].

However, difficulties are associated with investigating the effects of cocoa flavan-3-ols
in vivo due to the selection of an appropriate dose and their complex relationship with the
intestinal flora [84]. Since cocoa powder also contains dietary fiber and alkaloids, such as
theobromine, further studies on its effects on human health are warranted.

3. Condensed Tannins

Tannin is a general term for astringent plant components that exist widely throughout
the plant kingdom and have been traditionally used to tan leather. There are two types
of tannins, one of which is hydrolyzed tannins which are polymers of ellagic acids or
gallic acids, and the other is condensed tannins which are polymers of catechins. They are
hydrolyzed or decomposed under specific conditions and produce low molecular weight
phenolic compounds. The astringent skin of chestnuts and walnuts contain hydrolyzed
tannins and astringent persimmons contain condensed tannins. Red wine also contains
condensed tannins, but the degree of polymerization of catechins are altered depending on
the degree of fermentation and the manufacturing method. In this chapter, we will focus
on condensed tannins which are a component of astringent persimmon fruits.

3.1. Dietary Source and Metabolism of Tannins
Astringent Persimmon

Astringent persimmon fruits (Diospyros kaki Thunb.) contain large quantities of kaki
tannin, a type of condensed tannin, such as EC, EGC, ECG, and EGCG (Figure 1) [85].
However, the structure of kaki tannin has not yet been clarified. Soluble kaki tannins in
astringent persimmon fruits are converted into insoluble kaki tannins via dehydration,
and dried persimmons lose their bitterness and have a sweet taste. Moreover, kaki tan-
nins are reportedly non-hydrolyzable and non-digestible, but exhibit high antioxidant
activity [86,87].

3.2. Health Benefits of Tannins
Astringent Persimmon

Kaki tannin has the property of binding with bile acids [87] and the effect of lowering
cholesterol and ameliorating glucose metabolism [88,89]. Kaki tannins have also been
reported to reshape the gut microbiota in rats fed a high-cholesterol diet [90].

Mycobacterium avium complex (MAC) is the most common nontuberculous mycobac-
terium that causes chronic pulmonary infections in immunodeficient individuals. Kaki tan-
nins, used as a dietary supplement, reduce the symptoms of pulmonary MAC infection [17],
suggesting an impact on mucosal immune inflammation, including that of the gut, through
their anti-inflammatory effects and changes to the gut microbial composition. Moreover,
kaki tannins may need to be digested and/or fermented into smaller molecules in vivo prior
to their absorption into the body in order to exert their beneficial effects. The artificial diges-
tion of the non-extracted residues of dried persimmons containing kaki tannins suggested
that intestinal bacteria degraded the tannins into lower molecular weight fragments [19].

UC is a chronic IBD induced by the dysregulation of the immune response in the
intestinal mucosa. The pathogenesis of UC was less severe in a mouse model fed kaki
tannins than in a control diet group [18]. Furthermore, the gene expression of an inflamma-
tory cytokine (IL-1β) and chemokine (CXCL1) was significantly decreased in the tannin
diet group. An analysis of the composition of the fecal microbiota of mice employing 16S
ribosomal RNA gene sequencing revealed that a treatment with DSS significantly increased
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the abundance of the phylum Enterobacteriaceae in the control diet group, whereas it was
significantly suppressed in the kaki tannin diet group.

Dietary supplementation with kaki tannins ameliorated the pathogenesis of MAC
disease and DSS-induced colitis by suppressing the inflammatory response and changing
the composition of the microbiota. However, further studies are needed to establish the
optimal method of administration, select the appropriate concentration of kaki tannin, and
elucidate the detailed chemical structures of the decomposed tannins. Although tannins
have been shown to promote lipid metabolism in animal experiments [87,91,92], and similar
findings were obtained for humans [93], the relationship between these findings and gut
bacteria remains unclear. Therefore, human clinical trials are needed in the future to assess
the health benefits of tannins.

4. Flavonols

Flavonols, a subclass of flavonoids with a 3-hydroxyflavone skeleton, are widely
present in plants [22]. Typical flavonols include myricetin (in grapes and berries), kaempferol
(in tea, broccoli, and ginger), rutin (in asparagus and buckwheat), and quercetin (Figure 6).
Quercetin is a representative flavonol that has been extensively examined and is present
in vegetables and fruits, such as onions, broccoli, and apples. Flavonols generally exist
in a glycosidic form and are deglycosylated and absorbed in the small intestine. After
absorption, they are rapidly metabolized by phase II enzymes in the liver and circulate as
methyl, glucuronide, and sulfate metabolites [94,95].
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4.1. Dietary Sources and Metabolism of Flavonols
4.1.1. Onions

Onions (Allium cepa L.) are used as an ingredient in various dishes. They are rich
in flavanols, the most abundant of which is quercetin [96,97]. Quercetin (an aglycone) is
mostly present in the outer skin and quercetin 4′-glucoside and quercetin 3,4′-diglucoside
in the bulbs, which are generally edible [98,99]. Figure 7 shows the quercetin catabolites
produced by intestinal bacteria and phase II enzymes in the liver. Quercetin derivatives in
onions increase their bioavailability through cooking processes, such as baking, frying, and
grilling [100].
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4.1.2. Buckwheat

Buckwheat is widely grown in Asia, Europe, and the Americas. Both common buck-
wheat (Fagopyrum esculentum Moench) and tartary buckwheat (F. tataricum (L.) Gilib.) are
used as food sources, and the antioxidant activity of tartary buckwheat is higher than that
of common buckwheat [101]. Rutin is the main flavonol in buckwheat, accounting for
90% of all phenolic compounds [102]. Rutin is a glycoside composed of flavonol aglycone
quercetin along with disaccharide rutinose (Figure 6), and rutin is converted to quercetin
by rutinosidase contained in seeds during grain milling [103]. Buckwheat is a potential
gluten-free diet for people with gluten sensitivities and has been noted for its antioxidant
properties and other health benefits [104].

4.2. Health Benefits of Flavonols
4.2.1. Onions

Quercetin exhibits antioxidant, anti-inflammatory, and anti-osteoporotic activities [95,105].
The administration of quercetin and quercetin glycosides extracted from onion skin to
rats on a high-fat diet increased serum antioxidant activity and significantly increased
enzyme activity derived from intestinal bacteria [106]. In other words, quercetin effec-
tively reduced the intestinal flora abnormalities induced by the high-fat diet. However,
in human clinical studies, the administration of onion peel extracts to obese patients with
hypertension did not attenuate their symptoms [107]. Similarly, in clinical studies on hyper-
tension and rheumatoid arthritis, the administration of quercetin did not exert beneficial
effects [108–112]. Based on the beneficial effects of onion peel observed in animal and
cell culture experiments, clinical studies need to be performed on humans under various
conditions, particularly obesity.

Quercetin glycosides are catabolized to produce phenolic acids by intestinal bacteria [113].
Among the phenolic acids derived from quercetin glycosides, 3,4-dihydroxyphenylacetic acid is
the most effective at scavenging free radicals and inducing phase II enzymes [114]. More-
over, 3,4-dihydroxyphenylacetic acid significantly inhibits hydrogen peroxide-induced
cytotoxicity [114,115]. Quercetin has been implicated in the attenuation of insulin resistance
and atherosclerosis in obesity-related diseases [116–119]. It was found to promote intestinal
homeostasis by changing the intestinal flora [120,121] and also plays a role in the prevention
and treatment of inflammatory bowel disease [122,123].
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A previous study demonstrated that quercetin and rutin effectively suppressed the
aggregation of amyloid-β in cell lines, and thus, they are expected to be effective against
Alzheimer’s disease [124]. Quercetin has potential in the treatment of Alzheimer’s disease
in cell lines [125–127] and was effective in a mouse model of Alzheimer’s disease [128].
Therapeutic effects have been suggested in animal models of Parkinson’s disease, and
quercetin may be effective against neurodegenerative diseases [129,130]. In addition, the
combined use of quercetin and piperine (a type of alkaloid), which is a component of
pepper, appeared to exert neuroprotective effects [131,132].

Although cell cultures and animal experiments have provided important findings, few
clinical experiments have been conducted in humans to date; therefore, future research and
verification are required.

4.2.2. Buckwheat

Rutin and quercetin contained in tartary buckwheat regulate gut microbiota and are
involved in lipid metabolism [133]. Rutin had little effect on attenuating obesity but tended
to decrease fat deposition in the liver [133]. Phenolic compounds extracted from tartary
buckwheat bran showed dose-dependent anticancer activity against human breast cancer
MDA-MB-231 cells [134]. Further research is needed regarding the anticancer properties of
rutin in humans [135]. It has been suggested that rutin has the potential to inhibit major
proteases of SARS-CoV-2 in vitro [136,137].

Rutin and quercetin interact with buckwheat proteins and starch [138]. The presence
of phenolic compounds such as rutin and quercetin reduces the digestibility of proteins
and starches and allows them to be absorbed slowly [139,140]. While this is not a favorable
outcome in terms of natural nutrient uptake, it also has some desirable consequences
related to diabetes and lipid metabolism [141–143]. Concerning cardio-metabolic disease,
meta-analyses have not yet yielded consistent results regarding the usefulness of phenolic
compounds, such as rutin [144]. Recent studies suggest that buckwheat has inhibitory
effects on Alzheimer’s disease and other neurological disorders [145], but it is not yet clear
whether rutin is responsible for this effect [146]. Therefore, further research is needed.

5. Isoflavones

Isoflavones are flavonoids with 3-phenylchromone as the basic skeleton (Figure 8).
They are abundant in plants of the legume family (Fabaceae), such as soybeans and kudzu.
Isoflavones bind to estrogen receptors in the body and exert a number of effects because
their chemical structures are similar to estrogen [147]. They may be beneficial, but also
detrimental [148]. For example, while isoflavones are expected to effectively prevent
osteoporosis, breast cancer, and prostate cancer, they also increase the risk of the onset
and recurrence of breast cancer [148]. Glycosides are not easily absorbed in the small
intestine and must be converted into aglycones, such as genistein and daidzein, to function
in vivo [149,150].

Antioxidants 2023, 12, x FOR PEER REVIEW 11 of 45 
 

effects on Alzheimer’s disease and other neurological disorders [145], but it is not yet clear 

whether rutin is responsible for this effect [146]. Therefore, further research is needed. 

5. Isoflavones 

Isoflavones are flavonoids with 3-phenylchromone as the basic skeleton (Figure 8). 

They are abundant in plants of the legume family (Fabaceae), such as soybeans and kudzu. 

Isoflavones bind to estrogen receptors in the body and exert a number of effects because 

their chemical structures are similar to estrogen [147]. They may be beneficial, but also 

detrimental [148]. For example, while isoflavones are expected to effectively prevent 

osteoporosis, breast cancer, and prostate cancer, they also increase the risk of the onset 

and recurrence of breast cancer [148]. Glycosides are not easily absorbed in the small 

intestine and must be converted into aglycones, such as genistein and daidzein, to 

function in vivo [149,150]. 

 

Figure 8. Chemical structure of the main isoflavones and isoflavone glycosides. 

5.1. Dietary Source and Metabolism of Isoflavones 

Soybeans 

Soybeans (Glycine max (L.) Merr.) are the most abundant source of isoflavones [151]. 

Many isoflavones, such as genistin and daidzin, are present in food (Figure 8). In the small 

intestine, lactase-phlorizin hydrolase and cytosolic β-glucosidase hydrolyze 

monoglucuronides to form aglycones [152,153]. The absorbed isoflavone aglycones are 

mainly metabolized to glucuronides and sulfates by endogenous phase I and phase II 

enzymes. Isoflavones are excreted into the intestines via the enterohepatic circulation, and 

unabsorbed isoflavones reach the colon and are metabolized to form the metabolite, equol, 

and other metabolites by intestinal bacteria [154] (Figure 9). Numerous studies have 

identified equol-producing bacteria; however, findings on the production of equol have 

been inconsistent because it is markedly affected by the diet of the host [154]. A previous 

study reported that 25–30% of the Western population possessed equol-producing gut 

bacteria, whereas they were detected in 50–60% of the Asian population [155].  

Figure 8. Chemical structure of the main isoflavones and isoflavone glycosides.



Antioxidants 2023, 12, 880 11 of 41

5.1. Dietary Source and Metabolism of Isoflavones
Soybeans

Soybeans (Glycine max (L.) Merr.) are the most abundant source of isoflavones [151].
Many isoflavones, such as genistin and daidzin, are present in food (Figure 8). In the small
intestine, lactase-phlorizin hydrolase and cytosolic β-glucosidase hydrolyze monoglu-
curonides to form aglycones [152,153]. The absorbed isoflavone aglycones are mainly
metabolized to glucuronides and sulfates by endogenous phase I and phase II enzymes.
Isoflavones are excreted into the intestines via the enterohepatic circulation, and unab-
sorbed isoflavones reach the colon and are metabolized to form the metabolite, equol, and
other metabolites by intestinal bacteria [154] (Figure 9). Numerous studies have identified
equol-producing bacteria; however, findings on the production of equol have been inconsis-
tent because it is markedly affected by the diet of the host [154]. A previous study reported
that 25–30% of the Western population possessed equol-producing gut bacteria, whereas
they were detected in 50–60% of the Asian population [155].
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5.2. Health Benefits of Isoflavones
Soybeans

Soybeans are rich in isoflavones, particularly genistin and daidzin [151]. Isoflavones
are phytoestrogens, such as the female hormone 17-β-estradiol, which are less active than
hormones, but exhibit estrogenic activity [156]. Therefore, the intake of isoflavones is
expected to alleviate menopausal symptoms in women, increase bone formation, and
reduce the incidence of cardiovascular disease. Equol is a metabolite of daidzin/daidzein
formed by intestinal bacteria (Figure 9). It is more stable and more easily absorbed
than daidzein [157] and exhibits stronger estrogenic activity than other isoflavones and
isoflavone-derived metabolites [158–161]. Isoflavone aglycones and glycosides are both
catabolized by enzymes of the intestinal microbiota to produce high levels of antioxidant
substances, such as equol. A correlation has been reported between soybean intake and the
attenuation of menopausal symptoms [162].
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The intake of soy isoflavones has been suggested to reduce bone resorption, prevent
some types of cancers, and improve learning [163–166]. These health effects are attributed
to equol produced from soy isoflavones by the action of the intestinal microbiota. There-
fore, these effects may be observed in individuals who produce equol in their intestines.
Furthermore, the human gut microbiome is highly individualized, and its effects are in-
consistent. This inconsistency poses a major challenge when considering the effects of
isoflavones on humans. Adverse effects associated with the intake of soy isoflavones,
including endometriosis, dysmenorrhea, and secondary infertility, have also been reported,
and symptoms were ameliorated by the discontinuation of intake [167].

Isoflavones and their metabolites exert their effects by binding to the estrogen receptor
(ER) and transmitting cell signals. However, isoflavones are agonists that activate ER as
well as antagonists that inhibit it, which modulates estrogen signaling. Therefore, they may
act as an endocrine disruptor, with more than just beneficial effects [167].

Animal studies showed that genistein, a soy isoflavone, was effective for the treatment
of neurodegenerative diseases, such as Alzheimer’s disease [168–170] and Parkinson’s
disease [171]. Early oral genistein therapy appeared to ameliorate the severity of disease in
multiple sclerosis model mice [172].

In the future, we anticipate further advances in this field that will verify the effects of
isoflavones and their metabolites on humans.

6. Phenylpropanoids

Phenylpropanoids, also called lignoids, are compounds that have a C6-C3 skeleton
with a C3 group attached to an aromatic ring. Monomers include caffeic acid, which is
widely present in plants, and chlorogenic acid (an ester of caffeic and quinic acid), which is
abundant in green coffee beans. Sesamin is a dimer, also known as lignan, and is abundant
in sesame seeds. Chlorogenic acid may be ingested from food. Figure 10 shows the chemical
structures of the major phenylpropanoids.
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6.1. Dietary Source and Metabolism of Phenylpropanoids
6.1.1. Coffee

Coffee is one of the most consumed beverages in the world. It contains at least
30 types of chlorogenic acids [173]. The term “chlorogenic acids” refers to a group of
phenolic compounds, of which approximately 400 have been discovered to date [174].
5-O-caffeoylquinic acid is the main chlorogenic acid found in green coffee beans. Although
the type and concentration of chlorogenic acids vary depending on the type of coffee bean,
the roasting process, and extraction method, the beneficial health effects of coffee are related
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to its chlorogenic acid content, whether green or roasted. The high antioxidant activity
of coffee is attributed to the amount of chlorogenic acid present [175]. Figure 11 shows
the main chlorogenic acids found in coffee [176]. Approximately 30% of these chlorogenic
acids are absorbed in the stomach or small intestine, while the remainder are transferred to
the large intestine, in which they are metabolized into dihydroferulic acid, its 4-O-sulfate,
and dihydrocaffeic acid-3-O-sulfate by intestinal bacteria [177,178].
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6.1.2. Sesame

Sesame (Sesamum indicum L.) is an edible seed and source of high-quality edible oil.
Sesame oil exhibits antioxidant activity and possesses health-promoting properties because
it contains vitamin E and lignans [179,180]. The major lignans in sesame are sesamin
and sesamolin, which are formed by the dimerization of two phenylpropanoids [181].
Sesamin and sesamolin exhibit weak antioxidant activities in vitro because they do not
have phenolic hydroxyl groups [182]; however, they possess antioxidant properties after
being metabolized in vivo to form hydroxyl groups [183,184] (Figure 12).
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6.2. Health Benefits of Phenylpropanoids
6.2.1. Coffee

Chlorogenic acids exhibit antioxidant activity [185–187] and anti-obesity activity
in vivo [188–190]. Daily coffee consumption reduces the risk of type 2 diabetes [191].
Chlorogenic acid from coffee possesses prebiotic properties in vivo [192,193]. Therefore,
the daily consumption of coffee may contribute to the prevention of obesity and lifestyle-
related diseases.

Coffee consumption has been suggested to reduce the risk of developing neurode-
generative diseases, such as Alzheimer’s disease, Parkinson’s disease, and dementia;
however, coffee contains a wide variety of components and their interactions need to
be investigated [194]. Since chlorogenic acid was shown to exert neuroprotective effects
against Parkinson’s disease [195–197] and Alzheimer’s disease [198] in animal experiments,
it is expected to exert similar effects in humans. More data needs to be collected because
the bioavailability of active ingredients markedly varies between individuals.

6.2.2. Sesame

The lignans in sesame have a number of health benefits, including anticancer activity,
reducing the risk of cardiovascular diseases, and anti-inflammatory effects [199,200]. They
are converted into enterolignans by intestinal bacteria and exert their effects as phytoestro-
gens [201]. Sesame lignans have been shown to inhibit L-tryptophan indole-lyase (TIL)
produced by intestinal bacteria and suppress the production of indoxyl sulfate, a uremic
toxin, catalyzed by TIL [202]. The inhibition of TIL by sesame lignans has potential as a
strategy to prevent and treat chronic kidney diseases. Although sesaminol triglucoside, a
sesame lignan glycoside, did not inhibit TIL, it induced significant increases in Lactobacillus
and Bifidobacterium and changed the intestinal microbial environment [203]. Sesamin may
also augment the intestinal environment by increasing the abundance of beneficial genera
of bacteria, including Lactobacillus and Bifidobacterium, in the intestinal flora [204]. Moreover,
sesamin reportedly promoted the adhesion of epithelial colonocytes and probiotics [204].

Sesamin, sesamolin, and sesamol exert neuroprotective effects and are expected to
be effective against neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s
disease, and Huntington’s disease [205–209]. Sesamin and sesamolin are phenylpropanoid
dimers, as shown in Figure 12, which differ in structure from the phenylpropanoid
monomer sesamol. Sesamin and sesamolin have both been shown to reduce amyloid-β tox-
icity, whereas sesamol did not [209]. However, sesamol ameliorated scopolamine-induced
cholinergic disorders [205], remodeled the intestinal microbiota, significantly increased
the content of short-chain fatty acids, and attenuated cognitive deficits [206]. Although
structure–activity relationships warrant further investigation, these sesame lignans have
neuroprotective potential.

Collectively, these findings support the potential of sesame lignans to contribute to human
health; however, only a few studies have been conducted in this area of clinical research.

7. Stilbenoids

Stilbenoids are derivatives of stilbene, an aromatic hydrocarbon called 1,2-diphenylethene.
Major stilbenoids are shown in Figure 13. Resveratrol is a type of stilbenoid that is present
in many plant food materials, such as grapes, cranberries, red currants, and peanut skin, as
well as in their processed products [210]. As a stilbenoid phenolic compound, resveratrol
has been extensively studied.

7.1. Dietary Source and Metabolism of Stilbenoids
Grapes and Wine

Resveratrol, a stilbenoid found in many plants, possesses antifungal and antibac-
terial properties. The food sources that contain resveratrol are grapes, wine [210], and
grape seed oil [211]. Resveratrol, in its native state, is present at low amounts in hu-
mans, with only 1–8% being detected in serum. Although 75% is absorbed, it is rapidly
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metabolized [212,213]. Resveratrol undergoes glucuronidation and sulfation in the liver
and duodenum to form resveratrol-3-glucuronide (R3G) and resveratrol-3-sulfate (R3S),
respectively [214,215] (Figure 14). Moreover, the intestinal flora metabolizes resveratrol
to dihydroresveratrol (DHR); however, this metabolism differs among individuals [216].
Resveratrol also crosses the blood–brain barrier due to the absence of phenolic degradation
products by intestinal bacteria [217]. Therefore, resveratrol may suppress neurodegenera-
tion in the central nervous system [218], and many studies have investigated its effects on
the nervous system.
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7.2. Health Benefits of Stilbenoids
Grapes and Wine

Moderate wine consumption has been suggested to exert beneficial effects on health.
This is commonly known as “the French paradox” because of the low incidence of coronary
artery disease despite the consumption of high saturated fats by the French population [219,220].

Resveratrol has been shown to modulate and promote intestinal barrier function in
mice, suggesting its potential to augment the intestinal flora [221,222]. Resveratrol pre-
vented obesity and attenuated NAFLD and NASH by modulating the intestinal flora,
maintaining intestinal barrier integrity, and suppressing intestinal inflammation in an-
imal models [223–226]. Furthermore, the administration of resveratrol reportedly af-
fected the intestinal flora and steroid metabolism in middle-aged men with metabolic
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syndrome [214,227–229]; however, the underlying mechanisms have not yet been eluci-
dated. Red wine consumption reduced the risk of coronary heart disease and prevented
obesity through the beneficial effects of phenolic compounds in red wine, particularly
resveratrol [230,231]. Moreover, as reported in animal studies, resveratrol augmented
the intestinal flora; however, further research is needed to confirm its effects in humans.
Resveratrol also functions as a phytoestrogen, suggesting that its effects differ in males
and females. Resveratrol may be used to treat diabetic complications during pregnancy,
endometriosis, and dysmenorrhea [232].

Animal models using grape seed oil have demonstrated wound healing activity [233,234],
efficacy against ulcerative colitis [235], protection against carbon tetrachloride-induced liver
inflammation [236]. In cell lines, pancreatic β-cell apoptosis induced by hyperglycemia was
reduced [237]. In human clinical trials, a milky lotion containing grapeseed oil was found
to be effective in treating skin problems on the cheeks [238], and the use of grapeseed oil as
massage oil was effective in reducing the physiological edema of pregnancy [239]. Oral
administration of grape seed oil suppressed serum triglycerides in humans [240].

The protective effects of resveratrol against neurodegeneration have been extensively
examined in cell lines and animals. It may also play a role in the treatment and prevention
of Alzheimer’s disease [241–244], Parkinson’s disease [245–247], Huntington’s disease [248],
multiple sclerosis [249], and amyotrophic lateral sclerosis [250]. However, it has also been
suggested to exacerbate multiple sclerosis [251].

8. Curcuminoids

Curcuminoids are lipophilic phenolic compounds with a diarylheptanoid structure
and are the yellow pigment components of turmeric.

8.1. Dietary Source and Metabolism of Curcuminoids
Turmeric

Turmeric is a spice prepared from the underground stems of Curcuma longa L. It con-
tains curcuminoids, such as curcumin, demethoxycurcumin, and bisdemethoxy-curcumin
(Figure 15). Curcumin is the most abundant curcuminoid in turmeric [252] and contains
phenolic hydroxyl groups in its chemical structure; therefore, it functions as a potent
antioxidant that suppresses the production of ROS [253].
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Due to its insolubility in water, curcumin is poorly absorbed in the gastrointestinal tract
and thus, has low bioavailability [254]. It reaches the large intestine and is biotransformed,
as shown in Figure 16, by phase I and phase II enzymes and enzymes derived from
intestinal bacteria. The resulting metabolites exhibit anti-inflammatory and antioxidant
activities [255,256].
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8.2. Health Benefits of Curcuminoids
Turmeric

Although turmeric is used as a spice in many dishes, its consumption per person is
low. Many human clinical trials have examined the effects of curcumin supplements. Since
the amount of curcumin consumed may be an important factor, the accumulation of further
findings is necessary.

Curcumin exhibits anti-inflammatory, antibacterial, and anti-tumor activities [257–261]
and also interferes with cancer-associated signaling pathways by targeting proteins and
modulating gene expression [262,263]. In human clinical trials, the administration of cur-
cumin capsules to patients with colorectal cancer reduced inflammation and oxidative
stress in malignant colorectal epithelial cells. It also attenuated inflammation in patients
with UC and gastrointestinal disorders [264–267].

Recent studies on curcumin and intestinal bacteria in animals reported that curcumin
reduced cholesterol levels [268], ameliorated the pathology of UC [269,270], and promoted a
favorable response to acute myeloid leukemia drugs [271]. Metabolites produced by the ac-
tions of intestinal bacteria may be responsible for these effects, and, in some cases, they may
also be attributed to changes in the diversity of intestinal bacteria and flora. However, these
effects were not observed under some conditions, and thus, further research is required to
elucidate the underlying mechanisms [272]. Curcumin was previously shown to be effective
against neurodegenerative diseases in many cell lines and animal studies [273–277]. It is
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also undergoing clinical trials for depression. Although curcumin may be useful in the treat-
ment of depression, the confirmation of its therapeutic efficacy requires a multi-mechanistic
approach due to the pathophysiological complexity of depression [278,279].

9. Other Phenolic Compounds: Dietary Sources, Metabolism, and Health Benefits
9.1. Protocatechuic Acid

Protocatechuic acid, a ubiquitous natural phenolic compound in plants, exerts diverse
pharmacological effects, including antioxidant, antibacterial, antiviral, anticancer, anti-
inflammatory, anti-aging, and anti-arteriosclerotic activities [280,281]. Protocatechuic acid
is found not only in fruits and vegetables, but also in the herbal medicine Duzhong
(Eucommia ulmoides Oliv.) [282]. Protocatechuic acid is also contained in oregano, which
is used as a type of spice. After its ingestion, protocatechuic acid is absorbed through
the intestinal epithelium, sulfated or glucuronylated through conjugation processes by
phase II enzymes primarily in the liver, and then circulated throughout the body [283,284].
Protocatechuic acid is also produced in vivo as a metabolite via the degradation of phenolic
compounds, particularly flavonoids, by the intestinal flora [285]. Figure 17 shows the
degradation pathway of the production of protocatechuic acid from cyanidin [286].
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Figure 17. Major metabolic pathway of the anthocyanin cyanidin-O-β-glucoside in humans. The
presence of intestinal bacteria accelerates the formation of protocatechuic acid through cleavage of
the C-ring shown in red letters in figure. Modified from [286].

Protocatechuic acid, a metabolite of various phenolic compounds, regulates oxida-
tive stress and inflammatory responses. Furthermore, protocatechuic acid increases the
energy expenditure of brown adipose tissue, which may reduce NAFLD [287], acts as an
antidepressant [288], and inhibits the progression of neurodegenerative diseases, such as
Alzheimer’s disease and Parkinson’s disease [286]. In addition, protocatechuic acid has
been shown to affect the diversity and composition of the gut microbiota [286]. However,
most of these findings were obtained from animal studies or cell culture experiments. Very
few clinical trials have been conducted to date. Therefore, further animal experiments
and clinical trials are required to establish whether protocatechuic acid can be applied to
humans [281].
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9.2. Ellagic Acid

Ellagic acid, an antioxidant, is a naturally occurring phenolic lactone compound that
is abundant in strawberries, raspberries, cranberries, and walnuts [289,290]. It polymerizes
with gallic acid to form glycoside ellagitannins. The hydrolyzable tannin ellagitannin is
readily hydrolyzed in the gastrointestinal tract to produce ellagic acid. Ellagic acid is me-
tabolized by intestinal bacteria into urolithin (Figure 18), which exhibits strong antioxidant
activity and enhances the immune system.

Antioxidants 2023, 12, x FOR PEER REVIEW 20 of 45 
 

9.2. Ellagic Acid 

Ellagic acid, an antioxidant, is a naturally occurring phenolic lactone compound that 

is abundant in strawberries, raspberries, cranberries, and walnuts [289,290]. It 

polymerizes with gallic acid to form glycoside ellagitannins. The hydrolyzable tannin 

ellagitannin is readily hydrolyzed in the gastrointestinal tract to produce ellagic acid. 

Ellagic acid is metabolized by intestinal bacteria into urolithin (Figure 18), which exhibits 

strong antioxidant activity and enhances the immune system.  

 

Figure 18. Schematic representation of the production of microbial metabolites from ellagic acid. 

Modified from [291]. 

Ellagic acid has been shown to change the composition of the gut microbiota, and is 

converted to urolithins by gut bacteria, and alleviates oxidative stress and inflammatory 

diseases in the gastrointestinal tract of animals [292].  

It also changed the intestinal flora and ameliorated C. perfringen-induced enteritis in 

animal experiments [293]. However, only a few clinical trials have been conducted to date. 

The ingestion of ellagic acid from foods, such as fermented raspberry juice [294] or Arbutus 

unedo [291] may be beneficial for human health. Ellagic acid was also shown to be effective 

against cognitive impairment and multiple sclerosis [295,296], suggesting its efficacy in 

the treatment of neurodegenerative diseases. However, further animal experiments and 

clinical trials are needed in the future. 

10. Conclusions 

In this review, we introduced compounds that may attenuate some diseases through 

the involvement of phenolic compounds that exhibit antioxidant activities. Target 

phenolic compounds must be absorbed to exert their effects, and this requires the cleavage 

of the sugar of a glycoside. The glycoside is then converted into an aglycone that is 

subsequently metabolized by phase I and phase II enzymes in the small intestine and liver 

before circulating in the body. Unabsorbed phenolic compounds undergo 

biotransformation by intestinal bacteria, after which they are absorbed and circulated in 

the body. These metabolites exert antioxidant and anti-inflammatory effects. 

Although phenolic compounds have been extensively examined in animal and cell 

culture studies in the last decade, the number of human clinical trials has been insufficient. 

Research on their effects in humans requires a great deal of effort because detailed 

planning and massive data collection are required due to large individual differences. 

Dietary ingredients are safe for consumption, but do not exert immediate effects. Further 

research on the nutrients present in the daily diet and their beneficial effects is warranted 

and may provide insights into the prevention or attenuation of diseases. Table 1 

Figure 18. Schematic representation of the production of microbial metabolites from ellagic acid.
Modified from [291].

Ellagic acid has been shown to change the composition of the gut microbiota, and is
converted to urolithins by gut bacteria, and alleviates oxidative stress and inflammatory
diseases in the gastrointestinal tract of animals [292].

It also changed the intestinal flora and ameliorated C. perfringen-induced enteritis in
animal experiments [293]. However, only a few clinical trials have been conducted to date.
The ingestion of ellagic acid from foods, such as fermented raspberry juice [294] or Arbutus
unedo [291] may be beneficial for human health. Ellagic acid was also shown to be effective
against cognitive impairment and multiple sclerosis [295,296], suggesting its efficacy in
the treatment of neurodegenerative diseases. However, further animal experiments and
clinical trials are needed in the future.

10. Conclusions

In this review, we introduced compounds that may attenuate some diseases through
the involvement of phenolic compounds that exhibit antioxidant activities. Target phenolic
compounds must be absorbed to exert their effects, and this requires the cleavage of the
sugar of a glycoside. The glycoside is then converted into an aglycone that is subsequently
metabolized by phase I and phase II enzymes in the small intestine and liver before
circulating in the body. Unabsorbed phenolic compounds undergo biotransformation
by intestinal bacteria, after which they are absorbed and circulated in the body. These
metabolites exert antioxidant and anti-inflammatory effects.

Although phenolic compounds have been extensively examined in animal and cell
culture studies in the last decade, the number of human clinical trials has been insufficient.
Research on their effects in humans requires a great deal of effort because detailed planning
and massive data collection are required due to large individual differences. Dietary
ingredients are safe for consumption, but do not exert immediate effects. Further research
on the nutrients present in the daily diet and their beneficial effects is warranted and may
provide insights into the prevention or attenuation of diseases. Table 1 summarizes the
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studies introduced in this review that showed contributions to health. We hope that the
efforts and achievements of researchers to date will lead to further advances in this field.

Table 1. Salutary effects of phenolic compounds.

Dietary Phenolic Compound
Source/Compound Disease Study Results Reference(s)

polyphenols cardiovascular disease
database-linked survey of preclinical trials and
clinical trials on polyphenols for the treatment of
cardiovascular disease

Behl et al., 2020 [5]

polyphenols rheumatoid Arthritis
efficacy of polyphenols to mitigate rheumatoid
arthritis by inhibiting the MAPK
signaling pathway

Behl et al., 2021 [6]

polyphenols rheumatoid Arthritis
a review of preclinical and clinical data on various
pathways involved in rheumatoid arthritis and
polyphenols as therapeutic agents

Behl et al., 2022 [7]

plant polyphenols depression
a review of the chemical, pharmacological, and
neurological evidence for the potential of
polyphenols in depression

Kabra et al., 2022 [8]

polyphenols depression
a review of polyphenols that inhibit oxidative
stress and inflammation through signaling
pathways in depression

Behl et al., 2022 [9]

polyphenols
carotenoids eye disease

a review of the health benefits of polyphenols and
carotenoids for the prevention and treatment of
age-related eye diseases

Bungau et al., 2019 [10]

quercetin, EC arteriosclerosis
augmentation of nitric oxide status and
attenuation of endothelin-1 concentration in
plasma of healthy men

Loke et al., 2008 [47]

cocoa/EC cardiovascular disease

acute elevations in levels of circulating nitric oxide
species, an enhanced flow-mediated vasodilation
response of conduit arteries, and an
augmented microcirculation

Schroeter et al.,
2006 [48]

EC brain endothelial dysfunction,
neurodegenerative disorders

regulated protein expression and gene expression
in brain endothelial cells

Corral-Jara et al.,
2022 [51]

green tea extracts alcoholic fatty liver disease attenuation of triacylglycerol levels in serum and
liver and aminotransferase activities in mice Li et al., 2021 [52]

tea extracts alcoholic fatty liver disease
prevention of liver steatosis, decrease in oxidative
stress and inflammation, modulation of
gut microbiota

Li et al., 2021 [54]

green tea alcoholic fatty liver disease amelioration of alcoholic liver disease by
activation of Akkermansia muciniphila Zhao et al., 2022 [53]

EGCG non-alcoholic fatty liver disease

inhibited the increase in histological fatty deposits
and triglyceride accumulation in the liver induced
by high fat diet, improved intestinal dysbiosis, and
involved in sirtuin genes

Naito et al., 2020 [55]

concord grape polyphenols obesity
increase in the growth of Akkermansia muciniphila
and decrease in the proportion of Firmicutes
to Bacteroidetes

Roopchand et al.,
2015 [59]

EGCG ulcerative colitis the active treatment remission rate was 53.3% (8 of
15) compared with 0% (0 of 4) for placebo Dryden et al., 2013 [60]

EC acute and chronic colitis
attenuation of COX-2 expression and increase in
cell proliferation, repair of the epithelium by
stimulating the expression of EGF

Vasconcelos et al.,
2012 [61]

EGCG and piperine ulcerative colitis
increased bioavailability, decreased colonic
histological damage and MDA levels, and
increased antioxidant enzyme activity

Brückner et al.,
2012 [62]
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Table 1. Cont.

Dietary Phenolic Compound
Source/Compound Disease Study Results Reference(s)

EGC and ECG Alzheimer’s disease attenuation of amyloid-β aggregation, reduced
ROS production, less neurotoxicity to neurons Chen et al., 2020 [65]

EGCG Alzheimer’s disease negative regulation of microglial inflammation
and neurotoxicity Zhong et al., 2019 [66]

EGCG Alzheimer’s disease activated ERK-and PI3K-mediated pathways in
astrocytes and accelerated amyloid-β degradation

Yamamoto et al.,
2017 [67]

EGCG Alzheimer’s disease inhibition of neuroinflammatory response in
microglia, protection from indirect neurotoxicity

Cheng-Chung Wei
et al., 2016 [68]

EGCG Alzheimer’s disease attenuation of cognitive deficits in APP/PS1 mice Bao et al., 2020 [69]

EGCG Parkinson’s disease
modulation of the substantia nigra iron transport
protein ferroportin, attenuation of oxidative stress,
neuroprotective effects

Xu et al., 2017 [70]

EGCG Parkinson’s disease inhibition of substantia nigra neurodegeneration,
neuroprotective effect Sergi 2022 [71]

EGCG hypoxia-induced
neuroinflammation

protection of microglia by disabling the NF-κB
pathway and activating the Nrf-2/HO-1 pathway Kim et al., 2022 [72]

flavanol-enriched
cocoa powder

amelioration of
intestinal environment

enhanced the abundance of Lactobacillus and
Bifidobacterium species, modulated markers of local
gut immunity

Jang et al., 2016 [73]

cocoa flavanols disorder of the
intestinal environment growth of select gut microflora in humans Tzounis et al., 2011 [74]

cocoa disorder of the
intestinal environment

improved gut-associated lymphoid tissue function
by modulating IgA secretion and gut microbiota

Pérez-Cano et al.,
2013 [75]

cocoa deterioration of the intestinal
immune system

differential TLR patterns, attenuation of intestinal
IgA secretion and IgA-coating bacteria

Massot-Cladera et al.,
2012 [76]

cocoa diabetes mellitus amelioration of intestinal flora, barrier integrity,
and the inflammatory status of the intestine

Álvarez-Cilleros et al.,
2020 [77]

cocoa inflammation-related colon
carcinogenesis

attenuation of NF-κB, pro-inflammatory enzyme
expression, and inducible NO synthase expression

Rodríguez-Ramiro
et al., 2013 [78]

cocoa flavanols coronary artery disease maintenance of normal endothelium-dependent
vasodilation

Agostoni C. et al.,
2012 [79]

cocoa extract cardiovascular disease among
older adults lowered risk of total cardiovascular events Sesso et al., 2022 [80]

cocoa extract Alzheimer’s disease modification of the physical structure of
amyloid-β oligomers Dubner et al., 2015 [81]

cocoa extract Alzheimer’s disease attenuation of amyloid-β oligomerization Wang et al., 2014 [82]

cocoa extract Alzheimer’s disease neuroprotection by activating the brain-derived
neurotrophic factor survival pathway Cimini et al., 2013 [83]

kaki tannin metabolic syndrome strong binding capacity for bile acids Matsumoto et al.,
2011 [87]

kaki tannin hypercholesterolemia
cholesterol lowering effect and glucose metabolism
amelioration by the ability of kaki tannin to bind
bile acids

Nishida et al., 2021 [88]

kaki tannin postprandial hyperglycemia
kaki tannins limited starch digestion and inhibited
glucose uptake and transport, thereby alleviating
postprandial hyperglycemia

Li et al., 2018 [89]

kaki tannin disruption of intestinal flora reshaped fecal gut microbiota Zhu et al., 2018 [90]

kaki tannin Mycobacterium avium complex
(MAC) disease

bacteriostatic effect on MAC, attenuation of
pulmonary granuloma formation, suppression of
pro-inflammatory cytokine expression

Matsumura et al.,
2017 [17]

kaki tannin ulcerative colitis
decreased disease activity and colonic
inflammation, changed microbiota composition
and immune response

Kitabatake et al.,
2021 [18]
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Table 1. Cont.

Dietary Phenolic Compound
Source/Compound Disease Study Results Reference(s)

dry persimmon dyslipidemia lipid-lowering and antioxidant properties
Gorinstein et al., 1998
[91], Gorinstein et al.,
2000 [92]

kaki tannin hyper-LDL cholesterolemia attenuation of serum LDL cholesterol levels
in humans Suzuki et al., 2022 [93]

quercetin and isoflavones osteoporosis elucidation of metabolic pathways by intestinal
microbiota, amelioration of bioavailability Murota et al., 2018 [95]

quercetin/red onion obesity and insulin resistance adipose tissue remodeling Forney et al., 2018 [118]

quercetin/grape powder obesity and insulin resistance prevented macrophage inflammation and
adipocyte macrophage-mediated insulin resistance

Overman et al.,
2011 [119]

quercetin kidney disease due
to atheroembolism attenuation of COX-2 induction by stress Carlsen et al., 2015

[116]

quercetin obesity-related diseases antioxidant, anti-inflammatory, and antifibrotic
effects on insulin resistance and atherosclerosis Sato et al., 2020 [123]

quercetin colitis
rebalanced the pro-inflammatory,
anti-inflammatory, and bactericidal function of
enteric macrophages

Ju et al., 2018 [120]

quercetin disruption of intestinal flora restoration of gut microbiota in mice after
antibiotic treatment Shi et al., 2020 [121]

quercetin C. rodentium-induced colitis
modification of gut microbiota and suppression of
proinflammatory cytokines in Citrobacter
rodentium-induced colitis mice

Lin et al., 2019 [122]

quercetin and rutin Alzheimer’s disease anti-amyloidogenic and
fibril-disaggregating effects

Jiménez-Aliaga et al.,
2011 [124]

quercetin Alzheimer’s disease

promotion of viability and proliferation of
Alzheimer’s disease model cells, increase in
expression of sirtuin 1/Nrf2/HO-1 and
antioxidant-related enzymes

Yu et al., 2020 [125]

quercetin Alzheimer’s disease

inhibition of tau protein hyperphosphorylation
and oxidative stress, inhibition of
PI3K/Akt/GSK3β, MAPK, and NF-κB p65 in a cell
line of mouse hippocampal neurons

Jiang et al., 2016 [126]

quercetin Alzheimer’s disease
inhibition of BACE-1 (Beta-site APP Cleaving
Enzyme-1, β-secretase), attenuation of amyloid-β
peptide levels

Shimmyo et al.,
2008 [127]

quercetin Alzheimer’s disease
targeted integrated stress response signaling,
suppressed amyloid-β (Aβ) production and
prevented cognitive impairment in a mouse model

Nakagawa et al.,
2019 [128]

quercetin Parkinson’s disease
activation of the PKD1–Akt cell survival signaling
axis, neuroprotective signaling in a dopaminergic
neuronal model

Ay et al., 2017 [129]

quercetin Parkinson’s disease

significant attenuation of rotenone-induced
behavioral impairment, augment of autophagy,
attenuation of ER stress-induced apoptosis with
attenuated oxidative stress

El-Horany et al.,
2016 [130]

quercetin with piperine Parkinson’s disease attenuation of movement disorders and
biochemical and neurotransmitter changes

Sharma et al.,
2020 [131]

quercetin with piperine Parkinson’s disease

significantly amelioration of MPTP-induced
behavioral abnormalities in rats, reversal of the
abnormal alterations of neurotransmitters in
the striatum

Singh et al., 2017 [132]

buckwheat

Hypercholesterolemia,
neurodegenerative disease,
cancer, inflammation, diabetes,
hypertension

buckwheat as a food and its effects on health Giménez-Bastida et al.,
2015 [104]
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Table 1. Cont.

Dietary Phenolic Compound
Source/Compound Disease Study Results Reference(s)

quercetin, rutin/buckwheat dyslipidemia, metabolic
syndromes,

quercetin reduced obesity due to high-fat diet,
rutin, quercetin, and tartary buckwheat shaped
specific structures of the intestinal microbiota

Peng et al., 2020 [133]

phenolic compounds/
tartary buckwheat human breast cancer inhibitory ability of phenolic compounds on breast

cancer cell proliferation Li et al., 2017 [134]

rutin cancer regulation of molecular networks and signaling
mechanisms in cancer cells by rutin Perk et al., 2014 [135]

rutin COVID-19 conformational change upon binding of rutin and
SARS-CoV-2 spike protein

Kumari et al.,
2022 [136]
Rahman et al.,
2021 [137]

rutin, quercetin/buckwheat
postprandial rise in blood
sugar, diabetes,
hypercholesterolemia

the rutin and phenolic compounds contained in
buckwheat inhibited the action of digestive
enzymes, suppressing the sudden rise in
postprandial blood sugar levels and
lowering cholesterol

Kreft et al., 2022 [138]
Cirkovic Velickovic et al.,
2018 [139]
Wang et al., 2022 [140]
Ikeda et al., 1993 [141]
Zhang et al., 2017 [142]
Bao et al., 2016 [143]

buckwheat cardiovascular disease,
dyslipidemia

review and meta-analysis on buckwheat and
cardiometabolic health Llanaj et al., 2022 [144]

rutin neurodegenerative disease a review of the neuroprotective mechanisms
of rutin

Enogieru et al.,
2018 [145]

buckwheat

hypercholesterolemia,
inflammation,
neurodegenerative disease,
cancer, diabetes, hypertension,
celiac disease

health benefits of buckwheat, potential remedy
for diseases Noreen et al., 2021 [146]

isoflavone a wide range of
hormonal disorders

classification, structure, and occurrence, with their
metabolism, biological, and health effects in
humans and animals, and their utilization and
potential risks

Křížová et al.,
2019 [147]

isoflavone and metabolites

cardiovascular diseases,
metabolic syndromes,
osteoporosis, diabetes,
brain-related diseases, etc.

the latest research trends that have shown
substantial interest in the biological efficacy of
isoflavones in humans and plants, and their
related mechanisms

Kim 2021 [148]

isoflavones some hormone-
dependent diseases

effects of isoflavones on chemoprevention of breast
cancer, prostate cancer, and cardiovascular
osteoporosis and alleviation of osteoporosis and
postmenopausal symptoms

Vitale et al., 2013 [156]

S-equol
vasomotor symptoms,
osteoporosis, prostate cancer,
cardiovascular disease

summary of studies demonstrating effects of
isoflavone supplements on menopausal symptoms,
bone, prostate cancer, and
cardiovascular biomarkers

Jackson et al.,
2011 [159]

isoflavone/soybeans breast, thyroid, and uterus of
postmenopausal women

a review of key studies related to soy, with a focus
on clinical and epidemiological studies Messina 2016 [162]

soy protein blood cholesterol attenuation of total and LDL cholesterol Harland et al.,
2008 [163]

soy isoflavones osteoporosis
significant increase in bone density, decrease in
urinary deoxypyridinoline, a marker of
bone resorption

Wei et al., 2012 [164]

dietary soy chronic kidney disease

significantly reduced serum creatinine, serum
phosphorus, CRP, and proteinuria; no significant
change was found in creatinine clearance and
glomerular filtration rate

Jing et al., 2016 [165]

fermented soy products
diabetes mellitus, blood
pressure, cardiac disorders, and
cancer-related issues

attenuation of serum levels of total cholesterol,
low-density lipoprotein (LDL), and triglycerides,
maintenance of bone health and prevention of
osteoporosis and maintenance of normal
endothelial function

Jayachandran et al.,
2019 [166]
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Table 1. Cont.

Dietary Phenolic Compound
Source/Compound Disease Study Results Reference(s)

genistein Alzheimer’s disease
directly targeted amyloid-β and tau to regulate
intracellular signaling pathways involved in
neuronal death in the brain

Uddin et al., 2019 [168]

soy isoflavones Alzheimer’s disease

neuroprotective effects on scopolamine-induced
memory impairment, enhancement of cholinergic
function, suppression of oxidative stress and
activation of ERK/CREB/BDNF signaling

Lu et al., 2018 [169]

genistein Alzheimer’s disease regulated CAMK4 to regulate tau
hyperphosphorylation Ye et al., 2017 [170]

genistein Parkinson’s disease neuroprotective effect on dopaminergic neurons Arbabi et al., 2016 [171]

genistein
early phases of allergic
encephalomyelitis,
multiple sclerosis

decreased cell cytotoxicity Razeghi Jahromi et al.,
2014 [172]

sesame

diabetes mellitus,
hypercholesterolemia,
osteoarthritis, some types
of cancer

detailed research on sesame oil contents, health
effects, nutraceuticals, oil quality, and value
addition strategies

Langyan et al.,
2022 [179]

sesame free radical-related diseases

Nutraceutical, pharmacological, traditional, and
industrial value of sesame seeds with respect to
bioactive components that have high antioxidant
activity

Pathak et al., 2014 [180]

chlorogenic acid obesity and associated
glucose intolerance

attenuation of food intake, elevation of body
temperature, increase in heat dissipation and
activation of brown adipose tissue

He et al., 2021 [188]

chlorogenic acid obesity and obesity-related
metabolic endotoxemia

suppression of body weight gain, attenuation of
relative weight of fat, amelioration of intestinal
barrier integrity, prevention of impaired glucose
metabolism and endotoxemia, significant
alteration of intestinal microbiota composition

Ye et al., 2021 [189]

chlorogenic acid high-fat diet-induced obesity
attenuation of plasma lipids, alteration of adipose
tissue-associated gene expression, reversal of gut
microbiota dysbiosis

Wang et al., 2019 [190]

coffee type 2 diabetes mellitus attenuation of diabetes risk in humans Huxley et al., 2009 [191]

coffee disruption of intestinal flora increase in the growth of Bifidobacterium spp and
Clostridium coccoides-Eubacterium rectale group Mills et al., 2015 [192]

coffee disruption of intestinal flora
coffee consumption can selectively improve the
growth of probiotic strains, thus exerting a
prebiotic effect

Sales et al., 2020 [193]

chlorogenic acid Parkinson’s disease

activation of Akt/ERK signaling in the
mitochondrial intrinsic apoptotic pathway,
neuroprotection against MPTP-induced toxicity in
a Parkinson’s disease mouse model

Singh et al., 2020 [195]

caffeic acid, chlorogenic acid Parkinson’s disease
protection of rotenone-induced neurodegeneration
of both nigral dopaminergic and enteric neurons,
upregulation of metallothionein

Miyazaki et al.,
2019 [196]

chlorogenic acid Parkinson’s disease attenuation of oxidative stress and
neuroinflammation in MPTP-poisoned mice Singh et al., 2018 [197]

chlorogenic acid Alzheimer’s disease
attenuation of cognitive deficits in APP/PS1 mice
by activation of the mTOR/TFEB signaling
pathway

Gao et al., 2020 [198]

sesamin variety of
cardiovascular diseases

attenuation of cardiovascular disease effects on
RAS/MAPK, PI3K/AKT, ERK1/2, p38, p53, IL-6,
TNFα, and NF-κB signaling networks

Dalibalta et al.,
2020 [200]

sesame climacteric disorder amelioration of blood lipid, antioxidant, and sex
hormone status Wu et al., 2006 [201]
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sesamin chronic kidney disease suppression of uremic toxin production by
inhibition of bacterial L-tryptophan indole-lyase

Oikawa et al.,
2022 [202]

sesamin disruption of intestinal flora
increase in the adhesive index of probiotics,
up-regulation of the adhesive protein (β-cadherin
and E-cadherin) expression

Wang et al., 2021 [204]

sesamol Alzheimer’s disease

attenuation of SCOP-induced cognitive
dysfunction via balancing the cholinergic system
and reducing neuroinflammation and
oxidative stress

Yun et al., 2022 [205]

sesamol Alzheimer’s disease

attenuation of Alzheimer’s disease-related
cognitive impairment and neuroinflammatory
response by mediating the gut
microbe–SCFA–brain axis

Liu et al., 2021 [206]

sesamin, sesamol
Alzheimer’s disease,
Parkinson’s disease,
Huntington’s disease

activation of SIRT1/SIRT3/FOXO3a expression,
inhibition of BAX (pro-apoptotic protein) and
upregulation of BCL-2 (anti-apoptotic protein)

Ruankham et al.,
2021 [207]

sesamin diabetes-induced
neurodegenerative diseases

attenuation of microglial activation by high
glucose, reduction of inflammatory response
and neurotoxicity

Kongtawelert et al.,
2022 [208]

sesamin, sesamolin, sesamol Alzheimer’s disease

sesamin protected against Aβ toxicity by reducing
toxic Aβ oligomers, sesamin and sesamolin
ameliorated amyloid-β-induced deficits in
chemotactic behavior, anti-amyloid-β toxic activity
and structure–activity relationship of
sesame lignans

Keowkase et al., 2018
[209]

resveratrol neuroinflammatory disease prevention of self-destruction of nerve cells Renaud et al., 2014
[218]

resveratrol/red wine cardiovascular disease, lung
cancer, prostate cancer

effect of red wine on cardiovascular morbidity and
mortality

Vidavalur et al., 2006
[219]

red wine coronary heart disease inhibition of platelet reactivity by wine (alcohol) Renaud et al. 1992 [220]

resveratrol intestinal dysfunction regulation of intestinal barrier function under
immunosuppression Song et al., 2022 [221]

resveratrol colitis activation of metabolism by intestinal microbiota,
modification of intestinal microbiota Yao et al., 2022 [222]

resveratrol obesity
amelioration of intestinal flora, regulation of lipid
metabolism, recovery of intestinal barrier function,
amelioration of insulin sensitivity

Wang et al., 2020 [223]

resveratrol NAFLD
amelioration of insulin resistance, amelioration of
intestinal barrier function and intestinal microbiota
composition, amelioration of lipid metabolism

Wang et al., 2020 [224]

resveratrol NAFLD

inhibition of high-fat diet-induced elevation in
cannabinoid receptor type 1 (CB1) mRNA
expression, inhibition of colonic CB2 mRNA levels,
and maintenance of intestinal barrier integrity

Chen et al., 2020 [225]

resveratrol metabolic and intestinal disease
upregulation of mRNA expression of tight junction
and mucin-associated proteins, maintenance of
intestinal barrier

Zhang et al., 2021 [226]

resveratrol metabolic syndrome
regulation of intestinal bacterial composition and
metabolism and alteration of steroid metabolism in
middle-aged men

Korsholm et al., 2017
[227]

resveratrol obesity

metabolic activation and amelioration of
mitochondrial respiration to muscle fatty
acid-derived substrates and caloric restriction-like
effect in obese men

Timmers et al., 2011
[228]

resveratrol cardiovascular disease and a
variety of cancers

accumulation of resveratrol in epithelial cells along
the aerodigestive tract and presence of potentially
active resveratrol metabolites

Walle et al., 2004 [229]
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red wine coronary heart disease changes in lipid profiles, attenuation of insulin
resistance, and decrease in oxidative stress

Castaldo et al.,
2019 [230]

wine obesity
consuming moderate amounts of wine as part of a
Mediterranean diet did not promote weight gain
or abdominal obesity.

Golan et al., 2017 [231]

resveratrol pregnancy-related
complications

effects of resveratrol on embryogenesis and
spermatogenesis mediated by several mechanisms

Novakovic et al.,
2022 [232]

grape seed oil wound wound-healing properties of the oils of Vitis
vinifera and Vaccinium macrocarpon in animal model

Shivananda Nayak
et al., 2011 [233]
Al-Warhi et al.,
2022 [234]

grape seed oil ulcerative colitis
oral administration of grape seed oil and grape
seed extract showed anti-inflammatory effect and
effect on ulcerative colitis

Niknami et al.,
2020 [235]

grape seed oil acute liver injury
grape seed oil suppressed inflammation and
protected the liver against acute liver injury caused
by oxidative stress

Ismail et al., 2016 [236]

grape seed oil diabetes mellitus
seed oil of Vitis davidii Foex. protected pancreatic
β-cells from anti-glucose-induced apoptosis and
maintained insulin secretion

Lai et al., 2014 [237]

grape seed oil erythema of the skin
the application of a cream milky lotion containing
grape seed oil was found to ameliorate the skin’s
moisture content, sebum content, and erythema

Sharif et al., 2015 [238]

grape seed oil physiological leg edema
in primigravidae

physiological edema in pregnancy was suppressed
with foot massage using grape seed oil

Navaee et al.,
2020 [239]

grape seed oil hyperlipidemia blood triglycerides were suppressed by oral
administration of grapeseed oil for 6 weeks Kaseb et al., 2016 [240]

resveratrol Alzheimer’s disease
significant attenuation of cytotoxicity of
amyloid-β1-42 peptide against SH-SY5Y human
neuroblastoma cells, neuroprotective effect

Al-Edresi et al.,
2020 [241]

resveratrol hypoxia, Alzheimer’s disease
prevention of hypoxia-induced upregulation of
total amyloid and exosomal amyloid-β by
inhibiting CD147

Xie et al., 2019 [242]

resveratrol Alzheimer’s disease
upregulation of the SIRT1 pathway, induction of
cognitive enhancement and neuroprotection
against amyloid and tau pathologies

Corpas et al., 2019 [243]

resveratrol Alzheimer’s disease
activation of AMPK-dependent signaling by
resveratrol rescued amyloid-β-mediated
neurotoxicity in hNSCs.

Chiang et al., 2018 [244]

resveratrol Parkinson’s disease regulation of the MALAT1/miR-129/SNCA
signaling pathway Xia et al., 2019 [245]

resveratrol Parkinson’s disease

attenuation of MPTP-induced loss of
dopaminergic neurons, attenuation of astroglial
activation in the nigrostriatal pathway, attenuation
of motor dysfunction in MPTP-treated mice

Liu et al., 2019 [246]

resveratrol Parkinson’s disease
neuroprotective effects of regulation of
α-synuclein expression upon loss of miR-214 in
Parkinson’s disease

Wang et al., 2015 [247]

resveratrol Huntington’s disease
improved motor coordination and learning,
enhanced expression of mitochondrial-encoded
electron transport chain genes in YAC128 mice

Naia et al., 2017 [248]

resveratrol multiple sclerosis promoted remyelination effect of resveratrol Ghaiad et al., 2017 [249]

resveratrol amyotrophic lateral
sclerosis (ALS)

increase in mitochondrial biogenesis in the
SOD1(G93A) spinal cord, increase in expression
and activation of Sirtuin 1 and AMPK in the
ventral spinal cord

Mancuso et al.,
2014 [250]
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curcumin cancer
potential of curcumin to influence lipogenic
pathways that regulate human cancer
cell metabolism

Naeini et al., 2019 [257]

curcumin

various chronic diseases
including various types of
cancers, diabetes, obesity,
cardiovascular, pulmonary,
neurological, and
autoimmune diseases

Anti-inflammatory activity through the
suppression of numerous cells signaling pathways
including NF-κB, STAT3, Nrf2, ROS, and COX-2,

Kunnumakkara et al.,
2017 [258]

curcumin cancer
inhibition of activation of Toll-like receptor 4
(TLR4) signaling pathway associated with
inflammatory response and cancer progression

Chen et al., 2018 [260]

curcumin

intestinal inflammatory
diseases, such as Crohn’s
disease, ulcerative colitis, and
necrotizing enterocolitis

improved intestinal barrier function, regulated the
gut microbiota, exhibited antioxidant and
anti-inflammatory effects

Burge et al., 2019 [261]

curcumin cancer
potent antitumor activity by reversing epigenetic
changes associated with oncogene activation and
tumor suppressor gene inactivation

Carlos-Reyes et al.,
2019 [262]

curcumin colorectal adenoma regulation of the Wnt/β-catenin pathway
associated with colorectal cancer

Bahrami et al.,
2017 [263]

curcumin colorectal cancer

disruption of tumor growth signaling such as
COX-2 enzyme expression, attenuation of NF-kB
signaling, suppression of EGFR phosphorylation,
inhibition of angiogenesis, and apoptosis of
malignant cells

Adiwidjaja et al.,
2017 [264]

curcumin ulcerative colitis reduced recurrence rates and maintained remission
in patients with quiescent ulcerative colitis Hanai et al., 2006 [265]

curcumin Helicobacter pylori-
infected gastritis

although treatment of H. pylori-infected patients
with curcumin did not alter levels of inflammatory
cytokine mRNA expression and had limited
anti-bactericidal effect, it improved common
symptoms in the patients

Koosirirat et al.,
2010 [266]

curcumin Helicobacter pylori-
infected gastritis

significant amelioration of dyspeptic symptoms
and attenuation of serologic signs of gastric
inflammation were observed in H. pylori-positive
patients with functional dyspepsia despite the lack
of eradication of H. pylori

Mario et al., 2007 [267]

curcumin gallstone disease
defense against biliary cholesterol supersaturation
by modulating intestinal microbiota and inhibiting
intestinal cholesterol absorption

Hong et al., 2022 [268]

curcumin ulcerative colitis complicated by
diabetes mellitus

effectively alleviated colitis in mice with type 2
diabetes by restoring Th17/Treg homeostasis and
improving gut microbiota composition

Xiao et al., 2022 [269]

curcumin intestinal inflammatory diseases

enhancement of the intestinal barrier, attenuation
of intestinal apoptosis by suppressing the
caspase-3 pathway, reduction in intestinal
inflammation by inhibiting the
MAPK/NFκB/STAT3 pathway, and amelioration
of gut bacteria involved in colitis

Guo et al., 2022 [270]

curcumin acute myeloid leukemia

promoted responses to cytarabine through
modulation of the microbiota, highlighting the
importance of enhancing gut integrity in
chemoresistance therapy

Liu et al., 2022 [271]

curcumin irritable bowel syndrome significant improvement in gastrointestinal
symptom rating scale and stress scale indicators

Lopresti et al.,
2021 [272]

curcumin Alzheimer’s disease
effects of curcumin-activated PPARγ on
anti-neuroinflammatory and neuroprotective
effects in Alzheimer’s disease

Liu et al., 2016 [273]
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curcumin Alzheimer’s disease
blocked amyloid-β aggregation and fibril
formation in vitro and in vivo by directly binding
curcumin to small beta-amyloid species

Yang et al., 2005 [274]

curcumin Parkinson’s disease

effective inhibition of the toxic effects of MPP+ on
SH-SY5Y cells, greatly attenuating the adverse
effects of MPP+ on dopaminergic neurons via
upregulation of HSP90

Sang et al., 2018 [275]

curcumin/encapsulated Huntington’s disease
amelioration of mitochondrial dysfunction and
significant enhancement in
neuromotor coordination

Sandhir et al., 2014
[276]

curcumin amyotrophic lateral
sclerosis (ALS)

amelioration of aerobic metabolism and oxidative
damage, and slowed disease progression Chico et al., 2018 [277]

curcumin major depressive disorder

potency to modulate neurotransmitter levels,
inflammatory pathways, excitotoxicity,
neuroplasticity, hypothalamic–pituitary–adrenal
disorders, insulin resistance, oxidative and
nitrosative stress, and the endocannabinoid system

Ramaholimihaso et al.,
2020 [278]

protocatechuic acid cancer, hyperlipidemia, diabetes
potential to agent of antioxidant, antibacterial,
anticancer, antihyperlipidemic, antidiabetic, and
anti-inflammatory

Kakkar et al., 2014 [280]

protocatechuic acid

neurodegenerative disease,
tumors, osteoporosis, liver
disease, kidney disease,
metabolic syndrome

regulation of oxidative stress and inflammatory
responses via multiple signaling pathways Song et al., 2020 [281]

protocatechuic
acid/Du-Zhong chronic hepatotoxicity attenuation of liver lesions incidence Hung et al., 2006 [282]

protocatechuic acid Alzheimer’s disease,
Parkinson’s disease

inhibition of β-amyloid plaque accumulation and
tau hyperphosphorylation in brain tissue

Krzysztoforska et al.,
2019 [286]

protocatechuic acid NAFLD

regulation of glucose and lipid metabolism,
oxidative stress, inflammation, gut microbiota, and
metabolites, increase in energy expenditure of
brown adipose tissue

Gao et al., 2021 [287]

protocatechuic acid depression

maintained brain-derived neurotrophic factor
levels and modulated oxidative stress responses,
cytokine systems, and antioxidant defense systems
in mice

Thakare et al.,
2021 [288]

ellagic acid inflammatory disease,
neurodegenerative diseases

discovery of a novel bacterial strain capable of
converting ellagic acid to isourolithin A with
anti-inflammatory, anti-carcinogenic,
cardioprotective, and neuroprotective properties

Selma et al., 2017 [292]

ellagic acid
subclinical necrotic enteritis of
broiler caused by
Clostridium perfringens

regulation of jejunal inflammatory signaling
pathways TLR/NF-κB and JAK3/STAT6,
alleviation of jejunal oxidative stress, inhibition of
intestinal barrier damage, prevention of systemic
inflammatory response

Tang et al., 2022 [293]

ellagic acid multiple sclerosis

attenuation of astrogliosis, astrocyte activation,
demyelination, neuroinflammation, and axonal
damage via NLRP3 inflammasome and
pyroptotic pathway

Kiasalari et al.,
2021 [295]

ellagic acid cognitive impairments,
long-term potentiation deficits

significant prevention of traumatic brain
injury-induced memory impairment and
hippocampal long-term potentiation impairment

Farbood et al.,
2015 [296]
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