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Abstract: Non-alcoholic fatty liver disease (NAFLD) shows liver fat depots without alcohol con-
sumption. NAFLD does not have specific drug therapies, with a healthy lifestyle and weight loss
being the main approaches to prevent and treat NAFLD. The aim was to assess the antioxidant
and pro-inflammatory state in patients with NAFLD after 12-month-lifestyle intervention depend-
ing on the change in adherence to a Mediterranean diet (AMD). Antioxidant and inflammatory
biomarkers were measured in 67 adults (aged 40–60 years old) diagnosed with NAFLD. Anthropo-
metric parameters and dietary intake were measured by a validated semi-quantitative 143-item food
frequency questionnaire. The nutritional intervention improved anthropometric and biochemical
parameters after a 12-month follow-up. However, decreases in alanine aminotransferase (ALT) and
C reactive protein (CRP) were higher in participants with high AMD, which also showed higher
improvement in physical fitness (Chester step test) and intrahepatic fat contents. The intervention
reduced plasma levels of malondialdehyde, myeloperoxidase, zonulin, and omentin, and increased
resolvin D1 (RvD1), whereas the decrease in leptin, ectodysplasin-A (EDA), cytokeratin-18 (CK-18),
interleukin-1ra (IL-1ra) and endotoxin was only significant in participants with higher AMD. The
current study showed that a one-year nutritional intervention improved main NAFLD features such
as body mass index, IFC, liver enzymes, and prooxidant and proinflammatory status. There was
also a decrease in the concentration of plasmatic endotoxin, suggesting an improvement in intestinal
permeability. These health benefits were more evident in participants that improved AMD to a greater
extent. The trial was registered at ClinicalTrials.gov with registry number NCT04442620.

Keywords: non-alcoholic fatty liver disease; Mediterranean diet; metabolic syndrome; oxidative
stress; inflammation

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is associated with metabolic syndrome
and it is characterized by increased intracellular lipid droplets exceeding 5% in absence
of significant alcohol consumption [1]. NAFLD has been linked to several metabolic risk
factors such as type 2 diabetes (47.3–63.7%) and obesity (80%) [2]. Nowadays, this disease
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is the most common cause of chronic liver disease, with a global prevalence of 25.2% [3].
Normally, this liver disease tends to remain stable or progress slowly, although it has been
related to deaths from cardiovascular diseases and extrahepatic malignancies [4]. However,
if the pathology is not reversed, it can evolve into more severe stages of the disease. In
fact, about 10% of NAFLD patients develop advanced fibrosis, cirrhotic complications, and
hepatocellular carcinoma within 10–20 years of disease diagnosis [4,5]. Overnutrition, in
addition to promoting the expansion of adipose deposits, can favor an accumulation of
ectopic fat and the infiltration of macrophages in the visceral adipose tissue compartment
inducing a proinflammatory state and insulin resistance. This resistance has been asso-
ciated with an inappropriate lipolysis and an imbalance in lipid metabolism leading to
the formation of lipotoxic lipids and, consequently, to oxidative stress and endoplasmic
reticulum stress [6].

One of the main problems in relation to NAFLD is its underdiagnosis, especially in
the initial stages of the disease, since an effective diagnosis requires expensive or invasive
methodologies. In this sense, the most reliable diagnosis of NAFLD is liver biopsy; however,
as it is an invasive technique and a long-term disease, other methods such as ultrasound
or magnetic resonance imaging (MRI) are usually used. Moreover, promising new blood
biomarkers are being sought for adoption as a general diagnostic method [7].

To date, NAFLD is one of the chronic liver diseases that, despite being in advanced
stages of development, do not yet have specific pharmacological therapies due to the
complexity of its pathophysiology. However, it is well known that a healthy lifestyle and
weight loss, are crucial for the prevention and treatment of NAFLD [8]. Several studies
propose the Mediterranean diet (MedDiet) as a feasible and effective dietary pattern to prevent
and/or reverse NAFLD due to its balanced composition of macronutrients [9,10]. In fact, the
MedDiet pattern is directly recommended by the EASL-EASD-EASO Clinical as Choice
for the Treatment of NAFLD [11]. MedDiet is based on a high intake of vegetables, fruits,
legumes, whole grains, nuts, seeds, and extra virgin olive oil and a moderate consumption
of red wine, and red meat. Due to the fact that MedDiet is rich in bioactive compounds
such as phenolic compounds, with antioxidant, anti-inflammatory and antidiabetic effects,
among others, several studies have shown how its adherence is related to an improvement
in the inflammatory and oxidant state [12,13].

Due to the increasing prevalence of NAFLD and the lack of a specific treatment, this
study aimed at the assessment of antioxidant and pro-inflammatory states using plasma
and serum biomarkers in patients with NAFLD after 12 months of lifestyle intervention
according to the adherence to a Mediterranean diet (AMD).

2. Methods
2.1. Study Design and Participants

A total of 67 participants ranging in age from 40–60 years with NAFLD diagnosed
by Magnetic Resonance Imaging (MRI) were recruited in Mallorca Island, Spain Figure 1).
To participate in the study, the inclusion criteria were the following: (1) body mass index
(BMI) of 27–30 kg/m2 or an increased waist circumference of ≥94 cm in men and ≥80 cm
in women; (2) triglycerides levels ≥150 mg/dL; (3) high-density lipoprotein cholesterol
(HDL-c) <40 mg/dL in men and <50 mg/dL in women; (4) blood pressure ≥130/85 mmHg;
(5) fasting serum glucose levels ≥100 mg/dL. The following exclusion criteria were applied:
liver diseases (other than NAFLD); alcohol (>21 units a week for men and >14 for women)
and drug abuse; nonmedicated depression or anxiety; previous cardiovascular disease;
weight loss medications in the past 6 months; concomitant therapy with steroids; viral,
autoimmune and genetic causes of liver disease; primary endocrinological diseases (other
than hypothyroidism); pregnancy; previous bariatric surgery; active cancer or a history of
malignancy in the previous 5 years.
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Figure 1. Flow diagram of the study.

After inclusion, participants were randomly assigned to one of the following groups:
Conventional diet group (CD): participants followed the recommendations of the

American Association for the Study of Liver Disease (AASLD) [14]. General guidelines from
the US Department of Health and Human Services and the US Department of Agriculture
(20–35% fat, 10–35% protein, 45–65% carbohydrates) indicate that from energy restrictions,
a loss of at least 3–5% of body weight can be obtained, which can improve steatosis by
7–10%, thus improving the histopathological characteristics of NASH [15].

Mediterranean diet high meal frequency group (MD-HMF): participants followed a
Mediterranean diet that had previously been shown to decrease fat mass and total weight
and improve oxidative status in subjects with metabolic syndrome [16,17]. This diet is
characterized by a macronutrient distribution of 40 to 45% carbohydrates (50 to 70% of
carbohydrates should be low-glycaemic and high-fiber), 30 to 35% fat, and 25% protein.
In addition, the daily caloric intake had to be distributed in a total of 7 meals, with the
morning meals having the most calories.

Mediterranean diet physical activity group (MD-PA): participants followed an energy-
restricted Mediterranean diet with a meal frequency of four to five meals per day. This
diet is characterized by a macronutrient distribution of 40–45% carbohydrates (primarily
low glycaemic index), 35–40% fat (8–10% saturated fatty acids, >20% monounsaturated
fatty acids, >10% polyunsaturated fatty acids and <300 mg/day cholesterol) and about 20%
protein. Also, sodium chloride intake should not reach 6 g/day (2.4 g sodium) and dietary
fiber should not be less than 30–35 g/day [18].

The adherence of each of the participants to the MedDiet pattern was assessed using a
validated questionnaire, as previously described [19]. The patients have been classified into
two groups based on the degree of improvement in adherence to the MedDiet between the
start of the study and 12 months after the intervention. Thus, the two groups would be made
up of (1) those patients who have had a greater improvement in the degree of adherence
and (2) made up of patients with a worse improvement at 12 months, according to the
score. This form of grouping is because no differences were found between the different
intervention groups since in all of them the different parameters of the participants were
improved. For this reason, the grouping criteria were based on the degree of adherence to
the MedDiet but considering the intervention group, for which the type of diet, frequency
of feeding, and physical activity as co-variables in the statistical analysis.

The study protocols followed the Declaration of Helsinki ethical standards, and all
the procedures were approved by the Ethics Committee of the Balearic Islands (CEIC-
IB2251/14PI). All participants were informed of the purpose and the implications of the
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study, and informed consent was obtained from all subjects. This study has been registered
in Clinicals Trials.gov ref. NCT04442620 [20].

2.2. Anthropometric Measurements

Professional dieticians carried out anthropometric measurements after identical and
rigorous training to avoid interobserver bias. Body weight was determined without shoes
using a Segmental Body Composition Analyzer (Tanita BC-418, Tanita, Tokyo, Japan) and
0.6 kg was subtracted for light clothing. Height was measured by keeping the patient’s
head in the Frankfort Horizontal Plane position with a mobile anthropometer (Seca 214,
SECA Deutschland, Hamburg, Germany). With both measurements, it was calculated
BMI (kg/m2). Blood pressure was measured with a validated semi-automatic oscillometer
(Omron HEM, 750CP, Hoofddrop, The Netherlands) in triplicate while the patient was
sitting. The maximal oxygen uptake (VO2 max) was measured with the Chester step test
(CST) [21]. Intrahepatic fat content (IFC) was performed with a 1.5-T MRI (Signa Explorer
1.5T, General Electric Healthcare, Chicago, IL, USA) by using a 12-channel phased-array
coil [22].

2.3. Blood Collection and Analysis

After 12 h of overnight fasting, blood samples were collected from the antecubital vein
in suitable vacutainers with ethylenediaminetetraacetic acid (EDTA) as an anticoagulant
to obtain plasma and other vacutainers without anticoagulant to obtain serum. To obtain
plasma samples, fresh blood was centrifugated at 1700× g 15 min at 4 ◦C. General blood
biochemical analyses on serum in a fasting situation were performed by standard enzymatic
methods in the clinical laboratory of Hospital de Son Espases (Palma de Mallorca). The
parameters determined in serum were glucose, HbA1c, triglycerides, HDL-c, low-density
lipoprotein cholesterol (LDL-c), total cholesterol, aspartate aminotransferase (AST), ala-
nine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and c-reactive protein
(CRP) were determined using standardized clinical procedures. In a Technicon H2 VCS
system automatic flow cytometer analyser (Bayer, Leverkusen, Germany), haematological
parameters and complete blood count were determined.

2.4. Enzymatic Determinations

The activities of catalase (CAT) and superoxide dismutase (SOD) were determined in
plasma and measured at 37 ◦C with a Shimadzu UV-2100 spectrophotometer (Shimadzu
Corporation, Kyoto, Japan). CAT activity was measured using Aebi’s spectrophotometric
method based on the decomposition of H2O2 at 240 nm [23] whereas SOD activity was
determined by an adaptation of McCord and Fridovich’s method at 550 nm [24].

2.5. Malondialdehyde Assay

Malondialdehyde (MDA) was measured using the specific colorimetric assay kit
(Merck KGaA®, Madrid, Spain) and the absorbance was measured at 586 nm following the
manufacturer’s instructions.

2.6. Phenolic Compounds Determination

Plasma samples were deproteinized with cold acetone (1:1.2) to determine the content
of total phenolic compounds using the method of Folin–Ciocalteau [25] and using L-tyrosine
as standard. The results are expressed as mmols of L-tyrosine equivalents/L.

2.7. Immunoassay Kits

Xanthine oxidase (XOD), myeloperoxidase (MPO), and zonulin plasma levels were
measured using ELISA kits (Cusabio® Technology Llc, Houston, TX, USA). Resolvin D1
(RvD1) levels were measured in plasma using an ELISA kit (Cayman Chemical®, Ann
Arbor, MI, USA). Cytokeratin 18 (CK-18) levels were measured also in plasma using an
M30 Apoptoense® ELISA kit (VLVbio AB, Nacka, Sweden) in which the units measured
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are defined against a native antigen, and it is calibrated against a recombinant protein
standard that 1 U/L = 1.24 pM. Ectodysplasin-A (EDA) plasma levels were determined
using an ELISA kit (Assay Genie, Dublin, Ireland). Chemerin and omentin levels were
measured in plasma and in serum respectively using ELISA kits (Abcam®, The Netherlands,
Amsterdam). IL-1β, IL-1ra, IL-6, MCP-1, TNFα and leptin levels were determined in plasma
using Human Custom ProcartaPlexTM (Invitrogen by Thermo Fisher Scientific, Bender
MedSystems GmbH, Vienna, Austria). The concentrations of endotoxin were measured
in plasma by a commercially available kit Endotoxin (Abbexa Ltd., Cambridge Science
Park, Cambridge, UK). All ELISA kits were carried out following the supplier’s guidelines
for use.

2.8. Statistical Analysis

Analyses were performed with the Statistical Package for Social Sciences (SPSS v.27,
IBM Software Group, Chicago, IL, USA). The sample size for the original trial was estimated
using weight loss as main outcome assuming a two-group t-test (two-sided) of difference
between CD and the other groups. Results are expressed as the mean ± standard deviation
(SD), and p < 0.05 was considered statistically significant. A Kolmogorov–Smirnov test was
previously applied to assess normality. Two types of statistics were performed to check the
significance of the resulting data. First, a two-way analysis of covariance (ANCOVA) was
performed after adjustments by the intervention (diet and physical activity) or a Kruskal–
Wallis test according to the case. Bonferroni post hoc analysis was conducted. Second, t-test
for unpaired data was performed on the differential data (12-month values minus reference
values) or with U Mann–Whitney test according to the case.

3. Results

Figure 2 shows the change in adherence to MedDiet after 12 months of lifestyle
intervention. The first group, named as low adherence, showed a variation in the AMD
from 9.63 ± 2.26 to 11.0 ± 2.56, while the second group, high adherence, changed from
6.66 ± 2.11 to 12.5 ± 2.08.
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Figure 2. Adherence to Mediterranean Dietary (AMD) expressed as points obtained in the ques-
tionnaire. Results are presented as mean ± SD. Two-way analysis of co-variance (ANCOVA) after
adjustments by the intervention (diet and physical activity). AMD × T interaction between adherence
to the Mediterranean Diet and time. * Difference in means between participants in time (baseline and
12 months). # Difference in means between groups (low adherence and high adherence). t-test for
unpaired data in the differential values. $ Difference in means according to the differential (12-month
values minus baseline values). Data points are significant when p < 0.05.

The anthropometric and clinical characteristics of participants with NAFLD stratified
by the AMD after a nutritional intervention for 12 months are shown in Table 1. The group
that after the 12-month intervention acquired a greater AMD obtained a greater weight loss
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and a reduction in BMI in relation to the other group. Significant differences were evidenced
in a decrease in AST, ALT, and CRP levels when comparing the evolution after 12 months
of acquisition of greater AMD. Also, it was evidenced that systolic blood pressure was
reduced in both groups after a nutritional intervention of 12 months regardless of the level
of adherence to AMD. Triglycerides and cholesterol total levels were significantly reduced
in the group with high AMD, even though they started with higher levels than the other
group. Other parameters analyzed did not show significant differences between the time
and the two groups of AMD.

Table 1. Characteristics of participants ‘Baseline’ and ‘12 months’ stratified by AMD.

Low Adherence
(n = 32)

High Adherence
(n = 35) p-Value p-Value

Mean ± SD Mean ± SD AMD × T ∆

Weight (kg)
Baseline 95.9 ± 13.8 93.5 ± 14.2

0.016 0.04412 months 93.2 ± 14.2 89.0 ± 13.1
∆ −2.7 ± 4.7 −4.5 ± 5.7 $

BMI (kg/m2)
Baseline 33.6 ± 3.7 33.4 ± 4.2

0.336 0.04912 months 32.7 ± 4.1 31.9 ± 3.6
∆ −1.0 ± 1.6 −1.6 ± 2.1 $

Systolic BP
(mmHg)

Baseline 137 ± 17.0 138 ± 17.2
0.390 0.83512 months 130 ± 11.7 131 ± 10.6

∆ −7.2 ± 16.2 −7.4 ± 14.6

Diastolic BP (mmHg)
Baseline 81.8 ± 6.7 82.6 ± 10.7

0.958 0.73812 months 78.8 ± 8.3 81.7 ± 6.7
∆ −3.0 ± 9.2 −0.98 ± 8.2

Glucose (mg/dL)
Baseline 107 ± 20.8 116 ± 34.6

0.372 0.22412 months 107 ± 26.3 107 ± 25.7
∆ −0.80 ± 16.5 −8.60 ± 21.5

HbA1c (%)
Baseline 5.8 ± 0.6 6.1 ± 1.0

0.024 0.63612 months 5.7 ± 0.7 6.0 ± 0.9
∆ −0.1 ± 0.5 −0.1 ± 0.5

Triglycerides
(mg/dL)

Baseline 173 ± 62.8 213 ± 111
0.041 0.02212 months 163 ± 71.3 186 ± 109

∆ −10.0 ± 65.1 −27.6 ± 136.0 $

HDL-cholesterol
(mg/dL)

Baseline 41.1 ± 8.8 40.9 ± 7.4
0.851 0.34912 months 42.7 ± 10.9 42.6 ± 9.2

∆ 1.6 ± 7.4 1.7 ± 5.8

LDL-cholesterol
(mg/dL)

Baseline 131 ± 29.3 125 ± 31.9
0.450 0.81212 months 120 ± 30.3 121 ± 37.2

∆ −10.6 ± 30.8 −4.37 ± 25.0

Cholesterol total
(mg/dL)

Baseline 209 ± 36.8 216 ± 60.9
0.810 0.03112 months 199 ± 45.2 202 ± 46.7

∆ −10.4 ± 35 −14.9 ± 72.6 $

AST (IU/L)
Baseline 24.4 ± 7.1 26.7 ± 8.6

0.124 0.02412 months 22.0 ± 6.3 23.1 ± 6.5
∆ −2.5 ± 5.1 −3.6 ± 9.0 $

ALT (IU/L)
Baseline 34.9 ± 19.8 40.6 ± 26.4

0.027 0.79612 months 27.7 ± 10.3 28.2 ± 14.6
∆ −7.20 ± 18.7 −12.3 ± 21.8

GGT (IU/L)
Baseline 42.5 ± 23.0 39.4 ± 16.6

0.698 0.23512 months 37.7 ± 21.7 36.6 ± 23.8
∆ −4.87 ± 15.7 −2.84 ± 22.6

CRP (mg/dL)
Baseline 0.5 ± 0.5 0.5 ± 0.6

0.230 0.00612 months 0.4 ± 0.4 0.3 ± 0.2
∆ −0.1 ± 0.3 −0.2 ± 0.5 $

Abbreviations: BMI: Body mass index, systolic BP: systolic blood pressure; diastolic BP: diastolic blood pressure,
HbA1c: Glycated haemoglobin A1c, HDL-cholesterol: high-density lipoprotein, LDL-cholesterol: low-density
lipoprotein, AST: aspartate aminotransferase, ALT: alanine aminotransferase, GGT: gamma glutamyl transferase,
CRP: c-reactive protein, IFC: intrahepatic fat content, SD: Standard deviation. Results are expressed as mean ± SD.
Two-way analysis of co-variance (ANCOVA) was performed after adjustments by the intervention (diet and
physical activity) or a Kruskal–Wallis test according to the case. t-test for unpaired data was performed on the
differential data (12-month values minus reference values) or with U Mann–Whitney test according to the case.
$ Difference in means according to the differential (12-month values minus baseline values). Data points in bold
are significant, p < 0.05.
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Figure 3 shows IFC levels at baseline and after 12 months of a nutritional intervention.
The group that manages to adhere better to this diet achieved a significant decrease in
the fat content in their liver, whereas no statistical differences were found in the group
with lower adherence. The results of VO2 max in CST were represented in Figure 4. The
obtained data reported an improvement in both groups after 12 months, although only
significantly in the group with high AMD.

Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 18 
 

 

Figure 3. Percentage of IFC in patients with NAFLD at ‘Baseline’ and ‘12 months’ stratified by AMD. 

Results are presented as mean ± SD. Two-way analysis of co-variance (ANCOVA) after adjustments 

by intervention (diet and physical activity). AMD × T interaction between adherence to the Medi-

terranean Diet and time. t-test for unpaired data in the differential values. $ Difference in means 

according to the differential (12-month values minus baseline values). Data points are significant 

when p < 0.05. 

 

Figure 4. VO2 maximum values in patients with NAFLD at ‘Baseline’ and ‘12 months’ stratified by 

AMD. Results are presented as mean ± SD. Two-way analysis of co-variance (ANCOVA) after ad-

justments by intervention (diet and physical activity). AMD × T interaction between adherence to 

the Mediterranean Diet and time. t-test for unpaired data in the differential values. Data points  are 

significant when p < 0.05. 

The results of polyphenols and MDA levels, and CAT and SOD enzymatic activities 

are shown in Table 2. MDA levels were significantly lower in both groups after 12 months. 

CAT activity was statistically significantly lower in patients with a in high ADM than in 

patients with a low AMD after 12 months of intervention. No significant differences were 

reported in polyphenols levels and in SOD activity between both groups. 

Table 2. Oxidative stress markers in the plasma of participants ‘Baseline’ and ‘12 months’ stratified 

by AMD. 

 
 

Low Adherence 

(n = 32) 

High Adherence 

(n = 35) 
p-Value p-Value 

 Mean ± SD Mean ± SD AMD × T Δ 

Antioxidants      

Baseline 0.3 ± 0.1 0.3 ± 0.2 
0.829 0.074 

12 months 0.3 ± 0.2 0.3 ± 0.2 

0

10

20

30

40

50

Low adherence High adherence

C
h

es
te

r 
S

te
p

 T
es

t 
(V

O
2

m
ax

)

Baseline

12 months∆ 3.50 ± 8.35∆ 2.81 ± 7.50

Figure 3. Percentage of IFC in patients with NAFLD at ‘Baseline’ and ‘12 months’ stratified by
AMD. Results are presented as mean ± SD. Two-way analysis of co-variance (ANCOVA) after
adjustments by intervention (diet and physical activity). AMD × T interaction between adherence
to the Mediterranean Diet and time. t-test for unpaired data in the differential values. $ Difference
in means according to the differential (12-month values minus baseline values). Data points are
significant when p < 0.05.
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Figure 4. VO2 maximum values in patients with NAFLD at ‘Baseline’ and ‘12 months’ stratified
by AMD. Results are presented as mean ± SD. Two-way analysis of co-variance (ANCOVA) after
adjustments by intervention (diet and physical activity). AMD × T interaction between adherence to
the Mediterranean Diet and time. t-test for unpaired data in the differential values. Data points are
significant when p < 0.05.
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The results of polyphenols and MDA levels, and CAT and SOD enzymatic activities
are shown in Table 2. MDA levels were significantly lower in both groups after 12 months.
CAT activity was statistically significantly lower in patients with a in high ADM than in
patients with a low AMD after 12 months of intervention. No significant differences were
reported in polyphenols levels and in SOD activity between both groups.

Table 2. Oxidative stress markers in the plasma of participants ‘Baseline’ and ‘12 months’ stratified
by AMD.

Low
Adherence

(n = 32)

High
Adherence

(n = 35)
p-Value p-Value

Mean ± SD Mean ± SD AMD × T ∆

Antioxidants

Phenolic compounds
(mM)

Baseline 0.3 ± 0.1 0.3 ± 0.2
0.829 0.07412 months 0.3 ± 0.2 0.3 ± 0.2

∆ 0.0 ± 0.2 0.1 ± 0.2

Oxidative damage

MDA (nM)
Baseline 2.0 ± 1.0 1.8 ± 0.7

0.037 0.05012 months 1.0 ± 0.4 * 0.8 ± 0.3 *
∆ −1.0 ± 1.0 −1.1 ± 0.7 $

Enzyme activities

CAT
(k(s−1)/L blood)

Baseline 54.5 ± 17.4 47.5 ± 13.5
0.040 0.54512 months 58.7 ± 22.1 46.4 ± 23.3 #

∆ 4.2 ± 28.3 −1.1 ± 28.0

SOD (pkat/L blood)
Baseline 288 ± 61.0 276 ± 81.7

0.383 0.73312 months 254 ± 73.7 245 ± 94.6
∆ −34.1 ± 112.0 −25.1 ± 200.0

Abbreviations: MDA: malondialdehyde; CAT: catalase; SOD: superoxide dismutase. SD: Standard deviation. Re-
sults are expressed as mean ± SD. Two-way analysis of co-variance (ANCOVA) was performed after adjustments
by intervention (diet and physical activity) or a Kruskal–Wallis test according to the case. * Difference in means
between participants in time (baseline and 12 months). # Difference in means between groups (low adherence
and high adherence). t-test for unpaired data was performed on the differential data (12-month values minus
reference values) or with U Mann–Whitney test according to the case. $ Difference in means according to the
differential (12-month values minus baseline values). Data points in bold are significant, p < 0.05.

The results of the ELISA and multiplex assays are shown in Table 3. MCP-1, CK-18, and
leptin plasma levels were significantly lower and RvD1 levels were higher after 12 months
in the group where the subjects acquired higher AMD. The levels of MPO, zonulin, and
omentin were significantly lower after 12 months in both groups, regardless of the degree
of AMD. No significant changes were observed in the levels of XOD, IL-1β, IL-1ra, IL-6,
TNFα and chemerin.

Figure 5 shows endotoxin concentration at baseline and after 12 months of intervention.
The group which achieved a higher adherence to the Mediterranean diet presented a greater
reduction in endotoxin levels than the group with a lower adherence improvement.

Table 4 shows crude and adjusted OR for the association between plasma biomarkers
and AMD. Low adherence to the Mediterranean diet was established as the reference. OR
crude and adjusted-1 analysis showed that higher AMD was considered a protective factor
in front of CK-18 and EDA levels. AMD seemed to be a protective factor for IFC but after
adjustment for intervention group, significance was lost.



Antioxidants 2023, 12, 833 9 of 17

Table 3. Inflammatory markers of participants ‘Baseline’ and ‘12 months’ stratified by AMD.

Low
Adherence

(n = 32)

High
Adherence

(n = 35)
p-Value p-Value

Mean ± SD Mean ± SD AMD × T ∆

XOD (ng/mL)
Baseline 0.4 ± 0.2 0.4 ± 0.1

0.455 0.39112 months 0.3 ± 0.2 0.4 ± 0.2
∆ −0.1 ± 0.2 0.0 ± 0.2

IL-1β (pg/mL)
Baseline 1.3 ± 0.6 1.2 ± 0.5

0.340 0.70412 months 1.3 ± 0.5 1.2 ± 0.4
∆ 0.0 ± 0.3 0.0 ± 0.2

IL-1ra (pg/mL)
Baseline 130 ± 307 131 ± 126

0.090 0.05412 months 85.7 ± 85.9 90.1 ± 108
∆ −44.5 ± 279 −41.3 ± 135

IL-6 (pg/mL)
Baseline 4.2 ± 0.4 4.2 ± 0.3

0.239 0.57812 months 4.2 ± 0.4 4.2 ± 0.3
∆ 0.0 ± 0.4 −0.0 ± 0.2

TNFα (pg/mL)
Baseline 3.9 ± 0.7 3.9 ± 0.5

0.159 0.11312 months 3.9 ± 0.5 3.9 ± 0.5
∆ 0.0 ± 0.4 −0.0 ± 0.5

MCP-1 (pg/mL)
Baseline 13.4 ± 12.6 10.7 ± 10.3

0.021 0.10512 months 13.3 ± 10.3 8.5 ± 5.8 *
∆ 0.1 ± 11.6 −2.2 ± 9.8

MPO (ng/mL)
Baseline 4.0 ± 2.5 4.6 ± 2.8

0.045 0.34312 months 2.8 ± 1.5* 2.9 ± 2.04 *
∆ −1.0 ± 2.5 −1.5 ± 3.6

RvD1 (pg/mL)
Baseline 143 ± 70 138 ± 37

0.063 0.01812 months 167 ± 144 166 ± 120 *
∆ 24.5 ± 165 27.8 ± 124 $

CK-18 (pM)
Baseline 91.6 ± 68.4 112 ± 76

0.002 0.44812 months 83.3 ± 52.7 79.5 ± 55.9 *
∆ −6.64 ± 64.3 −26.0 ± 57.2

Zonulin (ng/mL)
Baseline 5.0 ± 2.4 5.8 ± 3.6 #

0.033 0.04812 months 1.9 ± 1.2 * 2.57 ± 1.6 *
∆ −3.1 ± 2.1 −3.5 ± 4.2 $

EDA (pg/mL)
Baseline 507 ± 184 618 ± 246 #

0.015 0.16212 months 460 ± 149 468 ± 202
∆ −47.3 ± 186 −150 ± 201

Omentin (ng/mL)
Baseline 156 ± 49.3 149 ± 57.6

<0.001 0.22612 months 85.2 ± 34.4 * 80.5 ± 37.9 *
∆ −69.1 ± 52.8 −67.8 ± 48.7

Chemerin (ng/mL)
Baseline 86.4 ± 17.1 85.6 ± 13.9

0.222 0.85612 months 90.4 ± 25.0 84.4 ± 13.8
∆ 4.0 ± 19.6 −1.2 ± 17.0

Leptin (ng/mL)
Baseline 18.2 ± 7.9 19.2 ± 6.62

0.036 0.04912 months 15.1 ± 5.2 15.1 ± 6.4 *
∆ −3.0 ± 7.8 −3.7 ± 5.4 $

Abbreviations: XOD: xanthine oxidase; IL-1β: interleukin-1β; IL-1ra: interleukin-1ra; IL-6: interleukin-6; TNFα:
tumour necrosis factor α; MCP-1: monocyte chemoattractant protein 1; MPO: myeloperoxidase; RvD1: resolving
D1; CK-18: Cytokeratin-18; EDA: ectodysplasin-A. SD: Standard deviation. Results are expressed as mean ± SD.
Two-way analysis of co-variance (ANCOVA) was performed after adjustments by intervention (diet and physical
activity) or a Kruskal–Wallis test according to the case. * Difference in means between participants in time (baseline
and 12 months). # Difference in means between groups (low adherence and high adherence). t-test for unpaired
data was performed on the differential data (12-month values minus reference values) or with U Mann-Whitney
test according to the case. $ Difference in means according to the differential (12-month values minus baseline
values). Data points in bold are significant, p < 0.05.
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Table 4. Association between plasma biomarkers and ADM in participants after a 12-Month of
lifestyle intervention.

Low Adherence
(n = 32)

High Adherence
(n = 35)

OR (95% CI) OR (95% CI) p-Value

XOD
Crude OR 1.00 (ref.) 1.393 (0.640–3.032) 0.404

OR Adjusted 1 1.00 (ref.) 1.438 (0.622–3.328) 0.396

IL-1β Crude OR 1.00 (ref.) 0.543 (0.263–1.119) 0.098
OR Adjusted 1 1.00 (ref.) 0.679 (0.317–1.453) 0.318

IL-1ra
Crude OR 1.00 (ref.) 0.474 (0.220–1.020) 0.056

OR Adjusted 1 1.00 (ref.) 0.501 (0.227–1.107) 0.087

IL-6
Crude OR 1.00 (ref.) 0.907 (0.445–1.847) 0.788

OR Adjusted 1 1.00 (ref.) 0.845 (0.404–1.769) 0.655

TNFα
Crude OR 1.00 (ref.) 0.860 (0.415–1.780) 0.683

OR Adjusted 1 1.00 (ref.) 0.983 (0.456–2.118) 0.965

MCP-1
Crude OR 1.00 (ref.) 0.782 (0.384–1.593) 0.498

OR Adjusted 1 1.00 (ref.) 1.090 (0.498–2.386) 0.830

MPO
Crude OR 1.00 (ref.) 0.611 (0.290–1.288) 0.195

OR Adjusted 1 1.00 (ref.) 0.602 (0.278–1.301) 0.197

RvD1
Crude OR 1.00 (ref.) 1.371 (0.680–2.766) 0.377

OR Adjusted 1 1.00 (ref.) 1.245 (0.597–2.597) 0.559

CK-18
Crude OR 1.00 (ref.) 0.326 (0.157–0.676) 0.003

OR Adjusted 1 1.00 (ref.) 0.330 (0.152–0.714) 0.005

Zonulin
Crude OR 1.00 (ref.) 1.432 (0.687–2.983) 0.338

OR Adjusted 1 1.00 (ref.) 1.341 (0.629–2.858) 0.447

EDA
Crude OR 1.00 (ref.) 0.206 (0.097–0.437) <0.001

OR Adjusted 1 1.00 (ref.) 0.239 (0.111–0.517) <0.001

Omentin
Crude OR 1.00 (ref.) 1.000 (0.486–2.059) 1.000

OR Adjusted 1 1.00 (ref.) 1.014 (0.473–2.173) 0.971

Chemerin
Crude OR 1.00 (ref.) 0.600 (0.293–1.227) 0.162

OR Adjusted 1 1.00 (ref.) 0.597 (0.284–1.253) 0.173

Leptin Crude OR 1.00 (ref.) 1.062 (0.521–2.166) 0.868
OR Adjusted 1 1.00 (ref.) 1.123 (0.537–2.350) 0.759

Phenolic compounds Crude OR 1.00 (ref.) 1.432 (0.687–2.983) 0.338
OR Adjusted 1 1.00 (ref.) 1.595 (0.745–3.412) 0.229

MDA
Crude OR 1.00 (ref.) 0.755 (0.351–1.622) 0.471

OR Adjusted 1 1.00 (ref.) 0.751 (0.338–1.669) 0.482

CAT
Crude OR 1.00 (ref.) 0.611 (0.290–1.288) 0.195

OR Adjusted 1 1.00 (ref.) 0.629 (0.289–1.366) 0.241

SOD
Crude OR 1.00 (ref.) 1.418 (0.672–2.992) 0.359

OR Adjusted 1 1.00 (ref.) 1.552 (0.709–3.397) 0.271

IFC
Crude OR 1.00 (ref.) 0.456 (0.229–0.910) 0.026

OR Adjusted 1 1.00 (ref.) 0.516 (0.252–1.056) 0.070

Endotoxin
Crude OR 1.00 (ref.) 0.818 (0.340–1.970) 0.654

OR Adjusted 1 1.00 (ref.) 0.830 (0.344–2.005) 0.679

Abbreviations: OR: odds ratio; OR adjusted 1: odds ratio after adjustments by intervention (diet and physical
activity); ref.: reference; XOD: xanthine oxidase; IL-1β: interleukin-1β; IL-1ra: interleukin-1ra; IL-6: interleukin-6;
TNFα: tumor necrosis factor α; MCP-1: monocyte chemoattractant protein 1; MPO: myeloperoxidase; RvD1:
resolving D1; CK-18: cytokeratin-18; EDA: ectodysplasin-A.
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4. Discussion

The most outstanding results of this study are the improvement of anthropometric, bio-
chemical, oxidative, and inflammatory parameters in patients with NAFLD after 12 months
of nutritional intervention. Although the patients followed different interventions, the
results at 12 months were similar in the three groups. For this reason, and to delve into
the possible causes responsible for this improvement, the patients have been grouped by
the degree of improvement in adherence to the MedDiet between the start of the study
and the intervention. The changes have been more evident in those patients with a greater
improvement in the degree of ADM after the nutritional intervention than those with a
lesser improvement in adherence. After 12 months of promoting a lifestyle intervention
it has been shown, in both groups, an improvement in their physical fitness with respect
to baseline since their VO2 max evaluated by Chester Step Test has increased. The same
changes have been shown in systolic blood pressure. However, only participants with a
higher ADM achieved significant weight loss and reduction in BMI. These results are in
accordance with previous studies that showed how an energy-restricted MedDiet and exer-
cise have effects on weight loss [26]. In addition, the results reported that the participants
with a greater ADM improvement showed a significant decrease in IFC with respect the
other group. The reduction in the liver fat contents has been reported to be related to a
significant decrease in de novo lipogenesis and an increase in β-oxidation, without the need
for a direct relation with weight or BMI loss [27]. Furthermore, some studies showed a
direct relationship between physical training and a reduction of IFC, since exercise can
regulate hepatic lipid metabolism, favoring their mobilization [28,29]. Regarding the lipid
profile, triglycerides and total cholesterol have been decreased in both groups, but this
reduction was more evident in subjects with a high AMD than subjects with low AMD.
The present results are in line with other studies in which improved lipid profiles were also
observed in subjects with high ADM with respect to subjects following a diet pattern more
closely related to Western dietary patterns [30]. On the other hand, AST and ALT levels
showed a decrease after one year of intervention, while GGT levels did not show changes.
Similar results were previously obtained in NAFLD patients after 16 weeks of undergoing
a MedDiet [31]. Another study also showed that the serum levels of liver enzymes, AST,
ALT, and GGT, decreased after three and six months of intervention with MedDiet [32].
Moreover, there was a significant decrease in the current levels of CRP in the group with a
higher AMD after 12 months of intervention when compared with the group with lower
improvement in the ADM. Similar results were previously found, where a healthy dietary
pattern such as the MedDiet was related to a significant reduction in CRP suggesting an
attenuation of the inflammatory state [33].

Concerning oxidative stress markers, the present results revealed that plasma MDA
levels, as a marker of lipid peroxidation, have been reduced in both groups after 12 months
of intervention, especially in the group in which the participants had a high ADM and
increased their physical capacity. These outcomes are in accordance with previous results
showing that the concentrations of MDA were lower in the liver and serum of early NAFLD
patients compared to advanced NAFLD [34]. The decrease in the MDA levels after the
intervention is relevant since high levels of MDA are related to an increased expression
of proinflammatory cytokines, interact with proteins and other lipids, and predispose
to fibrosis of the liver parenchyma [35]. When analyzing the current variation of the
antioxidant enzymes, CAT and SOD, no significant changes associated with the nutritional
intervention were observed. Previous studies suggested that in the initial stages of the
disease, an adaptive response of antioxidant defenses was produced, which; however, may
be exhausted over time, and may be responsible for the absence of changes observed in
the enzymes analyzed [35,36]. In addition, this absence of changes could also derive from
the increase in other non-enzymatic antioxidants or from a reduction in the prooxidative
state, with a decrease in the production of ROS [37]. Although an increased ADM pattern
is related to higher ingestion of phenolic compounds, in the present study, after 1-year of
intervention, the plasma levels of phenolic compounds did not show significant changes
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in any group. These results could be due to the fact that the maximum plasma levels of
polyphenols are found after 1–2 h after ingestion, which could minimize the differences
between groups after overnight fasting but also to their general poor bioavailability [38].

Current inflammatory markers such as XOD, IL-1β, IL-1ra, IL-6, TNFα, and chemerin
levels did not report any changes between groups and time. After 12 months of following
a dietary pattern based on the MedDiet and the promotion of physical activity, whereas
MPO, omentin, and zonulin levels were reduced in the same way in the two groups. High
MPO levels are associated with an increment of oxidative stress and inflammation which
are characteristic of overweight and obesity [39]. Our results are in accordance with others
studies showing that a better AMD and an increase in physical activity ameliorate the
inflammatory profile and, therefore, decrease the levels of MPO [40,41]. Omentin is an anti-
inflammatory adipokine mainly expressed and secreted from visceral adipose tissue [42].
A meta-analysis has reported the existence of heterogeneous results among the studies
analyzed, although serum omentin level appears to be significantly lower in overweight
subjects but not obese ones [43]. In addition, high levels of this adipokine were reported in
patients with biopsy-proven NAFLD and showed a direct relationship with the degree of
hepatocyte ballooning [44]. In this sense, the decrease observed in current groups may be
related to a reduction in the BMI of the participants and in the systemic proinflammatory
state associated with excessive fat accumulation. Zonulin is a described marker of intestinal
permeability that has been reported to be increased in obesity and in NAFLD with a steep
rise in NASH patients diagnosed by liver biopsy [45,46]. Since the liver receives most of
its blood supply from the gut via the portal vein, it is one of the organs most exposed to
gut-derived toxic factors [47]. In this regard, NAFLD has been reported to be associated
with higher intestinal permeability and more disrupted tight junctions [48]. Thus, the
observed decrease in plasma levels of zonulin may indicate a better intestinal state in
parallel to a decrease in hepatic steatosis.

The main differential results between current groups were observed in the levels of
MCP-1, CK-18, and leptin that decreased only in participants with a higher ADM after
1-year intervention, whereas levels of RvD1 increased. The overexpression of MCP-1 was
related to an obese adipose tissue and high levels of this chemokine contribute to the
macrophage infiltration into this tissue. Elevated levels of MCP-1 have been observed
in patients with NAFLD and continue to increase in NASH [49]. In agreement with
other studies, a high AMD is related to an improvement in the circulating levels of some
chemokines including MCP-1 leading to a better inflammatory state [13,50]. CK-18 is a
hepatic intermediate filament protein associated with the apoptosis of hepatocytes and it
was studied as a non-invasive biomarker in NAFLD [51]. To current findings, CK-18 levels
had a good correlation with steatosis grade, and both levels were directly related to specific
enzymes activities [52,53]. Moreover, the present findings agree with a previous study that
showed how a weight loss induced by a diet resulted in a significant decrease in CK-18
levels and a reduction in liver steatosis [54]. Leptin is a hormone secreted by adipose tissue
which is involved in appetite regulation and the control of body weight [55]. Although
there was controversy, recent studies revealed that increased levels were associated with
the severity of hepatic steatosis [56,57]. The current results also evidenced a decrease in
leptin levels in the group that achieved a greater reduction in intrahepatic content. On
the other hand, RvD1 is an anti-inflammatory and pro-resolving mediator which has a
positive protective effect on liver disease. In this sense, RvD1 levels increased according
to the reduction in the degree of steatosis. In fact, it was seen how RvD1 had effects of
hypoglycaemic and lipid-lowering in cell culture being an effective drug for NAFLD [58].
EDA is a hepatokine belonging to the superfamily of the TNF superfamily that has been
reported to alter systemic insulin sensitivity in obesity and promote the activation of
proinflammatory pathways, but also could aggravate hepatic steatosis by striking a balance
between lipid deposition and elimination [59,60]. Although our results did not reveal
significant changes in their levels, it can be appreciated a trend to reduced levels after
a MedDiet and lifestyle intervention. These changes are in accordance with previous
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studies reporting that an increase in EDA levels was directly linked with inflammatory and
steatosis states, even though their levels were not related to insulin resistance in human
obesity [59,61].

Several studies reported that endotoxemia may be involved in the pathogenesis
of NAFLD [62,63]. People with NAFLD showed an increased intestinal permeability, a
prolonged orofecal transit time, and, a greater incidence of bacterial overgrowth in the small
intestine [62,63]. In these patients, an increase in nonvirulent endotoxin-producing bacteria
has been observed and may contribute to the pathology mediated by pro-inflammatory
endotoxin-toll like receptor 4 (TLR4) crosstalk [64]. The current results revealed that the
patients with a greater improvement in the degree of ADM after 12 months of intervention
decreased the levels of endotoxin more with respect to those with a lower AMD. The results
obtained in the current study agree on previous studies suggesting that modifying lifestyle
could impact on reducing circulating levels of endotoxin [65,66]. Moreover, it had been
observed that an increase in dietary fiber intake is inversely related to steatosis degree and
bacterial endotoxin levels, suggesting that dietary fiber intake could be a potential target in
NAFLD management [67].

Finally, the current findings from odd ratios showed how subjects who achieved a
high AMD after 1 year of lifestyle intervention are protected in front of increased plasma
levels of CK-18 and EDA and the percentage of IFC.

5. Strengths and Limitations of the Study

The main strength of the current study is how an increase in AMD can reduce levels
of oxidative stress and pro-inflammatory biomarkers after 1 year of intervention in patients
with NAFLD. The main limitation of this study is that the sample size was relatively small,
even though it was enough to evidence the existence of differences in the biomarker levels
after a change of habits between subjects that achieve a high AMD, and those with a low
AMD. Also, the analysis by gender could be interesting; however, the limited number of
participants may make interpretation of the statistical results difficult.

6. Conclusions

The current study showed that a one-year nutritional intervention improved ain
NAFLD features such as body mass index, IFC, liver enzymes, and pro-oxidant and pro-
inflammatory status. There was also a decrease in the concentration of plasmatic endotoxin,
suggesting an improvement in intestinal permeability. These health benefits were more
evident in participants that improved their AMD to a greater extent.
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