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Abstract: This study explores the photoprotective effects of rutin, a bioflavonoid found in some
vegetables and fruits, against UVA-induced damage in human skin fibroblasts. Our results show
that rutin increases cell viability and reduces the high levels of ROS generated by photo-oxidative
stress (1 and 2 h of UVA exposure). These effects are related to rutin’s ability to modulate the
Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 signaling pathway results in an
increase in reduced glutathione and Bcl2/Bax ratio, and the subsequent protection of mitochondrial
respiratory capacity. These results demonstrate how rutin may play a potentially cytoprotective role
against UVA-induced skin damage through a purely antiapoptotic mechanism.
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1. Introduction

The risks and damages induced by excessive exposure to UV radiation, especially
the solar one, have been the object of careful evaluations and studies, especially in recent
decades. Prolonged exposure to solar UV radiation can cause acute and chronic harmful
effects to the skin, eyes, connective tissue, blood vessels, and, in the most serious cases,
skin tumors. In this regard, among the chronic effects of major health relevance, there
are some neoplastic forms such as melanoma, basal cell carcinoma (BCC), and squamous
cell carcinoma (SCC). These types of cancers often appear on areas of the skin that are not
adequately protected from solar radiation [1–4].

There are different types of ultraviolet radiation, which have different effects depend-
ing on the wavelength: the longer the wavelength is, the greater is the ability of the rays
to penetrate the atmosphere and reach the deep layers of the skin tissue [5]. In this con-
text, UVA rays (315–400 nm), characterized by a constant intensity throughout the year,
represent around 95% of the UV radiation capable of reaching dermal fibroblasts, also
causing long-term damage [6,7]. Exposure to UVA rays leads to (i) an increased oxidative
stress in fibroblasts, (ii) a decreased secretion and synthesis of matrix proteins, (iii) cellular
dysfunction, and, finally, (iv) apoptosis: these processes first promote skin aging and later
promote the predisposition to skin diseases [7–11]. The reactive oxygen species (ROS)
produced (after UVA exposure) interact with lipid-rich membranes, enzymes, and nuclear
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DNA by changing their structures and interfering with their functions. In addition, the
accumulation of ROS in cells leads to the initiation of cellular reactions with dysfunctions
of mitochondria activities. Therefore, ROS accumulation in skin cells represents the main
cause of photodamage, photoaging, and photocarcinogenesis [12–15]. At the molecular
level, it is also known that UVA-generated ROS lead to a decreased expression of erythroid
nuclear factor 2-like 2 (Nrf2), a marker of oxidative stress [16–18]. Nrf2 is a key regulator in
the protection of skin cells from oxidative stress and UVA radiation [19]. In fact, increasing
intracellular Nrf2 leads to the maintenance of the cell’s reducing potential, the decrease in
apoptotic genes, and the maintenance of mitochondrial integrity resulting in improved cell
viability [20,21].

The use of natural substances that can protect cells from oxidative stress has now be-
come the subject of numerous studies, either in the form of nutraceuticals or used topically
as protectants. In our study, we planned to analyze the effect of rutin, a flavonoid naturally
occurring in many foods, especially buckwheat, apricots, cherries, grapefruit, plums, and
oranges, and it was found in high amounts in the waste from wine production from grapes.
It is often used in patients with capillary fragility, varicose veins, and hematomas, but recent
papers have shown an important antioxidant effect [22–24]. Therefore, our experimental
design aimed at studying the effect of rutin on fibroblast cultures exposed to UVA radiation,
focusing our preliminary/exploratory study on oxidative stress and its mechanisms.

2. Materials and Methods
2.1. Cells and Treatments

Fibroblasts derived from a healthy control male (CTRL, coded CTRL1) of 31 years old
were employed. A fibroblast cell culture was established after around 1 week from the date
of biopsy. Skin biopsy was performed at the left leg (around 10 cm from the ankle) and was
obtained after a signed Informed Consent (prot. N. 9917/15 and prot.cm 10/15 of Ethics
Committee at the Catholic University of Rome). The cell culture was grown in DMEM
medium (Sigma Aldrich, St. Louis, MO, USA), supplemented with 10% fetal bovine serum
(FBS), 1% penicillin/streptomycin, and 2.5% L-glutamine at 37 ◦C with 5% CO2. For the
subsequent experiments, cells were seeded with 80% of confluency. UVA exposure was
produced using a lamp (Vilber Lourmat VL-62C Power 6W; Vilber Lourmat Deutschland
GmbH, Eberhardzell, Germany) at 365 nm, and was placed 10 cm from the source for 1, 2,
3, 4, and 5 h at an intensity of ~0.06 J/cm2/s. To minimize radiation uptake by the medium,
the cells were kept in PBS during exposure, and immediately after exposure, the culture
medium was replaced and the cells were put in an incubator for 24 h before proceeding
to the different assays. Control cells (unirradiated) were maintained for the same period
under the same experimental condition.

Considering the results obtained from the cell viability curve, we chose to continue
the subsequent experiments by exposing the cells to UVA radiation for 1 and 2 h.

Rutin (purchased from Sigma) was dissolved in DMSO to a final concentration of
10 mM and then, before use, the solution was diluted in PBS to the desired concentrations.
Rutin was added to the cells 24 h before UVA exposure. To determine a dose–response
curve, we evaluated the cell viability after UVA exposure for 1 and 2 h, using rutin at 5, 10,
20, and 25 µM. Based on the data obtained, we chose 10 µM as the optimal concentration.

All experiments were also conducted in the presence of DMSO alone at the highest
concentration used to dissolve 25 µM rutin. No difference was found compared with
control cells.

2.2. Cell Viability

Cell viability was assessed with the MTS assay (Promega srl, Padua, Italy), according
to the manufacturer’s instructions. Briefly, after UVA exposure and various experimental
treatments, MTS reagent was added to cells and plated in 96-well plates at a cell density
of 2 × 104 cells/well, reaching around 80% of confluency. The assay provides a sensitive
measurement of the normal metabolic state of cells, reflecting early changes in cellular
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redox homeostasis. Intracellular soluble formazan produced by the cell reduction of MTS is
proportional to the number of live cells, and it was measured by recording the absorbance
of each well of the plate with a plate reader at 490 nm. The cellular viability was expressed
as % compared with control cells.

2.3. ROS Measurement

An intracellular ROS detection kit containing 2′,7′-dichlorofluorescein diacetate (DCF-
DA) was used to measure the formation of intracellular ROS (Abcam, Cambridge, UK).
Briefly, DCF-DA was applied in accordance with the manufacturer’s instructions to fi-
broblasts grown in 96-well microplates (20,000 cells per well) and subjected to various
experimental settings. When ROS are present, DCF-DA, an originally non-fluorescent
molecule, is oxidized to DCF, a highly fluorescent chemical. A CytoFluor multiwell plate
reader (Victor3-Wallac-1420; PerkinElmer, Waltham, MA, USA) was used to measure the
fluorescence at 485/538 nm of excitation/emission. The amount of ROS produced was
proportional to the emitted fluorescence and measured by fluorescence intensity.

2.4. Nrf2 Detection Assay

A cell-based colorimetric ELISA kit was used to measure the intracellular levels of Nrf2
(LSBio, LifeSpan Biosciences; Seattle, WA, USA). In a 96-well plate, fibroblasts were seeded
at a density of 20,000 cells per well. Following the UVA exposure and treatment, cells were
fixed with 4% formaldehyde. Finally, the plate was incubated at 4 ◦C overnight with the
addition of quenching solution, blocking buffer, and the primary antibodies (against-Nrf2—
a rabbit polyclonal antibody; against-GAPDH—a mouse monoclonal antibody, employed as
an internal positive control and used for normalization). The samples were examined with a
microplate reader at a wavelength of 450 nm after the addition of the peroxidase-conjugated
secondary antibody. The colorimetric results were provided as a percentage compared with
the untreated control and normalized as the OD450 of the Nrf2/GAPDH ratio.

2.5. Total and Reduced Glutathione Assay

Total (GSH + GSSG) and reduced glutathione (GSH) levels were assessed using a
colorimetric Assay Kit (ab239709, Abcam, Cambridge, UK). Briefly, fibroblasts seeded in
Petri dishes at 80% confluence were pre-treated with 10 µM rutin for 24 h and then exposed
to UVA irradiation for 1 and 2 h. After irradiation, cells were lysed by adding the lysis
buffer provided in the kit and centrifuged at 14,000× g for 10 min. Total glutathione and
reduced fraction were measured in the supernatants after normalization for mg/protein
(see below). The glutathione assay is based on the reaction between DTNB (glutathione
substrate) and glutathione that generates 2-nitro-5-thiobenzoic acid, which has a yellow
color, and therefore, the concentration of GSH is determined by measuring the absorbance
at 412 nm. To detect only the reduced form of glutathione, glutathione reductase is omitted
from the assay. Standard curves (substrates provided by the kit) were used to calculate the
absolute value of total glutathione (ng/mL) and glutathione in reduced form (µg/mL).

Protein concentration was determined with a Protein Assay (Bio-Rad, Hercules, CA,
USA) in 96-well microplates using a calibration curve for BSA.

2.6. Measurement of Iron Level

Total iron levels in the cytoplasm of fibroblasts treated according to the experimental
design previously described were assessed with the Iron Assay kit (Abcam, ab83366),
according to the manufacturer’s instructions. Briefly, 2 × 106 cells were lysed in 250 µL of
assay buffer provided by the kit, and 50 µL of lysates, at the same protein concentration,
was placed in 96 wells plate. Calibration standard curves were placed in the same plate.
For the determination of total iron (II + III), an iron reducer was added to the wells so that
all ferric iron was reduced to ferrous. The plate was incubated at 37 ◦C for 30 min, then the
Iron Probe was added and incubated for an additional 60 min. Free iron (II) reacts with the
Iron Probe to produce a stable-colored complex, and it was evaluated immediately on a
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colorimetric microplate reader (OD = 593 nm). The iron(II) and total iron content of the test
samples can be directly determined from the standard curve (standard provided by the kit).
Iron(III) was calculated as total iron-iron(II). Values were presented as nmoles present in
the 50 µL of the cellular lysates.

2.7. Bax and Bcl2 Detection Assay

Bax and Bcl2 proteins were used to assess the degree of apoptosis of fibroblasts exposed
to UVA radiation for 1 and 2 h with and without pretreatment with 10 µM rutin. Intracel-
lular concentrations of Bax and Bcl2 proteins were determined using a colorimetric cell
ELISA kit from Assay Biotechnology (Sunnyvale, CA, USA). Cells were seeded in a 96-well
plate at a density of 20,000 cells/well and treated as previously reported. Twenty-four
hours after treatment, primary antibodies (rabbit polyclonal against Bax, rabbit polyclonal
against Bcl2, and mouse monoclonal against GADPH, the latter used as housekeeping)
were added to the cells, followed by peroxidase-coupled secondary antibodies.

A microplate reader was used to measure the samples at 450 nm, and the ODs of Bax
and Bcl2 were normalized for housekeeping. To establish an arbitrary anti-apoptotic
index, we expressed the ratio of OD of Bcl2 (anti-apoptotic protein) vs. OD of Bax
(apoptotic protein).

2.8. High-Resolution Respirometry (HRR)

Respiration in intact fibroblasts was monitored with high-resolution respirometry
(Oroboros Oxygraph-2k, Innsbruck, Austria) operating at 37 ◦C with a 2 mL chamber
volume [25]. Cellular respiration experiments were carried out in two O2k chambers
operated in parallel after calibration of the oxygen sensors at air saturation and an instru-
mental background correction. Calibration with air-saturated medium was performed
immediately before the oxygen flux measurement was taken. The data acquisition and
analysis were carried out using DatLab software (Oroboros Instruments). Fibroblasts were
seeded in a Petri dish with 80% of confluency. After seeding, cells were pre-treated with
10 µM of rutin for 24 h and then were exposed to UVA for 1 and 2 h. After irradiation,
fibroblasts were trypsinized, counted, resuspended in supplemented DMEM medium to a
final concentration of 1 × 106 cells/mL, added to each Oxygraph Chamber (Chamber A
and Chamber B), and thereafter investigated using a phosphorylation control protocol [26].
The experiments began with the measurement of the basal oxygen consumption rate (OCR),
followed for about 10 min, until a steady state level was obtained (Basal OCR). ATP syn-
thase was inhibited by the addition of oligomycin (2 µg/mL) at each chamber to detect the
OCR from Proton Leak. The maximal respiration capacity (Maximal OCR) was obtained
by the addition of small volumes of the uncoupler carbonyl cyanide-4-(trifluoromethoxy)
phenylhydrazone (FCCP, 0.25 µM FCCP/step) and by the instantaneous observation of its
effect on cellular respiration in the uncoupled state. Cell respiration was then measured
in the presence of 0.5 µM rotenone, which selectively inhibits Complex I, and then in the
presence of 2.5 µM antimycin A, which inhibits Complex III, to estimate Residual OCR. In
addition to instrumental background, the mitochondrial respiration was corrected for the
oxygen flux due to residual OCR.

2.9. Caspase-3 Activity

The supernatants obtained, as reported for the GSH assay, were also used to evaluate
the caspase-3 activity, quantified using a specific colorimetric kit (Caspase-3 Assay Kit
Abcam ab39401). Briefly, cell lysates, at the same protein concentration, were mixed with an
equal volume of reaction buffer containing 10 mM DTT and 200 µM DEVD-p-NA substrate.
The mixture was incubated at 37 ◦C for 2 h. Optical density was measured at 400 nm with
a microplate reader. The number-fold increase in caspase-3 activity was determined by
comparing the results of the samples (irradiated and/or treated cells) with the level of
the untreated and unirradiated control. Data were expressed as the percentage of activity
compared with the control cells.
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2.10. Statistical Analysis

Each experiment was replicated at least three times with up to eight replicates per
group. Results were displayed as means ± SEM. Data were analyzed by one-way ANOVA
with the Newman–Keuls post hoc test by using PrismTM software (GraphPad, San Diego,
CA, USA). Statistical analysis for HHR was performed using the Newman–Keuls Multiple
Comparison Test. The level of significance was set at p ≤ 0.05.

3. Results

We first tested the response of fibroblasts exposed to different times of UVA irradiation
by evaluating their viability. After a time titration curve (1, 2, 3, 4, and 5 h) of UVA exposure,
fibroblasts showed a significant loss of viability of 35 and 50% after 1 and 2 h, respectively
(Figure 1), compared with control cells (blue line), which were not treated with UVA, but
kept under a hood outside the incubator. From the 3rd hour onward, cell death was also
observed in control cells and therefore not attributable exclusively to the action of UVA.
In light of these results, we chose 1 and 2 h stay under the lamp as the optimal time of
UVA exposure.
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Figure 1. Cell viability after 1, 2, 3, 4, and 5 h of UVA exposure compared with control. Cell viability
is expressed as % relative to control (unexposed cells, blue line), which was held for the same time
under the same experimental conditions (see details in Section 2). Compared with control fibroblasts,
UVA exposure (orange line) produced a significant reduction in cell viability as early as 1 and 2 h.
* p < 0.05 and ** p < 0.01 exposed vs. unexposed.

After evaluating the UVA exposure conditions, we sought to identify the optimal
concentration of rutin, the molecule we chose as a potential protective agent. We then
pretreated the fibroblasts with different concentrations of rutin (5, 10, 15, and 25 µM) and,
after 24 h, the cells were subjected to UVA irradiation for 1 and 2 h. As shown in Figure 2,
which reports cell viability, pretreatment with rutin had no effect on cells not exposed to
UVA (blue bars), while it protected cells from UVA-dependent cytotoxicity. This result
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was evident even at low concentrations (5 µM): after exposure, there were 15% and 32%
increases in viability at 1 h and 2 h, respectively, compared with the control (UVA-exposed
cells without rutin). The result was even more pronounced at 10 µM, when the increase
in cell viability after 1 h of exposure was 20% and 45% compared with controls. These
data demonstrated the protective effect of rutin on UVA-exposed cells, and in order to
identify the molecular mechanisms underlying this phenomenon, we chose a concentration
of 10 µM for subsequent experiments.
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Figure 2. Cell viability in fibroblasts unexposed and exposed to UVA for 1 and 2 h before and after pre-
treatment with different concentrations of rutin. Cell viability is expressed as % vs. control (unexposed
and untreated cells). Different concentrations of rutin were employed as follows: 0 (absence of pre-
treatment), 5, 10, 20, and 25 µM of rutin. Statistical analysis was performed by comparing data
under the same experimental conditions (0, 1, and 2 h of UVA exposure). * p < 0.05 for 1 h exposure;
◦◦ p < 0.01 for 2 h exposure.

To investigate the molecular mechanisms underlying UVA damage and the protective
effect of rutin, we measured the presence of ROS after administration of 10 µM rutin and
the subsequent exposure to UVA radiation for 1 and 2 h, respectively (Figure 3). ROS
were measured as fluorescence intensity and expressed as a percentage compared with
unirradiated, non-rutin-treated cells (arbitrarily set as 100%). As can be seen, in cells
without rutin, the increase in ROS was 20% after 1 h of exposure and tripled after 2 h.
In contrast, in the rutin-pretreated cells, the oxidation levels were similar to those of the
unexposed cells, showing a significant reduction in ROS compared with the untreated cells.
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Figure 3. Reactive oxygen species (ROS) for fibroblasts unexposed (blue bars) and exposed to UVA
for 1 h (orange bars) and 2 h (gray bars) in the absence (control) and pre-treated with 10 µM of
rutin. ROS are expressed as percentage of fluorescence intensity compared with the unexposed and
untreated control, arbitrarily considered 100%. Statistical analysis was performed by comparing data
between unexposed vs. exposed and between untreated vs. treated fibroblasts. ** p < 0.01 unexposed
vs. exposed; ◦◦ p < 0.01 untreated vs. treated.

As it is known that increased ROS within cells lead to an immediate increase in
Nrf2, which seeks to counteract cellular oxidation, we measured this protein in fibroblasts
treated according to the previous experimental protocol. In Figure 4, we report Nrf2
values in cells unexposed and in cells exposed for 1 and 2 h to UVA irradiation, with
and without pre-treatment with 10 µM of rutin. Even in cells not exposed to radiation,
rutin evidently resulted in increased Nrf2 levels (reaching threefold values compared
with control) and, after UVA exposure, a 3.5- and 4-fold increase at 1 and 2 h of radiation
exposure, respectively. Note that in fibroblasts not pre-treated with rutin, the Nrf2 level
did not significantly change after 1 h of exposure, whereas a slight decrease occurred after
2 h of UVA irradiation without reaching statistical significance.

As Nrf2 is known to induce an increase in the antioxidant defenses of cells through
several mechanisms among which the increase in the antioxidant potential of cells emerges,
the next step was to assess the glutathione in the cytosol of treated fibroblasts according to
our experimental design. Table 1 shows the values of total glutathione expressed in ng/µL
and reduced glutathione in µg/µL. As can be seen, there were no significant changes in
total glutathione in the various samples, demonstrating that both UVA and rutin treatment
did not change glutathione expression. In contrast, the reduced form of glutathione (GSH)
was significantly decreased following UVA treatment and significantly increased in cells
pre-treated with rutin. These data indicate that fibroblasts, in order to counteract the
UVA-induced increase in ROS, consumed the cellular antioxidant stores resulting in GSH
depletion, which decreased from 2.30 (µg/µL) to 1.36 and 1.07 after 1 and 2 h of irradiation,
respectively. In contrast, pre-treatment with rutin doubled the amount of GSH before
radiation exposure (which increased from 2.20 µg/µL to 5.20 µg/µL) and, following UVA
rays, kept the antioxidant potential of the cells high by counteracting ROS formation,
as seen.
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Table 1. Total Glutathione (expressed as ng/µL) and Reduced Glutathione (expressed as µg/µL)
in fibroblasts in different experimental conditions. The values were calculated as reported in the
Section 2. * p < 0.05 unirradiated vs. UVA-treated; ◦◦ p < 0.01 untreated vs. rutin.

Total Glutathione
(ng/µL)

Reduced Glutathione
(µg/µL)

Untreated Rutin Untreated Rutin

Unirradiated 57.4 ± 4.5 59.5 ± 7.1 2.30 ± 0.50 5.20
◦◦ ± 0.62

UVA 1 h 57.6 ± 5.5 55.3 ± 4.6 1.36 * ± 0.22 4.63
◦◦ ± 0.60

UVA 2 h 53.3 ± 4.2 59.5 ± 6.5 1.07 * ± 0.20 4.06
◦◦ ± 0.65

The increase in Nrf2 and GSH is thus a cellular defense mechanism that rutin induces
to counteract UVA damage. As recent work has shown that rutin acts as a cytoprotective
agent through the induction of Nrf2 by both preventing ferroptosis and apoptosis, we
further investigated the molecular basis of the phenomenon observed in our experimental
system. First, we assessed intracellular levels of total iron (as a marker of ferroptosis) and
of the two forms, oxidized Fe(II) and reduced Fe(III), in fibroblasts irradiated with UVA for
1 and 2 h in the presence and absence of 10 µM of rutin. As can be seen from Figure 5, no
significant changes in total iron and ferrous and ferric iron were observed in fibroblasts
exposed to UVA or treated with rutin: this excludes that the cytotoxicity shown by UVA
was induced by ferroptosis.

Next, to assess the presence of apoptotic mechanisms, we measured the amount
of Bcl2 and Bax in the cells and reproduced the value of the “antiapoptotic index” by
expressing the ratio of Bcl2 (antiapoptotic) to Bax (pro-apoptotic) in fibroblasts exposed
to UVA radiation (for 1 and 2 h) with and without pre-treatment with rutin (Figure 6). As
evident in the radiation-exposed cells, Bcl2/Bax decreased by 20% (UVA 1 h) and 25%
(UVA 2 h), highlighting a prevalence of pro-apoptotic mechanisms, whereas the presence
of rutin practically maintained the ratio as in cells not exposed to UVA.
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Figure 6. Bcl2/Bax ratio after 1 and 2 h of UVA irradiation with and without 10 µM of rutin. Anti-
apoptotic index (expressed as Bcl2/Bax ratio) was calculated in untreated fibroblasts (green bars)
and fibroblasts treated with 10 µM of rutin (red bars) unexposed (No-UVA) and exposed for 1 and
2 h of UVA radiation. Pre-treatment with rutin prevented the decrease in the ratio in UVA-exposed
fibroblasts. * p < 0.05 untreated vs. treated.
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To assess the protective effects of rutin on the respiratory capacity of human dermal
fibroblasts, HRR measurements were performed on cells exposed to UVA radiation (2 h)
with and without pre-treatment with 10 µM of rutin. HRR measures, displayed as oxygen
flux per cell number, revealed that rutin induced a statistically significant increase in basal
respiration of treated fibroblasts compared to control cells. Similarly, a significant growth in
basal OCR was measured in fibroblasts exposed to UVA and pretreated with rutin vs. UVA
exposed (Figure 7A). Oligomycin-sensitive respiration (Proton Leak), which is induced by
inhibiting ATP synthase with oligomycin and corresponds to resting, non-phosphorylating
electron transfer, showed a slight trend to increase following rutin treatment, without
reaching statistical significance (Figure 7B). Similar to basal OCR, the level of maximal
uncoupled respiratory activity (Maximal OCR), recorded in the presence of optimal uncou-
pler (FCCP) concentrations, was positively influenced by rutin. Notably, maximal OCR,
which is a measure of functionality of the mitochondrial respiratory system independently
of the cellular energy demand, was significantly increased by about 40% in UVA exposed
and rutin-pre-treated cells compared to UVA-exposed cells (Figure 7C). Lastly, the residual
OCR, measured upon addition of rotenone and antimycin A, revealed among samples
several significant differences in non-mitochondrial oxygen-consuming processes as shown
in Figure 7D.
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Figure 7. High-resolution respirometry measurements after 2 h of UVA exposure with and without
10 µM of rutin pre-treatment. Measurements were carried out on untreated and unexposed fibroblasts
(green bars), fibroblasts treated with 10 µM of rutin (orange bars), those exposed for 2 h to UVA
radiation, and those with (red bars) and without (blue bars) pre-treatment with rutin. (A) Basal
oxygen consumption rate (Basal OCR), (B) Proton Leak, (C) Maximal OCR, and (D) non-mitochondrial
respiration (Residual OCR) are expressed as (pmol/(s × 106 cells)) and are average values ± SD of
three independent experiments performed in duplicate. The oxygen consumption rate obtained after
addition of 0.5 µM rotenone and 2.5 µM antimycin A (Residual OCR) was subtracted from all other
OCRs. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.
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Finally, because all data converged to indicate an inhibition of apoptotic mechanisms
by rutin on UVA-exposed cells, caspase-3 activity was measured. It was assumed [27] that
caspases regulate the final stages of apoptosis and, in particular, caspase-3 is an “executor”
of cell death. Figure 8 shows the values of caspase-3 activity in fibroblasts exposed to
UVA radiation with and without rutin pretreatment. As can be seen, exposure to 1 and
2 h of radiation caused an increase by 50 and 100%, respectively, of caspase activity in
untreated cells. Pretreatment with rutin, consistent with previous data, did not change
caspase activity compared with unirradiated cells.
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Figure 8. Caspase-3 activity in unexposed and exposed fibroblasts with and without rutin pretreat-
ment. Values are expressed as percentage compared with unirradiated cells (assumed as 100%) in
fibroblasts untreated (green bars) and pretreated with rutin 10 µM (red bars) exposed for 1 and 2 h
to UVA radiation. Note the protective effect of rutin in irradiated cells with practically unchanged
levels of caspase-3 activity. * p < 0.05 for 1 h of exposure vs. unexposed and untreated; ** p < 0.01 for
2 h of exposure vs. unexposed and untreated.

In conclusion, our results show that fibroblasts irradiated with UVA for 1 and 2 h
reach cell death by triggering apoptotic-type mechanisms, and pretreatment with rutin
(24 h before exposure) preserves cells from this cell death phenomenon.

4. Discussion

Rutin, a naturally occurring flavonoid glycoside in many plant species and/or in the
waste of their production cycle (e.g., from the wine production chain), has been shown to
exhibit several biological activities, such as antimicrobial, anticarcinogenic, antithrombotic,
cardioprotective, and neuroprotective [23,28,29]. Biological actions would seem to be due
to its antioxidant, anti-inflammatory, and antiapoptotic properties, capable of protecting the
cells from the harmful effects, especially free radicals [30]. For this reason, rutin effects have
also been studied on several neurodegenerative diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), and Huntington’s disease (HD) [28,30,31]. Furthermore,
the rutin in the phospholipid complex is better soluble and permeable than the free rutin,
thus allowing its delivery via the skin for the treatment of acute and chronic inflammatory
diseases in vivo [32].
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In this exploratory work, we exposed to UVA radiation a human fibroblast cell line to
obtain an experimental model of photo-induced damage. Ultraviolet radiation triggers a
series of chain reactions in exposed cells, that initially determine an increase in intracellular
ROS levels, which favor apoptotic processes and consequently cell death. Our previous
works, conducted on different cellular models, showed that the increase in ROS levels, con-
sequent to photo-oxidative damage, are linked to the activation of the signaling pathways
of the transcription factor Nrf2 [33–35]. The results exposed here follow our data previ-
ously obtained. In fact, fibroblasts exposed to UVA rays, especially after two hours, show
an increase of intracellular ROS levels and of the associated apoptotic molecular events
(increase in the Bcl2/Bax ratio), involving the Nrf2 signal transduction pathways [36–42].

Interestingly, the increase in ROS observed during the two-hour UVA exposure is not
associated with an increase in Nrf-2 nuclear levels. Usually, the increase in ROS levels,
induced by pro-oxidative stimuli, causes a ready activation of the Nrf-2 pathway, but in the
case of UVA rays, the increase in ROS levels is not associated with an immediate increase
in Nrf2 nuclear levels. In fact, in the case of photo-oxidative stimuli, intranuclear levels
of Nrf2 remain unvaried in the first hours and increase after 3 h of exposure, as already
observed in our work [33,43,44] and reported in the literature [45]. The cellular response
and nuclear translocation of Nrf2 probably follow different times and modes depending on
the chemical and physical properties of the noxious stimuli. Based on the results obtained
in our study, it can be hypothesized that GSH, the most important antioxidant in cells,
directly interacts with ROS to form oxidized glutathione (GSSG) and that regeneration
of oxidized GSH (GSSG) is mediated by an enzyme, glutathione reductase (GSR), which
is stimulated by Nrf2. In our experimental system, we see that reduced GSH decreases
significantly upon exposure to UVA, a sign of an immediate attempt by the cells to defend
themselves against oxidative stress. Subsequently, the decrease in GSH concentration due
to UVA-stimulated ROS production causes an alteration of redox homeostasis in cells that
can no longer defend themselves against reactive oxygen species.

The mechanism of the short-term activation of the Nrf2 signaling pathway is an impor-
tant pathway for protection from oxidative damage in skin cells, but in our experimental
system, it fails to intervene.

Pretreatment with rutin therefore seems to predispose cells to be more effectively
equipped to deal with the damages of photo-exposure and the consequent increase in ROS,
given that Nrf2 already increases after 24 h in unexposed cells. This increase also leads
to a greater capacity of cells to be reactive, in the short term, against oxidative stress, as
demonstrated by the values of reduced GSH. The increase in Nrf2 therefore provides cells
with antioxidant potential that facilitates the disposal of reactive oxygen species after an
acute insult such as UVA exposure.

Within this framework, it is interesting to underline that rutin can protect fibroblasts
from UVA damage both directly as an ROS scavenger and indirectly in the form of rutin
“quinone”, stimulating endogenous antioxidant systems mediated by Nrf2 [46]. In fact,
rutin is an antioxidant flavonoid, which is quickly oxidized and converted to quinone
during its action as an ROS scavenger. This is possible because the chemical structure of
rutin presents some isomers Orto and Para-diphenols, which, in conditions of oxidative
stress, are converted into the correspondent quinones. The latter easily bind to the thiol-
groups present on the Keap-1 protein, facilitating the nuclear translocation of Nrf2 [47,48].

However, whatever the mechanism, activation of the Keap1/Nrf2/Are signaling
pathway clearly plays a central role in mediating the cytoprotective/antioxidative response
of rutin in the presence of photooxidative stress. This hypothesis is reinforced by the results
obtained in the successive experiments.

As the recent scientific paper [49] demonstrated that the effect of intense UVA radiation
(4 kJ/m2) for 1–10 min increases cytosolic iron in skin fibroblasts—an event that rapidly
leads to cell death by ferroptosis—it seemed important to us to evaluate the involvement of
these mechanisms in our experimental system. We observed that a lower radiation supplied
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(0.06 J/cm2), such as the one we used, does not modify the amount of cytoplasmic Fe(II)
and Fe(III); on the contrary, it brings out mechanisms of apoptotic type at long-term (2 h).

Therefore, the mechanism we hypothesize about the role of rutin is to activate Nrf2,
which not only controls genes for antioxidant enzymes but also prevents apoptosis. Indeed,
it has been shown that UVA radiation induces apoptosis through the intrinsic pathway [50],
of which Bax is the most important regulatory factor leading to the formation of macropores
in the outer mitochondrial membrane and the activation of Caspase-3, the true effector
of cell death. Rutin, by increasing Bcl2 and decreasing Bax, leads to an arrest of the
apoptotic cascade.

Moreover, Nrf2 is also able to directly modulate mitochondrial functions, including
mitophagy and mitochondrial respiration, by forming on the mitochondrial membrane the
complex KEAP1/NRF2/PGAM5 (phosphoglycerate mutase 5). In the presence of redox
imbalance, the complex on the outer membrane of mitochondria degrades and causes the
dissociation of Nrf2. Free Nrf2 enters the nucleus and activates antioxidant and antiapop-
totic gene expression to mitigate oxidative mitochondrial stress [51–53]. In confirmation
of this, experimental evidence shows that cells of Nrf2-KO animals are highly sensitive
to chemical-induced mitochondrial damage, whereas chemo-preventive agents protect
against mitochondrial damage [54,55]. The results of our study confirm this axiom; in fact,
HRR measurements obtained on intact fibroblasts under physiological feeding conditions
with a mating control protocol [56,57] revealed that the antioxidant activity exerted by rutin
and its ability to activate Nrf2 is also significantly displayed at the mitochondrial level.
Indeed, cellular respiration was found to be strongly inhibited in UVA-exposed fibroblasts
and maintained at levels comparable to those of the control in rutin-treated cells.

In conclusion, the present study extends our knowledge on rutin’s nutraceutical prop-
erties. In fact, although preliminary and worth further analysis and validation, these data
demonstrate that rutin is a substance with high photoprotective properties, capable of pro-
tecting fibroblasts’ UVA-induced oxidative damage, via the Nrf2 signaling pathway. Nrf2,
a transcription factor that regulates the gene expression of a large variety of antioxidants
and phase II detoxification cytoprotective enzymes, when upregulated by rutin, maintains
both redox homeostasis and the anti-apoptotic response in fibroblasts exposed to UVA rays.
Therefore, based on our results, one could hypothesize the use of the rutin as a natural
remedy, in food supplements or cosmetic preparations, to protect the skin from the sun,
also in the light of issues of environmental sustainability and the circular economy.
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