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Abstract: Reactive oxygen species (ROS), and in particular H2O2, serve as essential second messen-
gers at low concentrations. However, excessive ROS accumulation leads to severe and irreversible
cell damage. Hence, control of ROS levels is needed, especially under non-optimal growth conditions
caused by abiotic or biotic stresses, which at least initially stimulate ROS synthesis. A complex
network of thiol-sensitive proteins is instrumental in realizing tight ROS control; this is called the
redox regulatory network. It consists of sensors, input elements, transmitters, and targets. Recent
evidence revealed that the interplay of the redox network and oxylipins–molecules derived from
oxygenation of polyunsaturated fatty acids, especially under high ROS levels–plays a decisive role in
coupling ROS generation and subsequent stress defense signaling pathways in plants. This review
aims to provide a broad overview of the current knowledge on the interaction of distinct oxylipins
generated enzymatically (12-OPDA, 4-HNE, phytoprostanes) or non-enzymatically (MDA, acrolein)
and components of the redox network. Further, recent findings on the contribution of oxylipins to
environmental acclimatization will be discussed using flooding, herbivory, and establishment of
thermotolerance as prime examples of relevant biotic and abiotic stresses.

Keywords: 12-oxophytodienoic acid; oxylipin; redox regulation; reactive oxygen species

1. Introduction

About 2.4 billion years ago, molecular oxygen was first introduced into the earth’s
atmosphere by oxygenic photosynthesis [1]. Alongside respiratory and photosynthetic
electron transport and relevant enzyme activities, reactive oxygen species (ROS), deriva-
tives of O2, originated as permanently formed byproducts of metabolism. To survive and
grow under fluctuating environmental conditions, especially in the context of ongoing
climate change and global warming, plants have evolved a complex system of molecular
mechanisms and pathways of sensing, transmitting, and responding to optimal acclima-
tization [2,3]. The key components are ROS, in particular superoxide anions (O2

•−) and
hydroxyl radicals (•OH), which are free radicals containing an unpaired electron of varying
reactivity, singlet oxygen (1O2), which is an excited non-radical derived from molecular
oxygen by spin inversion, and hydrogen peroxide (H2O2), originating from O2

•− dismuta-
tion or directly from two electron transfer reactions. These components accumulate under
suboptimal growth conditions [2,4–6]. Generation of ROS occurs in plastids, peroxisomes,
endoplasmic reticulum (ER), mitochondria, apoplast, and cytosol [2–7]. While they are
generated constantly by housekeeping enzymes and as byproducts of metabolism, biotic
and abiotic stresses enhance ROS synthesis distinctly [2,4,8]. Overall, 1–2% of the total
oxygen consumed by plants has been proposed to account for ROS formation [9–12].

On the one hand, ROS serve as second messengers, modulating stress defense, hor-
mone signaling, development, and growth processes. Resting H2O2 concentrations in
plasmatic compartments are in the range of 10–30 nM [13,14]. On the other hand, ROS are
highly reactive, hence posing a significant oxidative threat at high concentrations [2,4–7,15].
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Therefore, plant cells monitor and modulate ROS levels vigorously to maintain their signal-
ing function while preventing oxidative damage. The basic processes of this modulation of
both ROS and all reactive molecular species (RMS) include regulation of (1) RMS synthesis,
(2) RMS sensing and signal processing, and (3) RMS degradation [2,16,17]. These processes
are implemented by the redox-regulatory network, which controls the total antioxidant
capacity of the cell.

2. The Plant ROS and Redox Network

ROS homeostasis as influenced by ROS generation on the one hand and decomposition
on the other shapes the way ROS affect plant cells and will therefore constitute the first
chapter of this review. Subsequently, oxylipins, products of ROS-induced disruption of
lipid membranes, will be introduced and their influence on the redox network characterized
(Figure 1).
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Further, regarding plastid ROS synthesis, 1O2, another common and highly reactive ROS, 
is produced in both photosystems by transfer of energy from excited chromophores to O2 

Figure 1. Regulation of ROS levels and their effect on plant cells. ROS are generated in cytosol,
apoplast, plastids, mitochondria, and peroxisomes. ROS generation is strongly stimulated under
stress conditions. Contrarily, decomposition of ROS is achieved by enzymatic and non-enzymatic
antioxidants under control of the redox-regulatory network. As ROS inflict oxidative damage on
proteins, DNA, and lipids (yielding e.g., oxylipins) while also fulfilling signaling functions, tight
control of synthesis and degradation of ROS is essential for plant fitness and survival.

2.1. Synthesis of ROS in Higher Plants

The major organelles contributing to stress-induced ROS formation are chloroplasts,
followed by mitochondria due to their electron transport chains [2,6,11]. For instance, the
electron transport chain of cellular respiration is leaky, with an estimated percentage of
0.1% to 2% of electrons passing the chain being released, thereby causing generation of
O2
•− [5]. Plastid generation of O2

•− is achieved by the univalent reduction of molecular
O2, primarily in the photosystem I [2,6]. O2

•− does not only serve as a precursor for other
ROS; it also impedes ROS scavenging by antioxidant enzymes (e.g., peroxidases) [6,8,11,18].
Further, regarding plastid ROS synthesis, 1O2, another common and highly reactive ROS,
is produced in both photosystems by transfer of energy from excited chromophores to
O2 [6]. In the apoplast, O2

•- and H2O2 are formed by respiratory burst oxidase homologues
(RBOHs), polyamine oxidases, pH-dependent peroxidases, and copper amine oxidases.
O2
•−, which is unstable and non-permeable to membranes, further undergoes protonation

and dismutation and hence contributes to the extracellular H2O2 pool [5]. H2O2 is imported
into the cell by aquaporins [2]. Additionally, H2O2 is directly produced by SOD-mediated
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or spontaneous dismutation of O2
•− and by enzyme-catalyzed two electron transfer, e.g.,

by xanthine or glycolate oxidases, the latter as part of peroxisomal photorespiration [2,4,6].
As photorespiration is a major source of H2O2, contributing about 70% of generated H2O2
(as studied in wheat with a supposed flux of 10% of photosynthetic electrons to photorespi-
ration), peroxisomes contribute distinctly to cellular oxidative metabolism [19–21]. Besides
H2O2, peroxisomal metabolism supplies essential signaling molecules, such as reactive
nitrogen species including nitric oxide (NO) and jasmonic acid (JA, see Section 3.1.2) [20].
More detailed insights into peroxisomal metabolism can be found in other reviews [20–23].

ROS can act locally, but they can also be transported to different organelles and
serve as signals with maximal migration distances ranging from 1 nm (•OH) to more
than 1 µm (H2O2) [8,16]. Their levels in different cell compartments is adjusted by local
synthesis in combination with import, export, and degradation differ between different
stress conditions, creating unique ROS signatures [4].

2.2. ROS Homeostasis as Key Mechanism to Avoid Oxidative Stress

As oxidizing agents, ROS react with proteins, especially reduced and deprotonated
thiolate residues. This alters catalytic activity of thiol-switch proteins which are essential
in a plethora of plant processes, including metabolism and regulation of the antioxidant
pool. In the case of H2O2, one of the most reactive ROS (only •OH, the hydroxyl radical, is
more reactive), reaction with thiolates leads to generation of sulfenic, sulfinic, and sulfonic
acid derivatives; only the first two of these can be reversed (non-)enzymatically [2,8].
Furthermore, ROS can fragmentize peptide chains and increase protein aggregation and
degradation [5]. As oxidation of proteins by ROS is essential for ROS sensing and signaling,
a highly complex network of oxidation-sensitive proteins, the thiol-redox network, is
dedicated to modulating ROS function and level. This network will further be characterized
in Section 2.2.1.

Additional targets of ROS-induced oxidative damage are DNA and RNA; these are
prone to modification of nucleotide bases and breakage of single- and double-strands, e.g.,
by rupture of nucleosomes [8,11].

Finally, they are linked to lipid peroxidation, thereby contributing to synthesis of
oxylipins. Oxylipins are regulatory compounds derived from the oxidation of polyunsatu-
rated fatty acids (PUFA) [8]. As ROS synthesis often occurs close to membranes, lipids are
regarded as the primary target of ROS [9,24]. More detailed information on lipid peroxida-
tion, subsequent formation of oxylipins, and their highly diverse functions in basic plant
processes will be provided in Section 3 and 4 of this review.

2.2.1. Structure of the Redox-Regulatory Network

In general, the redox network can be divided hierarchically into several regulatory
levels, starting with electron flow from metabolic and photosynthetic activity to redox
input elements such as ferredoxin, NADPH, and γ-glutamyl-cysteinyl-glycine (glutathione,
GSH). These input elements transfer electrons to redox transmitters, involving dedicated
enzymes such as ferredoxin-thioredoxin reductases [25]. Redox transmitters reduce ROS
sensors or target proteins as a next step. The group of target proteins includes a high variety
of enzymes able to influence gene expression, metabolism, ROS detoxification, and protein
turnover among other cellular processes [26]. Thiol switches (proteins characterized by
redox-dependency of their catalytic or binding activity as based on cysteine residues) and
thiol/disulfide exchange cascades are the main mechanistic elements of target proteins and
the overall redox-regulatory network [2].

An example of a target protein is cyclophilin 20-3 (Cyp20-3), which contributes to
thiol synthesis. Cyp20-3 is the only cyclophilin localized in the chloroplast stroma and
acts as a regulatory hub between stress signaling of high light stress and wounding [27].
Under light conditions, Cyp20-3 is reduced by thioredoxins (TRX). In its reduced state,
Cyp20-3 interacts with serine acetyl transferase 1 (SAT1), enabling formation of the cys-
teine synthase complex and subsequent production of the cysteine precursor O-acetyl



Antioxidants 2023, 12, 814 4 of 25

serine [28–30]. Consequently, the cellular reduction state increases, changing the redox
potential of the cell and allowing for alteration of gene expression and increased detoxifica-
tion of ROS by peroxidases such as the ROS sensor 2-cysteine peroxiredoxin (2-CysPRX).
Besides regulation of thiol synthesis, electrons from active Cyp20-3 can also be transferred
to 2-CysPRX to enhance H2O2 detoxification [29].

2.2.2. Exemplary Function of the Redox Network: The Water-Water-Cycle

An example of the interplay of ROS and the redox network is the plastid water-water-
cycle, depicted in Figure 2. As previously mentioned, ROS generation in chloroplasts is
especially high under non-optimal conditions due to univalent reduction of O2 by the
redox input element ferredoxin in the course of the Mehler reaction [31,32]. The superoxide
radical is rapidly converted into H2O2 by a (membrane-bound) Cu/Zn SOD, which acts
as redox sensor [33,34]. Subsequently, H2O2 is detoxified by ascorbate peroxidases (APX)
under consumption of ascorbate (ASC) [33,35]. The peroxidases, in this case, act as ROS
scavenging enzymes; however, they additionally serve as redox sensors in plant cells [2].
Coupling of the water-water-cycle to the ascorbate-glutathione pathway (Asada-Halliwell
pathway) ensures regeneration of oxidized dehydroascorbate [36]. Reduction of monode-
hydroascorbate (MDHA) occurs directly by ferredoxin oxidation or NADPH oxidation
catalyzed by monodehydroascorbate reductase (MDHAR). Alternatively, MDHA can be
further oxidized to didehydroascorbate (DHA), yielding one molecule of ascorbate. MDHA
is then reduced to ASC by GSH-dependent dehydroascorbate reductase (DHAR); GSH, in
turn, is regenerated by glutathione reductase (GR), using NADPH+ H+ [34].
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2.3. Decomposition of ROS

Due to their high reactivity, ROS typically have short half-life times ranging from
10−3 to 10−9 s [5,6,9,15,16,24,37]. Although dismutation of ROS also occurs spontaneously,
dedicated enzymes as catalysts (e.g., SODs) increase the reaction speed by a factor of
104 [6,8]. Hence, detoxification of ROS by enzymatic antioxidants is achieved by a variety



Antioxidants 2023, 12, 814 5 of 25

of stress-induced enzymes including SODs, catalases (CATs), and various peroxidases,
including APXs, glutathione peroxidases (GPXs), glutathione-like peroxidases (GPXLs),
and peroxiredoxins (PRX). Fine-tuning of ROS detoxification and, concomitantly, the ROS
signature are realized by differential localization and the abundance of enzymes depending
on developmental stage and tissue [6,8]. CATs, for instance, are thought to detoxify H2O2
in peroxisomes, but not in chloroplasts [6,8].

In addition, peroxidases serve as both a detoxification mechanism and as redox sen-
sors; as such, they contribute distinctly to ROS signaling [2,4]. Key components of non-
enzymatic ROS detoxification are GSH, ASC, carotenoids, tocopherols, and flavonoids [6,36].
As the primary ROS producer, chloroplasts are prone to oxidative damage. To counter-
act this threat, both enzymatic and non-enzymatic antioxidants accumulate in chloro-
plasts at high levels. Between 30% and 40% of the total cellular ASC content is stored in
chloroplasts [6,11,38].

3. Oxylipins
3.1. Non-Enzymatic and Enzymatic Lipid Peroxidation Yields Highly Diverse Oxylipins

Oxylipins are bioactive lipid derivatives generated by oxidation of PUFAs that regulate
plant growth, development, and stress defense [39–42]. While they are produced in all
domains of life, species from each kingdom differ in the usage of PUFAs as a starting
substrate: in plants, enzymatic oxylipin synthesis starts from α-linolenic acid (α-LeA)
and linoleic acid, while animals commonly use arachidonic acid and eicosapentaenoic
acid [40,43]. While the set of substrates for oxylipin synthesis is limited, a variety of
products are generated by different pathways following PUFA oxidation (Figure 3).
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Figure 3. Synthesis pathways of oxylipins. Starting from oxygenation of α-linolenic acid or linoleic
acid by LOX or reactive oxygen species, a variety of enzymes generates diverse oxylipins. Most
important oxylipins covered in this review are marked in green. Blue: catalyzing enzymes; red:
non-enzymatic conversion by ROS; dashed arrows: conversions that occur in multiple steps.

In plants, oxygenation of α-LeA yields allene oxides and α-hydroxy PUFAs by the action
of lipoxygenases (LOXs) and α-dioxygenases, respectively [40,41,44,45]. LOXs can be divided
into two groups: 9-LOX and 13-LOX. Both groups catalyze oxygenation of PUFAs; however,
their regiospecificity varies with 9-LOX introducing oxygen at the C9 carbon atom and
13-LOX at position C13 [40,44,46]. Hence, either (9S,10E,12E,15E)-9-hydroperoxyoctadeca-
10,12,15-trienoic acid (9-HPOT) or (9Z,11E,13S,15Z)-13- hydroperoxyoctadeca-9,11,15-trienoic
acid (13-HPOT) are generated and can be further metabolized by multiple enzymes to yield
diverse oxylipins. A total of seven different pathways of 9-/13-HPOT derivatization has
been described; a simplified overview of the synthetic pathways important for this review is
provided in Figure 3 [41]. This review will focus (primarily) on oxylipins of three pathways:
12-OPDA as an example for the group of jasmonates, derived by the allene oxide synthase
(AOS) pathway; 4-HNE and green leaf volatiles (GLVs) generated by the hydroperoxide lyase
(HPL) pathway; and phytoprostanes, MDA, and acrolein as example of non-enzymatically
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derived oxylipins. 12-OPDA serves as both a signaling and regulator molecule on its own
and as a precursor of JA. JA and its derivatives will not be included in this review, since
extensive information on JA function can be found in recent reviews [47–49].

In addition to enzymatically formed oxylipins, a substantial amount of oxylipins is
generated non-enzymatically by lipid peroxidation through free radicals [41,50]. Membrane
lipids are the most prominent targets of free radicals in plant cells [51]; this is why lipid
peroxidation serves as an early sign of oxidative stress. Important oxylipins of this pathway
are phytoprostanes and their derivative (MDA), as well as acrolein [41,52,53]. Interestingly,
the base concentration of diverse non-enzymatically formed oxylipins has been reported to
be much higher than that of their enzyme-derived counterparts [54]. For instance, MDA
levels surpass those of JA up to 50-fold [52].

Independent of their synthesis, oxylipins can be separated into two groups: reactive
electrophile oxylipins (RES-oxylipins), also referred to as reactive carbonyl species (RCS),
and non-reactive oxylipins [24,52,55]. Reactive electrophiles share a structural similarity,
specifically the α, β-unsaturated carbonyl moiety, often as part of a cyclopentenone ring
(Figure 4). This structure enables them to react with free thiol groups by Michael addi-
tion, regulating protein activity and the available pool of antioxidant molecules such as
glutathione [27,56–59]. Hence, modification of thiol groups is a major mechanism of action
shared by phytoprostanes, GLVs, non-GLV aldehydes, and JAs.
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Figure 4. Structure of different α, β-unsaturated carbonyl oxylipins. Oxylipins of different synthesis
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and 2-hexenal, 4-hydroxy-nonenal (HPL pathway)) contain a reactive α,β-unsaturated carbonyl
compound and can thus participate in Michael addition.

In general, RES can significantly damage plant cells and act as toxic and mutagenic
agents [60]. For example, MDA damages DNA through reaction with guanine [53,60,61].
However, RES play important roles in signal transduction and defense mechanisms against
biotic and abiotic stress; as such, they are regarded as a “REScue” mechanism of cells [55,60,62].

3.1.1. Phytoprostanes Are Evolutionary Ancient Oxylipins

Phytoprostanes derive non-enzymatically from α-LeA and are precursors of
MDA [51,52,63]. Through free radical activity, α-LeA is oxidized and a linolenate radical is
generated. After additional autoxidation and cyclization, this radical forms phytoprostanes
of two regioisomeric classes: the 9- and 16-series of phytoprostanes [51]. With a total of
32 isomers, the phytoprostane group contains a diverse set of oxylipins [63].

As they appear to have evolved distinctly earlier than other oxylipins and are abundant
in most organisms, they are considered as an evolutionary ancient mechanism against
oxidative stress [64]. Interestingly, cyclopentenone-containing phytoprostanes induce
the expression of stress defense-related genes; these include glutathione-S-transferases
(GSTs) which catalyze binding of RES to glutathione, one of the most abundant antioxidant
molecules of plants [64,65]. Moreover, phytoprostanes stimulate production of phytoalexins,
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antimicrobial secondary metabolites, and thus enhance biotic stress tolerance [54,64]. This
feature, as well as the regulation of gene expression and subsequent upregulation of GSTs,
is not unique to phytoprostanes, but rather a common trait of oxylipins shared also by
12-OPDA, MDA, acrolein, and E-2-hexenal, the latter of which belongs to the group of
GLVs [57,64,66–71].

3.1.2. 12-OPDA and OPDAylation as Potent PTM

Cis-12-OPDA, which belongs to the group of jasmonates, is derived by the action of 13-
LOX and the AOS pathway, which yields (9Z)-(13S-)-12,13-epoxyoctadeca-9,11,15-trienoate
(12,13-EOT). As 12,13-EOT is highly unstable, it is rapidly converted to cis-(+)-12-OPDA
by allene oxide cyclase (AOC), or, if there is no AOC available, to α- and γ-ketols and
racemic 9R-13R-12-OPDA [27,56,72,73]. After enzymatic synthesis of 12-OPDA, it can
either function as a potent signaling molecule and phytohormone or be transported to the
peroxisomes, where it is used to generate JA [27,47,74]. JA, in turn, is further modified,
e.g., by conjugation to amino acids such as isoleucine (yielding JA-Ile), as catalyzed by
JASMONIC ACID RESISTANT 1 (JAR1) [47,75]. JA-Ile and cis-12-OPDA are regarded as
the biologically active forms of JA and 12-OPDA, respectively [76,77]. Recently, conversion
of 12-OPDA to dinor-OPDA (dn-OPDA), a homologue of OPDA with an acyl residue
shortened by two carbons, usually synthesized from hexadecatrienoic acid, was detected in
Arabidopsis thaliana [78,79]. An overview of OPDA synthesis and metabolic conversion is
provided in Figure 5.
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Figure 5. Synthesis and metabolic conversion of 12-OPDA in plant cells. After synthesis from α-LeA
by 13-LOX, AOS, and AOC, 12-OPDA can be transported to peroxisomes through the cytosol and
converted to JA, which regulates gene expression in a COI-1 dependent matter. Further, 12-OPDA
can be stored by binding to MGDG and DGDG, forming Arabidopsides. These storage pools can also
be formed directly from lipid-bound fatty acids (FA) by LOX2, AOS, and AOC and might interact
with the major sphingolipids GIPC in plant membranes. Further, 12-OPDA forms adducts with GSH
which are degraded in vacuoles by γ-glutamyl transpeptidase 4 (GGT4). Without further conversion,
12-OPDA serves as regulator of retrograde signaling.

Under stress conditions such as wounding, high light or pathogen attack, 12-OPDA
synthesis is highly stimulated [27]. Using transgenic A. thaliana lines which express the
Pseudomonas syringae avirulence peptide AvrRpm1 depending on dexamethasone, An-
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dersson et al. observed an increase of 12-OPDA from basal concentration of 2 µM to
36 µM after 4 h of AvrRpm1 expression. Interestingly, accumulation of lipid-bound 12-
OPDA, so-called Arabidopsides was even more pronounced with a 200-fold increase [42].

Arabidopsides are cyclo-oxylipin-galactolipids in which 12-OPDA is bound to
complex membrane lipids such as mono- and digalactosyldiacylglycerol (MGDG/
DGDG) [40,41,80,81]. They are unique to certain species, primarily of the Brassicaceae
family (e.g., A. thaliana, Camelina microcarpa, Capsella rubella), but also Poaceae (Hordeum vul-
gare), Convolvulaceae (Ipomoea tricolor), and Lamiaceae (Melissa officinalis) [39,40,76,80–84].
Concerning synthesis of Arabidopsides, incorporation of free 12-OPDA to membrane lipids
as well as direct membrane-bound generation from α-linolenic acid are discussed, with the
existence of membrane-bound 13-HPOT in Arabidopsis arguing for the latter [42,84–86].
While increases in Arabidopside content due to unfavorable environmental conditions
could be observed in several studies, their function in plants still remains mostly un-
known [42,80,82,85,87]. On the one hand, they have been proposed to serve as storage
pools for the fast release of 12-OPDA under stress, either as a means of rapidly increasing
OPDA signaling or increasing synthesis to JA [42,82,86,87]. Several enzymes have been
linked to this release of 12-OPDA, including acylhydrolase, phospholipase 1 (PLAI), DE-
FECTIVE IN ANTHER DEHISCENCE1 (DAD1), and DONGLE (DGL) [27,88,89]. On the
other hand, Arabidopside E and G possess antimicrobial functions; Arabidopside A stimu-
lates senescence in barley leaves and Arabidopside A and B inhibit root growth, indicating
the possibility that Arabidopsides themselves are functional molecules of stress signaling
and defense [42,86,90]. Furthermore, Arabidopsides might interact with glycosyl inositol
phosphor ceramides, i.e., major sphingolipids in plants linked to stress defense [91,92].

Similar to phytoprostanes, jasmonates play an essential role in plant defense against
different abiotic and biotic stresses [27,93,94]. Additionally, they influence plant growth and
reproduction. For instance, jasmonates regulate pollen maturation, elongation of stamen
filament, and pollen release as well as leaf movement and fruit ripening [76,93–95]. Further
overviews on the role of 12-OPDA in plants can be found in recent reviews [27,96,97].

3.1.3. Oxylipin Aldehydes

Similar to ROS, high concentrations of oxylipin aldehydes can lead to extensive cell
damage, while lower concentrations contribute to cell signaling processes in the context of
abiotic stress [98–100]. In general, lipid-peroxide derived aldehydes inhibit seed germina-
tion, CO2 photoreduction, and plant growth and senescence [98,101,102].

Unlike the oxylipins mentioned so far, 4-hydroxy-2-nonenal (4-HNE) is a lipid alde-
hyde that derives from linoleic acid by action of 9-LOX, hydroperoxide lyase (HPL), an
alkenal oxygenase, and hydroperoxide peroxygenase [103]. 4-HNE has been regarded as
the most toxic and most abundant product of lipid peroxidation and primarily accumulates
in biomembranes [103]. Besides thiol binding by Michael addition, binding of 4-HNE to
Arg residues leading to 2-pentylpyrrole adducts has been observed [104]. As the latter has
only been documented in animals, a similar effect of 4-HNE remains to be proven in planta.

MDA is the smallest molecule discussed in this review and only consists of three
carbon molecules and two aldehyde groups [105]. Nevertheless, it is highly reactive and
commonly regarded as biomarker of oxidative stress [105]. For instance, accumulation
of MDA under heat stress negatively correlates with functionality of the photosynthetic
electron transport chain [99,105]. However, as with ROS and oxylipin aldehydes in general,
MDA fulfills a dual role in plants, acting as signaling molecule in stress defense and
acclimation processes as long as its concentration is correctly balanced [105].

The C6 aldehyde 2-hexenal belongs to the subgroup of GLVs and the bigger group
of biogenic volatile organic compounds (BVOCs) [41,106]. Emission of VOCs accounts
for up to 10% of total fixated carbon in plants with 109 tons VOCs per year [107,108].
Production and release of VOCs is tightly regulated by biotic factors (pollination status,
herbivore infestation) and abiotic factors (light intensity, atmospheric CO2, temperature,
humidity, nutrition) in a spatial, temporal, development-specific, and species-dependent



Antioxidants 2023, 12, 814 9 of 25

manner [107,108]. To be released, VOCs must cross membranes, the cell wall, and (depend-
ing on the tissue) also the cuticle, a major barrier in most plant cells [107,108].

Due to their high lipophilicity, as evident from their high octanol-water partition coeffi-
cient, VOCs are primarily found in hydrophobic environments where they can significantly
damage cellular structures [107,108]. To ameliorate this damaging effect, the cuticle serves
as a volatile sink and storage pool, primarily for VOCs with low volatility [108]. As a
consequence, VOC emission depends on the composition and thickness of the cuticle [107].

3.2. Oxylipin Signature

The oxylipin composition of cells and tissues, the oxylipin signature, varies de-
pending on plant species, organ and tissue, developmental stage, and environmental
conditions [109–111]. By fine-tuning oxylipin concentrations, different signaling pathways
and plant processes can be targeted. An example of a species-dependent oxylipin signature
is the induction of phytoalexin synthesis. In rice and tobacco, both JA and 12-OPDA stimu-
late phytoalexin production in leaves (as measured as sakuranetin and scopoletin contents);
however, in soybean, only OPDA can activate phytoalexin synthesis [112–114]. Species-
dependent oxylipin signatures can be traced back to both differing oxylipin functions and to
differences in the oxylipin concentrations needed for their functionality. For instance, high
concentrations of jasmonates could be measured in sorbitol-treated Hordeum vulgare with
5 nmol g−1 FW of 12-OPDA (1462 ng g−1 FW) and 2.2 nmol g−1 FW of JA (462 ng g−1 FW)
after 24 h [115]. In contrast, osmotic stress caused by sorbitol treatment of A. thaliana for
the same time span results in a lower accumulation of 12-OPDA and JA with 462 and
256 ng g−1 FW, respectively [116]. As sorbitol was employed at twice the concentration
in the first study when compared to the second study (1 M and 0.5 M, respectively), one
might argue that OPDA accumulates significantly due to enhanced osmotic stress caused
by high sorbitol concentrations. Nevertheless, dependency of oxylipin composition on
plant species should be considered in this case as well.

Interestingly, the type of attacking insects also influences the oxylipin signature under
biotic stress. For instance, piercing-sucking and chewing insects both stimulate emission
of LOX-derived volatiles in distinctly different degrees. After aphid attack, LOX-derived
volatiles accounted for 8.9% of total volatiles; chewing insects, meanwhile, caused an
increase of this percentage to 53%. Additionally, the composition of volatiles varies, with C6-
volatiles being more strongly emitted after aphid infection and C9-aldehydes (as measured
on nonanal) after infestation with chewing insects [117].

Consequently, regulation of oxylipin signatures is highly complex and more detailed
studies, concentrating not only on single oxylipins but on the broad profile simultaneously,
are needed to understand how oxylipins affect plant processes [50].

Modulation of oxylipin composition might be achieved by differences in the ROS level
(concerning non-enzymatically derived oxylipins) and regulation of the activity of different
enzymes such as LOXs. For example, if 13-LOX is up- and 9-LOX downregulated, the
ratio of 13-HPOT to 9-HPOT increases. The changed ratio results in enhanced synthesis of
jasmonates relative to GLVs.

4. Influence of Oxylipins on the Redox-Regulatory Network
4.1. Modulation of Thiol-Sensitive Proteins

Oxylipin RES impact the redox regulatory network at all levels, from redox input
elements to redox sensors and target proteins, by influencing gene expression, protein
synthesis, and catalytic activity. Using an anti-HNE antibody, Mano et al. described a subset
of 34 proteins modified by, as they assumed, by both 4-HNE RCS in general. This subset
contains essential proteins of ROS generation and the redox network such as peroxidase 34,
a cell wall peroxidase linked to oxidative burst, or Cyp20-3 and cysteine synthase, both
dedicated to thiol synthesis [118].

Synthesis of heat shock proteins, stress-induced chaperones, is upregulated not only
by 12-OPDA and phytoprostanes but also by MDA [66,119], while, after synthesis, they



Antioxidants 2023, 12, 814 10 of 25

are targets of 4-HNE [103]. Other universal targets of RCS include GSTs, as mentioned
earlier, and, interestingly, enzymes usually linked to carbon metabolism, more specifically
glycolysis. NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is not
only dedicated to glycolysis but also exerts moonlighting functions including autophagy,
apoptosis, and translation by RNA binding [120–122]. As its function strongly depends on
its cysteinyl residue redox state, GAPDH belongs to the group of target proteins [123,124].
Oxylipins play a dual role in altering GAPDH levels and activity. Covalent binding of
4-HNE to GAPDH and the subsequent inhibition of catalytic activity has already been
shown by Uchida and Stadman in 1993 [125]. Binding of acrolein also decreases GAPDH
activity [102,126]. Moreover, binding of 4-HNE as well as 4-HHE appears to trigger GAPDH
degradation [127].

On the other hand, a stimulatory effect of 12-OPDA on GAPDH expression has been
proposed based on studies with Physcomitrella patens mutant lines lacking AOS activity
and 12-OPDA-treated Pohlia nutans [128,129]. Assessment of differentially expressed genes
due to 12-OPDA treatment in various organisms (P. nutans, variegated Epipremnum au-
reum, and the algae Klebsormidium nitens) shows upregulation of gene orthologues of A.
thaliana GAPDH isoforms (GAPCp1, GAPC2), whereas GAPA2 and GAPB orthologues are
downregulated [79,129,130]. The only direct study of 12-OPDA-responsive genes (ORGs)
in A. thaliana, conducted by Taki et al., does not show significant regulation of GAPDH
expression by 12-OPDA. However, although not fulfilling the criteria for ORGs (which were
quite stringent, with a minimum of 3-fold relative expression increase in this study), gene
expression of GAPC1 shows a trend towards upregulation with an approximately twofold
increase [66]. Altogether, one might tentatively expect a stimulatory effect of 12-OPDA
on GAPDH.

In vitro, OPDAylation of GAPDH (as tested using GAPC2) only showed minor inhi-
bition on its NADH oxidation activity under physiological 12-OPDA concentrations [56].
Modulation of GAPDH signaling by oxylipins might influence carbon metabolism and the
energetic state of the cell. Stimulation of GAPDH levels by 12-OPDA could serve as a means
of counteracting energy consumption due to stress defense mechanisms. On the other hand,
GAPDH also exerts RNA binding functions, hence modulating protein synthesis [120].
RNA binding motifs of GAPDH are primarily found in high light-induced transcripts [131].
Therefore, modulation of GAPDH levels and oxidation state might help in steering protein
synthesis in the direction of stress signaling and defense, similar to the induction of ORGs
by interaction with Cyp20-3. Similar to GAPDH, aldehydes such as acrolein target and
inactivate fructose-bisphosphate aldolase (FBPase), another glycolytic enzyme and redox
target protein for which RNA binding activity has been described [98,102,120]. However,
in plants, only nonspecific binding of plastid FBA1 to RNA coding for a subunit of the
cytochrome b6/f complex has been shown [132].

Modulation of Cyp20-3 activity by oxylipins, more specifically non-covalent binding
of 12-OPDA, has been shown to enhance Cyp20-3 activity. Consequently, thiol synthesis is
stimulated, strengthening the redox capacity of the cell. This change in redox state in turn
alters the expression of 12-OPDA-responsive genes [27,28,96,133]. Contrary to Cyp20-3
stimulation, OPDAylation diminishes the H2O2 scavenging function of 2-CysPRX [133].
OPDAylation of TRXs drastically impedes their activity as redox transmitters, thereby
decreasing the rate of TRX-dependent Cyp20-3 reduction and glutathione peroxidase
(GPXL) regeneration. The overall functionality of this inhibition might be explained
by different modes. First, inhibition of TRX activity and subsequently increased ROS
productions might enhance ROS-induced stress signaling [56,134,135]. Second, inhibition
of chloroplast TRXs also diminishes TRX-dependent FBPase reduction. As a consequence,
CO2 assimilation and starch synthesis are inhibited, reducing the energy consumption by
the Calvin–Benson cycle [133].

SODs are additional targets of oxylipins. While 4-HNE has been shown to bind to
Mn SODs, 12-OPDA downregulates gene expression of Cu/Zn SODs; these are part of
the water-water cycle [103,136]. Since acrolein releases Zn2+ from different proteins, an
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inhibitory effect of this RCS on Cu/Zn SODs followed by upregulation of ROS levels has
been proposed [100,137].

Exogenously supplied acrolein, 4-HNE, and HHE increase catalase and APX catalytic
activity in A. thaliana [138]. Moreover, 4-HNE interacts with MDHAR. An oxidizing
effect might be assumed, but remains to be proven, whereas 12-OPDA enhances DHAR
synthesis [103,139]. An exemplary overview of oxylipin-dependent regulation of redox
network proteins can be found in Table 1.

Table 1. Interaction of oxylipins with proteins of ROS synthesis/scavenging and the redox network.
Oxylipins modulate protein amounts of the redox network as well as their catalytic activity. Affected
proteins include essential proteins of different functional categories of the redox network, such as
TRXs as redox transmitter, as well as ROS scavenging enzymes such as peroxidases. Stimulatory
effects of oxylipins on protein synthesis/activity is denoted as “↑”, inhibitory effects as “↓” and not
yet characterized effects of detected oxylipin binding as “?".

ROS and Redox Protein TAIR Regulation by Oxylipins Reference
Network Synthesis Activity

Redox
transmitter TRX

At5g42980
At1g45145
At3g02730
At3g15360

↓OPDA [56,133]

GRX
At1g28480
At5g40370
At4g28730

↑OPDA ↓OPDA [56,66]

Redox
sensor PRXIIB At1g65980 ↓OPDA [56]

2-CysPRX At3g11630 ↓OPDA [133]

APX At1g07890 ↑4-HNE,
acrolein

[118,138]

GPX At4g11600 ↑OPDA [66]

GAPDH
At1g12900 ↓OPDA

↑OPDA
↓OPDA
? 4-HNE

[56,103,129]
At1g79530
At3g04120
At1g13440

Redox target protein Cyp20-3 At3g62030
↑OPDA
? 4-HNE [28,118,133]

Cysteine synthase At3g59760 ↑OPDA ? 4-HNE [66,118]

GSTs
At2g29450
At1g02930
At2g30860

↑OPDA, acrolein,
MDA ? 4-HNE [66,71,118,119,129]

HSP

At3g12580
At3g46230
At5g12020
At4g10250
At5g12030

At1g525690

↑OPDA, PPA1 ? 4-HNE [66,103,118,119,136]

FBPase At1g43670 ↓acrolein [102]

DHAR2 At1g19570 ↑OPDA [66,129]

MDHAR At1g63940 ? 4-HNE [103]
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Table 1. Cont.

ROS and Redox Protein TAIR Regulation by Oxylipins Reference
Network Synthesis Activity

ROS synthesis Mn SOD At3g10920 ? 4-HNE [103,118]

Cu/Zn SOD

At2g28190
At1g08830
At2g28190
At5g23310

↓OPDA
↑ 4-HNE,
acrolein

↓4-HNE, acrolein
[66,136,138]

RBOHs At5g47910
At1g64060

↑4-HNE, acrolein
↓4-HNE, acrolein

↑ OPDA, 4-HNE,
acrolein [96,138]

ROS scavenging Catalase
At4g35090
At1g20630 ↑OPDA ↑4-HNE, acrolein [118,129,138]

Peroxidase 34 At3g49120 ? 4-HNE [118]

4.2. Interaction with Non-Protein Thiols

Non-protein targets of oxylipins include ASC and GSH. Both compounds constitute
abundant cellular redox buffers that are essential, e.g., in the Asada–Halliwell
pathway [27,36]. Glutathionylation of RES, including cyclopentenone phytoprostanes,
inhibits their activity and thus protects cells from damage such as the inactivation of thiol
switch proteins [65,68,140]. Regarding the main oxylipins included in this review, only
4-HNE, acrolein, and 12-OPDA have been shown to undergo GSH binding so far (either
spontaneously or catalyzed by GST6, respectively) [70,119,141]. However, the fate of these
adducts remains mostly unknown; it is expected that adducts are transported to the vacuole
for degradation, as is also the case for GSH-OPDA adducts [67].

Possible new functions of the GS-adducts in vivo await elucidation. In animals, studies
indicate a unique ability of GS-HNE in stress defense modulation when compared to free
4-HNE, with a function in regulating the transcription factor NF-κB [142]. Concerning cy-
clopentenone prostaglandins PGA2 and PGJ2, GSH binding serves as a “shuttle”, enabling
transport of otherwise highly hydrophobic molecules into different cell organelles. After
reaching their target destination, PGs might be released from GSH (either spontaneously
or enzymatically catalyzed) by undergoing retro-Michael Addition and binding to higher
affinity protein thiols [143]. This mechanism, based on increasing hydrophilicity after
GSH binding, is likely transferable to plant oxylipins and broadens the spectrum of cell
organelles containing proteins sensitive to OPDAylation and OPDA-dependent regulation.

To this day, the only effect of GS-OPDA adduct formation concerns the 12-OPDA
localization by import into the vacuole, where it undergoes degradation [67]. Hence, this
might be considered as a purely protective function to remove this compound from the
cytoplasm. However, this process should be studied more extensively in order to clarify
whether GSH binding has additional functions in cellular regulation.

GSH concentrations surpass those of typical oxylipins several-fold. GSH concen-
trations in plasmatic compartments are in the mM range, whereas oxylipins, including
12-OPDA, reach µM values. Given these molar ratios, the question of how free oxylipin
functions are maintained despite their reactivity with GSH must be discussed. First, the
reaction kinetics between oxylipins and proteins on the one hand and oxylipins and GSH
on the other hand differ greatly in dependence on the pKA values of the Cys residues.
Acrolein binds rapidly to protein thiols; however, when compared to HHE and 4-HNE,
GSH-acrolein adducts form 70- to 110-times faster, respectively [53,100,126]. For example,
studies on the interaction of 4-HNE and GSH revealed a half-life time of 2 min for 4-HNE
in the presence of 5 mM GSH [144]. Second, adduct formation of GSH and oxylipins is
a reversible process that includes characteristic adduct stabilities for each oxylipin. For
instance, whereas acrolein-GSH adducts are very stable with a half-life time of 4.6 days,
hexenal-GSH adducts decayed with a half-life time of 4 to 6.3 h [145].
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Further, oxylipins influence the cellular GSH pool and synthesis and activity of
GSTs. Trans-2-hexenal inhibits pumpkin GST, though only at high concentrations (mM
range) [70]. Aldehyde dehydrogenases (ALDHs) function as important enzymes by main-
taining the glutathione pool in a reduced state and detoxifying RCS. ALDHs are targets of
4-HNE [101,103,146]. Depletion of chloroplast GSH content is a common feature of lipid-
peroxide derived aldehydes [98].

To conclude, oxylipins commonly decrease cellular GSH levels. High concentrations
of acrolein even deplete the cell of GSH and ascorbate. This might be due to inhibition
of GSH synthesis as well as stimulation of GSTs and binding of GSH to the oxylipins
themselves. Contrary to this, 12-OPDA influences GSH levels positively by enhancing
Cyp20-3-mediated thiol synthesis. Whether oxylipins are completely inactivated after
binding to GSH and whether adducts gain additional functions or only serve as shuttles
remains to be elucidated.

4.3. Contribution of Oxylipins to Environmental Acclimatization

Due to climate change and global warming, plants consistently face changing environ-
mental conditions and extended periods of severe biotic and abiotic stress. On the one hand,
species dominance shifts by changes in land use, and more extensive outbreaks of insects
are expected, especially in forests [106,147,148]. Simultaneously, temperature variation
becomes more extreme with the mean global temperature rising; however, more pro-
nounced cold periods may occur, while the frequency of flooding and drought events
rises [106,147–149]. Not only is soil nutrient availability changing, but the pollution
of soil (as well as air and water) is constantly increasing as a result of anthropogenic
activities [106,149].

All these stresses threaten yield formation as plants invest more resources in defence as
a trade-off to survive. For instance, under UV stress, plants might encounter morphological
changes and altered genome stability due to DNA damage [108]. Oxylipins and redox
state are major players in the plant-environment interaction, e.g., the adaptive mechanisms
include upregulation of cuticle synthesis. This upregulation, in turn, changes VOC emission,
their distribution in planta, and their biosynthesis [108]. Similar effects on cuticle synthesis
can be observed under drought stress, flooding stress, high salinity, and high and low
temperature [150,151]. Abiotic stress, such as intense heat or drought periods, and severe
climatic events, such as flooding, require a constant evolutionary adaption and flexible
acclimatization of plants to their environment.

4.3.1. Thermotolerance

Changing temperature and air pollution disturbs signalling through GLVs. Air pollu-
tion results in a decrease of maximum downwind distance of reactive volatiles, while cold
temperatures cause GLVs to condense and reside on plant surfaces instead of emitting into
the atmosphere [106,147]. Hence, pollination of plants deteriorates as the searching and
foraging efficiency of pollinators decreases. At the same time, the diminished attraction
of predators prevents anti-herbivore defence and might lead to more extensive wounding
of plants with increased synthesis of oxylipins. This adds to a generally increased sever-
ity of biotic stress, which is even further pronounced due to the rising severity of insect
outbreaks [147].

On the other hand, emission of BVOCs, including GLVs, has already increased by 10%
over the last three decades due to climate change; this is estimated to increase by a further
30–45% as global temperature rises by another 2–3 ◦C [106]. This increase might be traced
back to indirect and direct effects on BVOC emission, which is characterized not only by
their generation, but also by their physicochemical properties (solubility, volatility, dif-
fusivity). Emission rates are affected indirectly by prolongation of plant growth phases
and directly by affecting biochemical generation of BVOCs, both due to increasing tem-
perature [106]. Considering high temperatures as the only factor, emission of BVOCs is
proposed to be more potent, as their vapour pressure and their volatility enhance their
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diffusivity at the same time [106]. However, as mentioned before, cold temperatures and
air pollution might counteract these effects.

RES oxylipins are proposed to act as an ancient system of stress defense regarding
thermotolerance, which evolved distinctly before JA signaling [79]. To counteract heat
stress, 12-OPDA, phytoprostanes, and MDA induce synthesis of heat shock proteins, major
chaperones involved in heat stress acclimation [66,96,119].

As with heat stress, cold stress severely limits plant performance and may ultimately
lead to plant death in non-adapted species. Tolerance to both stresses, moreover, involves JA
and SA signalling [152]. In rice, under cold stress, several genes of jasmonate biosynthesis
are upregulated, including OsLOX2, OsAOS1, and OsOPR1, resulting in accumulation of
JA (and possibly also 12-OPDA) [152]. JA signalling increases plant endurance and freezing
tolerance [152,153]. However, as shown for A. thaliana, this upregulation of jasmonates
appears to be limited to the first exposure to cold stress and dramatically decreases in
primed plants [154]. This might be explained as a protection mechanism to reduce costs for
gene expression of cold-tolerance genes under fluctuating weather conditions, for example
in spring [154].

4.3.2. Pathogen Infection and Induced Systemic Resistance (ISR)

Besides abiotic stress, biotic stress, as caused by pathogen infection, insect attack, or
intraspecific competition, significantly impacts pre- and postharvest crop yield [155,156].
In regards to most prominent food crops, including wheat, rice, maize, and potato, biotic
stress has been reported to account for roughly 28%, 37%, 31%, and 40% of yield losses
from 2001 to 2003, respectively [157,158]. In general, biotic stress is thought to cause over
40% of yield loss in global food production [157,159,160].

As recently reviewed, JA and its derivate JA-Ile are major regulators of herbivory-
and pathogen-induced defence mechanisms in plants [161,162]. However, other oxylipins,
besides JA and JA-Ile, further contribute to herbivory resistance. In organisms devoid of JA
signalling, such as Marchantia polymorpha, dinor-OPDA, instead of JA, mediates herbivory
defence signalling together with salicylic acid (SA) [163]. Moreover, 12-OPDA, possibly in
concert with dn-OPDA, maintains plant resistance against insects and fungi in absence of
JA in A. thaliana [164].

Feeding preferences of herbivores depend on cis-3-hexenal, a GLV that stimulates feed-
ing activity [165]. In A. thaliana, signalling from wounded shoot tissue to distal parts of the
plant depends on the transport of 12-OPDA through the phloem from shoot-to-root, where
it then mediates activation of JA and JA-Ile signalling [166]. GLVs are important signalling
molecules involved in intra- and interspecies communication, even across kingdoms. For in-
stance, after herbivorous damage, there exist a means of attracting predators of herbivorous
insects and enhancing plant defence against pathogens and nematodes [68]. Further, they
serve as warning molecules for neighbouring plants. GLVs that are emitted from plants sub-
jected to biotic stress can be perceived by surrounding plants. This induces stress defence
mechanisms or primes the plant, resulting in a pre-defence state in which stress defence
induction proceeds more quickly and strongly [68,167]. The mechanism of GLV perception
in plants, however, is still largely unknown [68]. Lastly, GLVs are essential molecules for
attracting pollinators and, thereby, maintain plant reproduction [68,106,168,169].

Oxylipins (phytoprostanes, OPDA) distinctly enhance phytoalexin synthesis [54].
Furthermore, due to their chemical structure (dependent on carbon chain length, double
bonds, and hydroperoxyl groups), oxylipins display antimicrobial effects. They cause cell
lysis and subsequent electrolyte leakage in gram-positive and gram-negative bacterial cells
and inhibit enzymes, including those dedicated to nutrient uptake, ATP synthesis, and the
respiratory ETC [170–177].

Symbiosis of plant roots and rhizobacteria not only benefit for plant growth but
can also trigger induced systemic resistance (ISR). ISR is a type of defence mechanism
against pathogens and herbivores that relies on signalling molecules transported from
roots to aboveground plant tissues (root-to-shoot signal molecules) [178,179]. In maize
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roots colonized by Trichoderma virens, ISR is activated by fungal secretion of oxylipin
synthesis inhibitors.

While Sm1, a hydrophobin-like elicitor, is secreted by T. virens, the production of
9-HPOT by LOX3 is inhibited. Although seven 9-LOX are produced in maize, LOX3
appears to be the only LOX responsible for regulation of ISR, as LOX3 knockout-mutants
show constitutive ISR [180–182]. However, plant lines deficient in LOX5 and LOX10 also
display enhanced resistance to parasite infection, which raises the question of whether they
might be inhibited in the absence of LOX3 activity [180,183,184]. Recently, 12-OPDA and
α-ketol-octadecadienoic acid (KODA) have been identified as root-to-shoot signals in Zea
mays [185]. Both depend on the AOS pathway of oxylipin synthesis; however, 12-OPDA is
synthesized from 13-HPOT and KODA from 9-HPOT. As a result, activity of both 9- and
13-LOX is required. This might appear contradictory with the involvement of LOX3 in ISR.
However, maize plants deficient in LOX3 activity characteristically overexpress genes of
jasmonate biosynthesis such as LOX10 [186]. Production of KODA in maize has not been
traced back to a specific 9-LOX so far, excluding LOX3, so KODA can still by synthesized
by the other six 9-LOX.

All in all, while JA is the primary oxylipin involved in herbivory, the oxylipins that
we focus on in this review fulfil additional and essential functions, such as root-to-shoot
signalling and ISR. Furthermore, they contribute to pathogen defence and are able to
substitute JA signalling in the absence of JA (depicted in Figure 6), as indicated by studies
in different species.
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Another important plant stress defense mechanisms against pathogen infection is
hypersensitive response (HR): local necrosis, which prohibits further spread of infection
to healthy tissue [42,187,188]. HR is driven by recognition of small elicitor molecules con-
taining specific patterns, so-called pathogen-associated molecular patterns (PAMPs), by
dedicated receptors (pattern recognition receptors, PRRs) as well as detection of avirulence
(avr) proteins by nucleotide-binding and leucine-rich repeat receptors (NLRs) and resis-
tance (R)-proteins [187,189–192]. After recognition of PAMPs or avr proteins, a signalling
cascade involving NADPH oxidases (RBOH) is initiated that causes an oxidative burst and
subsequently programmed cell death (PCD) [42,193,194].
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As regulation of HR constitutes a complex network of transcriptional, post-transcriptional,
and post-translational modifications, this review will only provide limited insight as related
to oxylipin-linked HR. While concrete mechanisms and redox-regulatory pathways behind
HR-associated PCD still await further elucidation, the overall state of current knowledge
on HR has been focus of recent reviews [187,192,195,196]. One protein involved in post-
translational modification of HR is HSP90, which, together with additional chaperones,
stabilizes NLRs [187,197]. Moreover, disturbance of APX and MDHAR levels and activities
has been linked to generation of the oxidative burst of PCD [198,199]. Consequently,
as RBOHS, MDHAR, APX, and HSP90 have been shown to be affected by oxylipins, as
described in Sections 4.1 and 4.2, they might contribute possible links to oxylipin-modulated
HR. As TRXs negatively regulate HR-driven PCD, inhibition of TRX activity by 12-OPDA
might contribute to the rapid induction of PCD under stress conditions, as 12-OPDA
synthesis is stimulated in the course of HR [27,200].

Another possible interaction node of HR signaling are ceramides, which are hypoth-
esized to interact with Arabidopsides as well as the phytoalexin pool [201]. Moreover,
Arabidopsides, specifically Arabidopside E, are thought to serve as protection against
secondary infections in already dead tissue after PCD [42]. Although studies on the effect
of oxylipins on HR are scarce, oxylipins have been proposed as determinants of HR [201].
For instance, stimulation of ROS-triggered programmed cell death (PCD) by oxylipins
(acrolein, 4-HNE) after pathogen infection has been linked to depletion of the glutathione
pool and lethal depletion of ASC, explained by stimulation of caspase-like proteases [202].
Negative regulation of HR by oxylipins has also been observed in A. thaliana cells treated
with phytoprostanes, possibly due to activation and increased synthesis of GSTs, MAPK,
and antimicrobial compounds [201,203]. Overall, both the mechanisms of HR-induced
PCD and the possible involvement of oxylipins should be studied more extensively.

4.3.3. Flooding

Another effect of climate change is more frequent (temporary) flooding, causing not
only submergence (hypoxia) stress, but reoxygenation stress as an additional challenge.
During submergence, oxygen availability decreases drastically, the composition of soil and
accessibility of nutrients and microbial environment changes, and toxic compounds are
formed [204]. Consequently, the photosynthesis rate of plants decreases as well as their
energy and carbon levels, resulting in growth retardation. Temporary flooding is followed
by reoxygenation, which leads to distinct oxidative stress in plants [204–206].

Oxylipins, especially 12-OPDA and C6 aldehydes of the group of GLVs, ameliorate
flooding stress in plants and increase plant survival as depicted in Figure 7 [204,207]. By
using different A. thaliana wild type and transgenic lines, Savchenko et al. analysed the
function of the HPL and the AOS pathway, both dependent on 13-HPOT [208]. They
showed a protective effect under waterlogging stress concerning biomass accumulation,
membrane integrity, photosynthesis rate, and overall submergence survival rate. This
effect relies not only on the combined action of both pathways, but also on the unique
action of products of the HPL or AOS branch. For instance, the AOS branch appeared to be
more critical for defence against membrane damage during reoxygenation as measured by
electrolyte leakage and lipid peroxidation. However, in both cases, the combination of HPL
and AOS activity resulted in the least damaged membrane.

Furthermore, the decline in photosystem II activity was less pronounced in the pres-
ence of oxylipins. This is in accordance with previous studies that show a protective effect
of HPL on the photosynthetic apparatus under high light stress [209]. Overall, the survival
rate of plants under submergence stress increases from ~50% when only one of the two
pathways is active to ~77% with both pathways functional. In a double knockout mutant
displaying neither AOS nor HPL activity, survival rate drops to ~30%, supporting the
importance of oxylipins under flooding stress [204].
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In plants displaying HPL and AOS activity, 12-OPDA accumulated after submergence
stress. Since earlier studies reported transgenic A. thaliana lines deficient in JA biosynthesis
and/or signalling to show increased sensitivity towards reoxygenation, and no increase
of JA could be detected in this study, an essential role of 12-OPDA in flooding tolerance
can be concluded. 12-OPDA could either be the only AOS-derived key regulator, or
act together with basal concentrations of JA [204]. Additionally, 12-OPDA accumulates
under combined flooding and heavy metal stress and has been proposed to enhance stress
defense by upregulation of thiol production and tuning gene expression under these stress
conditions [207].

In total, an essential role in plant survival under flooding stress can be attributed to
oxylipins with 12-OPDA acting as a primary signalling molecule.

5. Conclusions

Under non-optimal growth conditions and severe stress such as flooding and heat,
which are expected to further increase due to global warming over the next decades,
plants are faced with an accumulation of ROS. As these can cause extensive damage, a
complex array of proteins, the redox-regulatory network, is dedicated to maintaining
ROS homeostasis. Products of ROS-induced damage, oxylipins, and the function of the
redox network are strongly linked. This interplay awaits further elucidation, as studies on
oxylipins are generally rather scarce, especially concerning studies on oxylipin signature
instead of single oxylipins. Nevertheless, the strong effect of oxylipins on redox homeostasis
in plant cells has been widely recognized; this interference affects plant performance in a
larger context and in environmental acclimatization. The interaction between glutathione
and oxylipins, especially in the context of adduct formation, function, and cleavage, should
be further characterized, particularly concerning 12-OPDA, a precursor of jasmonic acid,
that, in recent years, has emerged as a potent phytohormone on its own.
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