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Abstract: The green synthesis of zinc oxide nanoparticles (ZnO NPs) using a diverse range of plant
species has been extensively reported. Despite the success achieved by biogenic synthesis, there
are problems with the control and prediction of the properties of ZnO NPs, due to phytochemical
diversity between plant species. In this sense, the main objective of our work was to investigate the
effect of the antioxidant activity (AA) of plant extracts on the physicochemical characteristics of ZnO
NPs (production yield, chemical composition, polydispersity index (PDI), surface charge (ζ-potential)
and average particle size). In order to accomplish this objective, four plant extract with different
antioxidant activities were used: Galega officinalis, Buddleja globosa, Eucalyptus globulus, and Aristotelia
chilensis. Phytochemical screening, quantitative analysis of phenolic compounds and antioxidant
activity determination of the different extracts were carried out. Chemical species such as catechin,
malvidin, quercetin, caffeic acid, and ellagic acid were the dominant components, found in the
extracts studied. The A. chilensis extract showed the highest value of total phenolic compounds (TPC)
and AA, followed by E. globulus, B. globosa and G. officinalis. Zetasizer, Fourier-transform infrared
(FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric
analysis (TGA) data show that plant extracts with lower AA leads to a decrease in the yield of ZnO
NPs and an increase in the amount of residual organic extract that remains on the particles. The latter
caused an increase in the average particle size, PDI and ζ-potential as a consequence of agglomeration
and particle coarsening. Our result suggest that it is possible to use the AA as an indicator of the
potential reducing capacity of plant extracts. In this way it is possible to guarantee the reproducibility
of the synthesis process as well as ensure the formation of ZnO NPs with desired characteristics.

Keywords: green synthesis; zinc oxide nanoparticles; antioxidant activity; phenolic compounds;
plant extract

1. Introduction

Zinc oxide nanoparticles (ZnO NPs) have unique characteristics, including thermal
stability, optical properties, nontoxic behavior, low cost and ease of fabrication. These
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properties make them attractive for used in biomedicine, agriculture, textile, solar cells and
cosmetic products [1–3].

ZnO NPs are generally synthesized by chemical methods due to their high precision
and better control over particle size, shapes, and composition [4]. However, the use of
highly concentrated reductants and stabilizing agents in the process can provoke a harmful
impact on the environment and human health. In this sense, great emphasis has been placed
on the green synthesis of ZnO NPs to minimize toxic effluent production and promote
environmental sustainability [5]. Green synthesis uses aqueous extracts of different parts
of the plant (roots, stem, leaf, flower, and fruit), cellular biomass, or cell-free extracts (of
bacteria, fungi, yeasts, and viruses) for nanoparticle production. Plant-based nanoparticle
synthesis is highly preferred over synthesis by microorganisms considering its simplicity,
scalability, the rich biodiversity of plant species, and their wide range of phytochemical
compounds (e.g., terpenoids, tannins, steroids, saponins, polyphenols, alkaloids, phenolic
acids, and proteins) [5,6]. The specific mechanisms of plant-mediated synthesis are still
uncertain due to the diverse nature of phytochemical constituents [5]. Until now, phenolic
compounds have been suggested as being responsible for the phytosynthesis of nanoparti-
cles [7,8]. The antioxidant activity of phenolic compounds allows them to act as reducing
agents and stabilizing agents during the preparation of nanomaterials [9–12].

Considering that the phenolic compounds in plant extracts play a critical role in
nanoparticle formation and growth, selecting the right plant source to prepare the extracts
is an important step to obtain ZnO NPs with the desired physicochemical properties. In
this context, the following question arises: What are the characteristics that must be taken
into consideration when choosing a plant source for the synthesis of nanoparticles? Several
researchers have documented that the use of different plant species [13,14], different parts
of the plant [15] and different plant extract concentrations [16,17] can affect the morphology
and particle size of the obtained ZnO [6,18]. To the best of our knowledge, little has been
said about the purity and yield of the final product, which are also important properties
that could affect its reactivity, hinder its application in the construction of functionalized
materials and limit its scalability.

According to Zeghoud et al. [19] unless the plant extract is devoid of bioactive species,
the plant species employed has little impact on the production of nanoparticles. However,
the biochemical parameters of plant extracts that can be used as practical and quantitative
guide for selecting the better biological agent for the fabrication of ZnO NPs have not
yet been defined yet, which is necessary to guarantee the reproducibility of the synthesis
process, as well as more control over particles properties.

To date, a large number of plant sources have been reported to be able to promote the
synthesis of ZnO NPs [18–20]. Leaf extract of Galega officinalis, Buddleja globosa (matico),
Aristotelia chilensis (maqui) and Eucalyptus globulus were selected for this study on the basis
of their known medicinal properties. All of these plants grow abundantly in the central–
southern region of Chile. G. officinalis and E. globulus are species that were introduced in
the country. G. officinalis is employed as medicine and in forage cultures, the maximum
amount of phytochemicals is found in its leaves, which contains alkaloids, glycoside,
flavonoids, tannins, hydroxycinnamic acids, saponins, bitters, pectins, essential amino
acids and vitamins [21]. The leaves of E. globulus are residue from the wood industry,
and contain flavonoids, volatile oils, and tannins; due to this, they are used for medicinal
purposes, especially against coughs and as an expectorant, but they also have febrifuge,
antiseptic, hemostatic, and vermifungal properties [22,23]. B. globosa and A. chilensis are
traditional native Chilean plants. B. globosa leaf extract is often used in Mapuche culture
for cutaneous wound healing, intestinal and liver problems. It has bioactive compounds
such as flavonoids, phenylethanoids, sterols, phenolic fatty acid esters and terpenes [24].
Leaves of A. chilensis are a waste product of the maqui berry industry. Leaf infusion are
used as a natural muscle relaxant or as an analgesic, due to being rich in phenols, a wide
variety of anthocyanins, and flavonoids [25]. The bioactivity of all of these plants makes
them potential candidates for the biosynthesis of ZnO NPs.
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E. globulus leaf extracts have been successfully used for the production of ZnO NPs
with spherical morphology and average particle sizes of approximately 20 to 70 nm [26–28].
Due to its known activity, in this work E. globulus extract was used as a reference, consider-
ing that the potential of G. officinalis, B. globosa and A. chilensis extract in the preparation of
ZnO NPs has not yet been explored.

It is clear that different plant species contain varying types and concentrations of
bioactive substances, which influence their antioxidant activity and has significant impli-
cations for their reducing ability as well as the synthesis of ZnO NPs. In this context, the
main objective of our work was to investigate the effect of the AA of plant extracts on
the physicochemical characteristics of ZnO NPs (production yield, chemical composition,
particle size, PDI and ζ-potential). In order to accomplish this objective, four plant extract
with different AA were used.

2. Materials and Methods
2.1. Preparation of Plant Extracts

In the current investigation, ZnO NPs were produced using aqueous leaf extract from
four different plant species, G. officinalis, B. globosa, E. globulus, and A. chilensis. Plant
leaf extracts were prepared according to Solabomi et al. [14] with some modifications.
Sufficient amounts of the fresh green leaves of all plants were collected from the garden
of the Universidad de La Frontera in Temuco, Araucania Region, Chile (38◦44′44.3” S
72◦37′01.8” W), in May 2021 (austral winter season). The leaves were washed several times
with distilled water, dried at 35 ◦C for three days, and cut into small pieces. A total of 10 g
of the cleaned leaves was added to 200 mL of distilled water and heated at 60 ◦C for one
hour. The resulting extract was filtered through Whatman number-1 filter paper, and the
filtrate was collected in a closed vessel and stored at 4 ◦C for further use.

2.2. Qualitative Phytochemical Analysis

In order to identify the phytochemicals responsible for nanoparticles synthesis, the
leaf extracts were subjected to plant-specific tests for the presence of tannins [29,30],
saponins [31], flavonoids [29], terpenoids [31,32], quinones [33], coumarins [34] and gly-
cosides [29,35]. These various standard procedures were performed following previously
reported assays.

2.3. Quantitative Determination of Phytochemical Constituents
2.3.1. Total Phenolic Content (TPC)

The Folin–Ciocalteu colorimetric method [31] was used to determine the total phenolic
content of the four plant extracts. Briefly, the plant extract was diluted with distilled
water to a known concentration. A total of 0.2 mL of diluted extract was mixed with
1 mL of Folin–Ciocalteu reagent (diluted 1:10 with distilled water) and 0.8 mL of 7.5% w/v
sodium carbonate solution (Na2CO3). The mixture was shaken vigorously and incubated
for 40 min at 45 ◦C for a complete reaction. The resulting absorbance was measured using
a UV-Vis spectrophotometer (Thermo Scientific EvolutionTM 60S, Waltham, MA, USA) at
765 nm. Similarly, the calibration curve was constructed using gallic acid as the standard
(20–100 mg/L). The results are expressed as mg gallic acid equivalents (GAE) per gram of
dried weight (DW) of plant material (mg GAE/g DW) for three replicate analyses.

2.3.2. Total Flavonoids Content (TFC)

The aluminium chloride (AlCl3) colorimetric method was used with some modifica-
tions for the flavonoid determination of the various plant extracts [36]. A total of 1 mL of
diluted extract was mixed with 0.3 mL of 5% sodium nitrite (NaNO2) solution and 0.3 mL
of 10% alcoholic aluminium chloride solution. The mixture was shaken and allowed to
stand for 5 min at room temperature. Then, 2 mL of 1 M NaOH solution was added, and the
absorbance was measured at 510 nm with a UV–Vis spectrophotometer Thermo Scientific
EvolutionTM 60S. Similarly, the calibration curve was constructed using quercetin as the
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standard (40–200 mg/L). The results are expressed as mg quercetin equivalents (QE) per
gram of dried weight (DW) of plant material (mg QE/g DW) and± SD (standard deviation)
for three replicate analyses.

2.3.3. HPLC-DAD Analysis of Phenolic Compounds

The aqueous extracts obtained from the leaves were filtered through a 0.22 mm
membrane and were analyzed by HPLC. Twenty microliters of each sample were injected
into a Shimadzu HPLC (Model LC-20A Prominence, Kyoto, Japan) equipped with a C-18
column (250 mm × 4.6 mm ID; 5 µm particle size) maintained at 40 ◦C. The analysis was
performed using a linear solvent gradient consisting of water (A) and methanol (B) as
follows: 0–30 min, 90% A/10% B; 30–60 min, 60% A/40% B; 60–70 min, 55% A/45% B;
70–80 min and 90% A/10% B, at a flow rate of 1 mL/min. Phenolic compounds were
monitored at 280 nm; UV spectra from 190 at 700 nm were used for peak characterization.
The identification of phenolic compounds was based on the peak retention time compared
to that of a reference standard.

2.3.4. Ferric-Reducing Antioxidant Power (FRAP) Assay

The reducing power was determined according to the method described by Wong et al. [37].
First, the FRAP reagent was prepared from acetate buffer (pH 3.4), 10 mmol 2,4,6-trypyridyl-
s-triazine (TPTZ) solution in 40 mmol HCl and 20 mmol FeCl3·6H2O solution in proportions
of 10:1:1 (v/v), respectively. Then, 50 µL of the diluted extract was mixed with 3 mL of
FRAP reagent, and after 20 min of incubation at 35 ◦C, absorption was measured at 593 nm
using a UV-Vis spectrophotometer. The standard curve was constructed using iron (II)
sulfate solution (100–2000 µM), and the results are expressed as µM Fe2+ per gram of dried
weight (DW) of plant material (µM Fe2+/g DW) for three replicate analyses.

2.4. Synthesis of ZnO Nanoparticles
2.4.1. Synthesis of ZnO NPs Mediated by Different Leaf Extracts

ZnO NPs synthesis was adopted from Rehana et al. [13]. First, 25 mL of 0.1 M zinc
acetate dihydrate (Zn(CH3COO)2·2H2O) was added dropwise to 50 mL of plant extract
under mechanical stirring and heated at 60 ◦C for 1 h. The color changes confirmed the
formation of zinc hydroxide complexes. The dark brown precipitate was later separated by
centrifuge at 10,000 rpm for 10 min and washed several times with distilled water until the
pH of the suspension reached ~6–7. The solid product was transferred to a ceramic crucible,
dried thoroughly, calcined at 400 ◦C for 3 h, and stored for further use. In order to verify the
participation of phenolic compounds in nanoparticle production, quantitative changes in
TPC during synthesis were monitored by the previously described Folin–Ciocalteu method.
The effect of each aqueous leaf extract on the yield of ZnO NPs yield was investigated.

2.4.2. Synthesis of ZnO NPs by Chemical Sol-Gel Method

ZnO NPs were also synthesized by traditional chemical methods adopted from
Koutu et al. [38] to compare and evaluate the characteristics of the synthesized green
nanoparticles. First, 50 mL of 0.1 M Zn(CH3COO)2·2H2O was added dropwise to 50 mL
of 0.1 M NaOH under mechanical stirring and heated at 90 ◦C for 2 h under reflux. The
color changes confirmed the formation of zinc hydroxide. The resulting white precipitate
was later separated by centrifuge at 10,000 rpm for 10 min and washed several times with
distilled water until the pH of suspension reached ~6–7. The solid product was transferred
to a ceramic crucible, dried thoroughly, calcined at 400 ◦C for 3 h, and finally stored for
further use. The appearances of the ZnO NPs powder synthetized using the green and
chemical route are shown in Figure 1.
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Figure 1. Appearance of ZnO NPs synthesized by green and chemical method. (A) G. officinalis,
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2.5. Characterization of ZnO NPs

The nanoparticles synthesized were characterized by their polydispersity index (PDI)
and surface charge (ζ-potential) using a Zetasizer Nano ZS90 (Malvern Instruments, Inc.,
Malvern, UK). Optical properties were analyzed by UV-visible absorption spectroscopy
(Thermo Scientific EvolutionTM 60S) in the range of 200–800 nm. Fourier-transform
infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to verify the
involvement of the phenolic compounds in nanoparticle formation and to determine the
percentage purity of the synthesized nanoparticles. Briefly, the powder samples were placed
on top of the attenuated total reflection (ATR) crystal, and spectra were collected in the range
of 400–4000 cm−1 using a Cary 630 FTIR instrument from Agilent Technologies. The TGA
of the samples was obtained using a Perkin-Elmer STA 6000 by heating under atmospheric
conditions from 25 ◦C up to 600 ◦C at 15 ◦C/min. The crystalline structure and constitution
of the material were examined using a Smartlab Rigaku X-ray diffractometer, with a
theta/theta (Bragg-Brentano) goniometer and D/teX Ultra 250 solid-state detector (Rigaku
Corporation, Japan). XRD patterns were collected with Cu-Kα radiation (K = 1.5406 Å) at
30 kV and 40 mA, with Ni-filtered, in the range of 3–60◦ 2Theta, counting 0.5◦/s per step of
0.01◦. The morphology and particle size distribution of nanoparticles were determined by
transmission electron microscopy (TEM) using a Carl Zeiss LIBRA® 120 PLUS microscope.
To estimate the average particle size and particle size distribution, approximately 100 NPs
were measured in random fields of TEM images.

2.6. Data Analysis

The results were expressed as the mean ± standard deviation (SD) of at least three
independent experiments. One-way ANOVA was used to analyze level of statistical
significance between groups. Pearson’s correlation coefficient was determined to establish
the relationship between different parameters. The statistical significance level was set to
0.05. All statistical analyses were conducted using the JMP statistical software.

3. Results and Discussion
3.1. Phytochemical Analysis of Plant Extracts

It is known that plants possess rich variability of active compounds, which can be used
for the green synthesis of metal or metal oxide nanoparticles [39,40]. Hence, thoroughly
studying the phytochemical profile of crude aqueous leaf extracts from G. officinalis, B.
globosa, A. chilensis, and E. globulus is essential. Qualitative tests were conducted to identify
the secondary metabolites in the extracts. The results obtained showed that the main
constituents of the studied plant extracts were tannins, flavonoids, saponins, and terpenoids
(Table 1). G. officinalis extract also contained cardiac glycosides, while B. globosa contained
quinones, anthraquinone, and cardiac glycosides. On the other hand, the aqueous extract
of E. globulus also included bioactive chemicals such as quinones and coumarins, while A.
chilensis contained coumarins.
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Table 1. Preliminary qualitative phytochemical analysis of the various aqueous plant extracts studied
in this work.

Phytochemical
Constituents

Plant Leaf Extracts

G. officinalis B. globosa E. globulus A. chilensis

Tannins + + + +
Saponins + + + +

Flavonoids + + + +
Terpenoids + + + +
Quinones - + + -

Coumarins - - + +
Anthraquinone glycosides - + - -

Cardiac glycosides + + - -

- absence and + presence.

The presence of chromophoric groups and aromatic rings in plant extracts was con-
firmed by UV–Vis spectrophotometry (Figure 2A). All spectra evidenced absorption bands
in the ranges of 240–280 nm and 340–380 nm [31,41]. According to previous studies, bands
ranging from 250 to 300 nm are characteristic of flavonoid derivatives, while bands ranging
from 300 to 400 nm are characteristic of phenolic derivatives. It is known that the intensity
of the absorption bands is directly proportional to concentration, suggesting that the E.
globulus and A. chilensis extracts have a higher amount of phytochemical species compared
with B. globosa and G. officinalis. In addition, the UV–Vis results reveal that the extracts
showed variations in their chemical composition.
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Considering the vital role of phenolic compounds in the biogenic production of
nanoparticles, the TPC and TFC of the different extracts were estimated. Additionally,
antioxidant potential was investigated by the FRAP. The results obtained are presented in
Figure 2B.

The TPC and TFC results show significant differences among the four extracts. E.
globulus and A. chilensis leaf aqueous extract contained the highest amount of phenolic
and flavonoid compounds compared with B. globosa and G. officinalis. With regard to the
AA of the prepared extracts, A. chilensis extract showed the highest and most significant
(p < 0.0001) AA, followed by E. globulus, B. globosa, and G. officinalis. These parameters
(TPC, TFC and AA) exhibited a positive correlation (Figure 3A,B) between AA and TPC
(R = 0.95) and between AA and TFC (R = 0.90), which implies that the AA of plant extracts
varies proportionally with change in TPC and TFC. These results suggest that phenolic
compounds are major contributors to the antioxidant activity of plant extracts.
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acid; (G) gallic acid; (H) vanillin; (I) caffeic acid; (J) ferulic acid and (K) Ellagic acid. 
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Figure 3. (A) Correlation between TPC and AA and (B) TFC and AA of (1) G. officinalis, (2) B. globosa,
(3) E. globulus and (4) A. chilensis.

Figure 2B shows that although A. chilensis and E. globulus extracts demostrated non-
significant variability in TPC, their antioxidant capacity was quite different. This could be
attributed to the different chemical structures of compounds in crude plant extracts. In
order to obtain more information about the chemical nature of phenolic compounds, HPLC-
DAD analyses were performed. A total of 11 phenolic compounds, –catechin, cyanidin,
malvidin, quercetin, benzoic acid, salicylic acid, gallic acid, vanillin, caffeic acid, ferulic
acid, and ellagic acid– were used in this study. Figure 4 and Table 2 show the quantification
and chemical structure of the phenolic compounds, respectively.
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Table 2. Identification and quantification of phenolic compounds present in aqueous plant extracts
by HPLC DAD.

Identification/Subclass
Concentration (mg/L)

G. officinalis B. globosa E. globulus A. chilensis

Flavonoids
A Catechin 2.6 - 361.8 -
B Cyanidin - 0.7 - -
C Malvidin - 37.7 20.2 14.2
D Quercetin - - 85.1 54.5

Benzoic acids (-COOH substituted)
E Benzoic acid 7.0 3.1 - -
F Salicylic acid 42.5 4.6 0.5 -
G Gallic acid 0.1 - - 0.3

Cinnamic acids (-OCH3 substituted)
H Caffeic acid 2.1 2.4 124.7 9.5
I Ferulic acid 0.3 - - -

Others
J Ellagic acid - - 5.1 9.2
K Vanillin 1.2 0.5 4.7 -

Phenolic compounds comprise one (phenolic acids) or more (polyphenols) aromatic
rings containing one or more hydroxyl substituents [42,43]. Indeed, it is known that the
number and arrangement of the phenolic hydroxyl groups and the degree of hydroxy-
lation or extent of alkylation and glycosylation within each group cause the difference
in the antioxidant activities of phenolic compounds [42,44]. In this context, gallic acid
(Figure 4G) with three hydroxyl groups exhibits better antioxidant properties than salicylic
acid (Figure 4F), with only one hydroxyl group bound to the aromatic ring. Similarly,
caffeic acid (Figure 4I) with two hydroxyl groups exhibits better antioxidant properties than
ferulic acid (Figure 4J) and vanillic acid (Figure 4H), which have only one hydroxyl group
bound to the aromatic ring. At the same time, ferulic acid has better antioxidant properties
than vanillic acid due to the presence of an –CH=CH–COOH group in this structure, which
enhances the antioxidant activity more than the –COH group [44,45].

As for flavonoids, the data presented in the literature suggests that quercetin (Figure 4D)
is a more effective antioxidant than catechin (Figure 4A). Although catechin has the same
number and location of hydroxyl substituents as quercetin, the conjugation of the C2–C3
double bond with the C4 carbonyl group and C3 and C5 hydroxyl groups (Figure 4D) of the
quercetin molecule contribute to radical scavenging, metal chelating and the stabilization
of the phenoxyl radical produced by hydrogen donation [44,45].

According to Angelo et al. [46], the antioxidant activity of structurally diverse phenolic
compounds in decreasing order was ellagic acid > quercetin > catechin > caffeic acid >
cyanidin > ferulic acid > vanillic acid. Similar results were reported by Bhutto et al. [42],
who observed that the decreasing order of antioxidant capacity values was quercetin > caffeic
acid > ferulic acid > salicylic acid; however, benzoic acid did not exhibit antioxidant activity.
Hence, the results shown in Table 2 allow us to conclude that the highest concentration
and highest AA of compounds such as catechin, quercetin, and caffeic acid contribute
significantly to the antioxidant capacities of E. globulus and A. chilensis extracts. By contrast,
B. globosa and G. officinalis extracts showed the lowest antioxidant activity due to the low
concentration and inferior antioxidant properties of malvidin and salicylic acid.

3.2. Characterization of ZnO NPs
3.2.1. UV–Visible Spectroscopy

ZnO NPs were synthesized using aqueous leaf extract from four different plant species
with diverse antioxidant activities. Visual examination confirmed the formation of ZnO
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NPs. The color of the reaction mixture changed from yellow to pale brown during the
reaction and from light to dark brown at 400 ◦C using a muffle furnace for 3 h. The
solids obtained were dispersed in distilled water by ultrasound for 5 min (Figure 5A),
and their optical absorption was recorded using a UV–vis spectrophotometer. The UV
absorption spectra are shown in Figure 5B. All of the samples exhibited strong absorption
peaks centered at 368, 367, 368, and 368 nm for A. chilensis, E. globulus, B. globosa, and G.
officinalis, respectively, which are characteristic peak for ZnO [47–49]. Green synthesized
nanoparticles showed a higher degree of blue shift compared with chemically synthesized
nanoparticles (approx. 381 nm). This suggests that the particle size is larger for the chemical
method compared with that of prepared samples using plant extracts [7,47,50].
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Figure 5. (A) Photographs of ZnO NPs dispersion in water. (B) UV–vis spectra of ZnO NPs synthe-
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and (5) NaOH.

Due to importance of ZnO semiconductor as an opto-electronic material [51], its band
gap was calculated based on the equation Eg(eV) = (hc/k) = 1240/k (nm), where Eg is the
optical band gap, h is Planck’s constant, c is the speed of light and k is the wavelength of
maximum absorption. The calculated optical band gap values are 3.36, 3.37, 3.36, 3.36, and
3.24 eV for A. chilensis, E. globulus, B. globosa, G. officinalis, and chemical method, respectively.
These values are in good agreement with those reported in earlier studies [16,52,53].

3.2.2. XRD Analysis

The XRD patterns of the samples synthesized by the chemical and green routes are
shown in Figure 6. All of the diffraction patterns were identified as ZnO with a hexagonal
wurtzite structure in accordance with the Crystallography Open Database, COD ID 2300113.
In Figure 6, it can also be seen that the diffraction peak intensity decreases with the use of
different plant extracts, suggesting that the degree of crystallinity of samples decreased
due to the anomalous atomic order inside nanoparticles. The presence of small and broad
peaks on the diffractogram could be also attributed to crystallite size reductions.
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Figure 6. XRD patterns of ZnO NPs synthesized by biological and chemical methods. (A) G. officinalis,
(B) B. globosa, (C) E. globulus, (D) A. chilensis and (E) NaOH.

Based on the pattern profile analysis, the crystallite size (D) was estimated by Debye–
Scherrer as follows [54–56]:

D =
kλ

β(hkl) cos θ
(1)

where λ is the wavelength of the X-ray radiation (Cu−Kα = 0.1541 nm), k is known as
the Scherrer constant, which is for a spherical crystal 0.94, β is the full line width at the
half-maximum (FWHM) of the hkl intensity peak, and θ is the Bragg angle. These results
are supported by the Williamson–Hall plot (W–H plot) using the uniform deformation
model (UDM) (Equation (2)), which considers a crystal to be isotropic and, consequently, its
properties to be independent of the crystallographic direction along which the measurement
is taken [55].

β(hkl) cos θ =
kλ
D

+ 4εsinθ (2)

The linear regression of the data obtained between βcosθ vs. 4sinθ indicates the
crystallite size and lattice strain (ε) through their intercept and slope, respectively. The
estimated values of crystallite size and lattice strain are presented in Table 3. Crystallite
sizes of green-prepared particles were found in a range from 2.2 to 17.78 nm. By contrast,
ZnO NPs prepared by the chemical method showed a crystallite size between 22.8 and
29.5 nm. The lower values for biogenic nanoparticles can be attributed to the efficient role
of polyphenolic compounds derived from plants as capping and stabilizing agents during
synthesis. For ZnO NPs prepared using G. officinalis it was not possible to estimate the
crystallite size due to the presence of amorphous carbon on the particles which masked
the ZnO. This low intensity generated by the ZnO signals made it difficult to identify the
individual peaks.

Table 3. Crystallite size calculated using Debye-Scherrer and Williamson-Hall.

Plant Extracts
Crystallite Size XRD (nm)

ε × 10−3

Scherrer’s Equation W–H Plots

G. officinalis — — —
B. globosa 2.2 6.0 6.5

E. globulus 12.3 17.8 7.8
A. chilensis 8.0 4.5 6.9

Chemical method 22.8 29.5 0.7

On the other hand, the lattice strain values estimated using the W–H plot decreased
with increasing crystalline domain size. Lattice strain measures the distribution of the
lattice constant arising from crystal imperfections such as lattice inhomogeneities. The
larger the strain, the greater the concentration of defects and imperfections [55,57]. Thus,
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the presence of phenolic compounds limited particle growth, inhibited crystallization and
promoted atomic and lattice disorder, which could affect the reactivity of ZnO NPs [58,59].

3.2.3. FT-IR Analysis

Figure 7 shows the FTIR absorption spectra of synthesized ZnO NPs. All of the spectra
demonstrated a broad absorption peak located at approximately 3400 cm−1 corresponding
to H–O vibration, in addition to the characteristic bands of Zn–O stretching from 400 cm−1

to 600 cm−1, which confirmed the presence of ZnO. Nanoparticles prepared by chemical
method showed absorption peaks at 1038, 1383, and 1507 cm−1 corresponding to C–O
stretching, symmetric O–C–O stretching, and asymmetric O–C–O stretching vibration,
respectively, denoting the presence of acetate groups from the precursor salt used in the
synthesis. On the other hand, the bands observed at 1620, 1480, 1400, and 1050 cm−1 for
ZnO NPs synthesized using aqueous plant extract correspond to the stretching vibration
of C=O, C=C, C–N, and C–O [28,49,60] due to the presence of residual organic extract
that remained on the particles after calcination, which caused changes in the physical
appearance of all the powders obtained, varying in color from light to dark brown or black
(see Figure 5B). The use of G. officinalis to produce ZnO NPs caused an increase in the
peak intensity in FTIR (Figure 7A), suggesting that the purity of the sample decreased due
to a higher content of residual phenolic compounds. The FTIR results indicate that the
phenolic compounds in the plant extracts were successfully incorporated into the surface
of nanoparticles during the synthesis.
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3.2.4. TGA Analysis

To determine the thermal stability and weight percentages of the bonded plant pheno-
lic compounds over the ZnO NPs prepared by the green synthesis method, a TGA analysis
was performed (Figure 8). ZnO NPs obtained by the chemical method were also studied
using TGA. Chemical nanoparticles showed a weight loss of 2% due to the evaporation of
water molecules. In comparison, samples produced by plant extracts exhibited continuous
weight losses ranging from 9% to 4%, which are related to the thermal decomposition of
water and bioactive compounds in plant extracts bonded to the nanoparticle surfaces. TGA
analysis indicates that calcination temperatures higher than 400 ◦C are required to remove
the organic compounds on the surface of ZnO NPs. The highest weight percentage of
organic matter was evidenced when the G. officinalis extract was used in the synthesis of
ZnO NPs. The results in Figure 5d are in good agreement with the FTIR spectra.
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3.2.5. DLS Analysis

The PDI and ζ-potential of ZnO NPs suspended in distilled water were also evaluated.
Samples produced using A. chilensis, E. globulus, B. globosa, and G. officinalis exhibited PDI
values of 0.2, 0.2, 0.3 and 0.5, respectively, while the sample synthetized by the chemical
method showed a PDI value of 0.1. Typically, PDI values for ZnO NPs between 0.1 and 0.3
indicate a narrow size distribution, whereas a PDI > 0.5 indicates that the sample has a very
broad size distribution [61–63]. In this sense, PDI measurements suggested that ZnO NPs
with monodispersed size distributions were obtained, except when G. officinalis extract was
used. In this case, a high PDI indicated some heterogeneity in the particle-sizes distribution.

Next, the obtained average ζ-potential value was positive for chemically prepared
ZnO NPs (18.8 mV). By contrast, ZnO NPs synthesized using aqueous plant extract showed
negative zeta potential (−14.5, −14.0, −16.0 and −16.1 mV for A. chilensis, E. globulus, B.
globosa, and G. officinalis, respectively) due to the surface coating with negatively charged
organic compounds. The ζ-potential defines the stability of particle dispersions and is
a typical measurement of the surface charge on a particle. Z-potential values higher
than +30 mV or lower than −30 mV are indicative of stable nanoparticle dispersions [64].
Therefore, the ζ-potential values of the prepared ZnO NPs prepared indicates a weak
repulsive force between the particles, which promotes their aggregation.

3.2.6. TEM Analysis

The particle size distribution and morphology of ZnO NPs prepared from different
plant extracts were explored using TEM (Figure 9). The TEM images showed the formation
of predominantly spherical-shaped ZnO NPs. All size distribution patterns fit best to
a log-normal distribution with an average diameter (D) of 31.98 ± 27.31, 31.23 ± 9.78,
15.71 ± 8.25, and 13.62 ± 3.71 nm using extract of G. officinalis, B. globosa, E. globulus,
and A. chilensis, respectively. The particle size distribution obtained by TEM was higher
compared with the crystallite sizes calculated from the XRD data, because a crystallite is a
single crystal with a long-range order of atoms. However, a particle often has more than
one crystallite.

Different plant extracts have a clear effect on particle size and distribution. The use of
G. officinalis extracts exhibited the highest average diameter value and standard deviations,
suggesting non-uniform particle size distribution, probably caused by the presence of the
larger amount of residual amorphous carbon residual on the ZnO (Figure 9A), formed by
the incomplete combustion of organic extract, which can severely affect the properties of
ZnO NPs. It is known that, during the synthesis of ZnO NPs, phenolic compounds act as
capping agents to stabilize the nanoparticles, preventing further growth and agglomeration.
However, they are often detrimental to the construction of functionalized nanomaterial,
especially those that require clean inorganic interfaces and surfaces [65,66]. Therefore,
during synthesis, a calcination step is required to obtain the ZnO phase and remove organic
ligands from plant extracts. In this work, it was shown that the temperature employed



Antioxidants 2023, 12, 784 13 of 20

in thermal treatment did not remove all organic matter from the produced nanoparticles.
Hence, the calcination of powders at 400 ◦C converted the phenolic compounds surround-
ing the ZnO NPs into amorphous carbon, which caused an increase in the average particle
size as a consequence of agglomeration and particle coarsening.
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Particle diameter showed a negative correlation with TPC and AA (Figure 10A,B).
To put it another way, plants containing higher TPC and AA made it possible to obtain
nanopowders with smaller particle size and a narrow particle size distribution compared
with plants with a lower TPC and lower AA, which can be attributed to the amount
of phenolic compounds involved in the process being greater during synthesis with A.
chilensis and E. globulus. This was confirmed through monitoring the TPC during the
synthesis reaction (Figure 10C). In this regard, a remarkable reduction in TPC was noted as
synthesis progressed: 54.2, 48.3, 36.2, and 24.9% when A. chilensis, E. globulus, B. globosa,
and G. officinalis, were used, respectively. Therefore, not all phenolic compounds present
in plant extracts act as capping and stabilizing agents. Only phenolic compounds with
high antioxidant activity actively participate in the reaction leading to the formation of
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nanoparticles. The results of Figures 9 and 10 allows to confirm the capping and stabilizing
effect of the phenolic compounds from plant extracts on the surface of the ZnO NPs.
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3.3. Effect of the Antioxidant Activity of Plant Extracts on the Yield of ZnO NPs

The effect of the AA of the four plant extracts on the yield of ZnO NPs was investigated.
Figure 11 summarizes the yields of the synthetized ZnO NPs. The results obtained indicate
that the yield of ZnO NPs varied according to the plant species used in the preparation
of the extract. The highest yield was achieved with A. chilensis extract, while G. officinalis
extract had the lowest. It was demonstrated that plant extracts containing higher TPC
values show high AA. Similarly, plant extracts with high AA evidenced the best chelating
and reducing abilities in the synthesis of ZnO, reaching a maximum yield of 89.37%. Despite
the fact that several authors have reported the use of E. globulus extract in the synthesis of
ZnO NPs, none of these earlier studies included the yield of nanoparticles obtained.

Antioxidants 2023, 12, x FOR PEER REVIEW 14 of 20 
 

Particle diameter showed a negative correlation with TPC and AA (Figure 10A,B). To 
put it another way, plants containing higher TPC and AA made it possible to obtain na-
nopowders with smaller particle size and a narrow particle size distribution compared 
with plants with a lower TPC and lower AA, which can be attributed to the amount of 
phenolic compounds involved in the process being greater during synthesis with A. chilen-
sis and E. globulus. This was confirmed through monitoring the TPC during the synthesis 
reaction (Figure 10C). In this regard, a remarkable reduction in TPC was noted as synthe-
sis progressed: 54.2, 48.3, 36.2, and 24.9% when A. chilensis, E. globulus, B. globosa, and G. 
officinalis, were used, respectively. Therefore, not all phenolic compounds present in plant 
extracts act as capping and stabilizing agents. Only phenolic compounds with high anti-
oxidant activity actively participate in the reaction leading to the formation of nanoparti-
cles. The results of Figures 9 and 10 allows to confirm the capping and stabilizing effect of 
the phenolic compounds from plant extracts on the surface of the ZnO NPs. 

 
Figure 10. Correlation between particle diameter and: (A) TPC and (B) AA. (C) Change in the TPC 
of the plant extracts used to synthesize ZnO. (1) G. officinalis, (2) B. globose, (3) E. globulus, and (4) A. 
chilensis. 

3.3. Effect of the Antioxidant Activity of Plant Extracts on the Yield of ZnO NPs 
The effect of the AA of the four plant extracts on the yield of ZnO NPs was investi-

gated. Figure 11 summarizes the yields of the synthetized ZnO NPs. The results obtained 
indicate that the yield of ZnO NPs varied according to the plant species used in the prep-
aration of the extract. The highest yield was achieved with A. chilensis extract, while G. 
officinalis extract had the lowest. It was demonstrated that plant extracts containing higher 
TPC values show high AA. Similarly, plant extracts with high AA evidenced the best che-
lating and reducing abilities in the synthesis of ZnO, reaching a maximum yield of 89.37%. 
Despite the fact that several authors have reported the use of E. globulus extract in the 
synthesis of ZnO NPs, none of these earlier studies included the yield of nanoparticles 
obtained.  

 
Figure 11. Effect of different plant extracts on the of ZnO NPs. The same letters above the bars rep-
resent statistical non-significance (p < 0.05). 
Figure 11. Effect of different plant extracts on the of ZnO NPs. The same letters above the bars
represent statistical non-significance (p < 0.05).

The yield of ZnO NPs was significantly correlated with the values of TPC (R = 0.88)
and AA (R = 0.90) of the plant extracts (Figure 12), indicating that phenolic compounds are
the major contributors to the formation of ZnO NPs. The mechanism and the biomolecules
responsible for nanoparticle formation via plant extracts have not yet been fully docu-
mented. Barzinjy and Azeez [67] reported a plausible mechanism for the formation of ZnO
NPs formation using E. globulus leaf extracts, which is described as:

stirring

nZn2+ + 2Ar-(OH)→ nZn0 + 2nAr = O + 2nH+ (3)

stirring

2(x+1)Zn0 + 2Ar = O + yO2 → 2(Zn0-ZnxOy-Ar = O) (4)
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Several reports indicate that both the hydroxyl and the carboxylic acid groups of
phenolic compounds in plant extract are responsible for the formation of ZnO NPs. In
particular, the hydroxyl groups are responsible for the reduction of Zn2+ ions to Zn0, while
the carboxyl groups act as stabilizing agents [68–71]. This might cause the Zn0-phenolate
complex through chelating effect, bringing about nucleation, growth, and the capping of
nanoparticles at 60 ◦C [5,72]. Subsequently, this complex undergoes direct decomposition
at high temperatures (≥400 ◦C) and leads to ZnO NPs [67].

The results obtained in this work suggest that it is possible to use antioxidant activity
as an indicator of the reducing capacity of the plant extracts; in this way, predictions can
be made about the potential of plant extracts with regard to the formation and production
of nanoparticles.

3.4. Green Synthesis of ZnO NPs: Challenges

There are still many challenges that need to be overcome in order to replace con-
ventional chemical methods of nanoparticle synthesis with biogenic ones. The results
obtained in this study show an improvement in the physicochemical characteristics and
yield of ZnO NPs when a plant extract with high TPC and high AA was used. The type of
plant and the calcination temperature used for the fabrication of nanoparticles influenced
the residual organic matter content in the final powder. In this sense, the evaluation of
ZnO purity and its effect on nanoparticle reactivity must be addressed. Additionally, the
achieved yield of the materials synthesized via the green route was near the yield obtained
by the chemical method (97.61%). Considering that the precursor salt of zinc (in our case,
Zn(CH3COO)2.2H2O) represented 70% of the cost of nanoparticle production, reaction
yield is one of the most important factors to consider in determining the overall cost re-
quired for its preparation. Although a large number of researchers have documented the
biogenic synthesis of ZnO, only a few studies have reported on the yields obtained. This
lack of knowledge can limit the scalability of the route.

It is known that phenolic profiles, as well as antioxidant activity in leaves, can change
according to plant species, environmental conditions, geographic origin, and seasonal
factors. Therefore, to guarantee the efficient biosynthesis of nanoparticles, it is crucial to
know the temporal variation in plant extract production.

In this work, the nanoparticles were produced at atmospheric pressure and mild tem-
perature to avoid the potential degradation of phenolic compounds. Compared to biological
synthesis, the traditional method often requires an hours-long reaction time. Therefore,
using green routes supposedly results in decrease in energy consumption (Table 4), con-
tributing to reducing the environmental and economic impact of these processes. However,
a life-cycle analysis is necessary to quantify the impact of nanoparticle production, from
the materials used to make it to its application and the final layout, thereby reducing the
environmental impacts even further.
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Table 4. Energy consumption of each type of equipment used in this study for the green and chemical
synthesis of ZnO NPs at laboratory scale.

Equipment KW
Green Synthesis Chemical Synthesis

Time (h) KW/h Time (h) KW/h

Energy

Heating plate 0.45 1.0 0.45 4.0 1.80
Centrifuge (13,000 rpm) 0.46 0.5 0.23 2.0 0.91

Dryer 4.60 3.0 13.80 3.0 13.80
Muffle 1.60 24.0 38.40 24.0 38.40

Total 7.11 28.5 52.88 33.0 54.99

4. Conclusions

The findings of our study show that the four plant extracts used for the synthesis of
ZnO NPs have different antioxidant activities, due to the presence of various phytochemical
species, such as catechin, malvidin, quercetin, caffeic acid, and ellagic acid. A. chilensis
extract showed the highest TPC, TFC, and AA, followed by E. globulus, B. globosa, and G.
officinalis. A positive linear correlation was found between TPC and AA, which suggests
that phenolic compounds are significant contributors to the AA in plant extracts.

When the synthesis was carried out, it was found that the reaction physicochemical
properties of ZnO NPs (such as yield production, chemical composition, particle size,
PDI, and ζ-potential) vary depending on the plant species used. The contribution of
polyphenolic compounds in the nanoparticle formation using plant extracts was confirmed
through the reduction in TPC during the synthesis reaction. ZnO NPs synthesized using
A. chilensis extract achieved the highest yield percentage and a smaller particle diameter,
while the use of G. officinalis extracts had the lowest yield percentage and larger particle
diameter. A high content of residual organic matter in the synthesized product using G.
officinalis caused an increase in the heterogeneity of the particle distributions and particle
size, which is often detrimental to the construction of functionalized nanomaterials and can
also have repercussions on the reactivity of the sample. Hence, the aqueous extract with
a higher AA was the best candidate for the formation of ZnO NPs. Our results provide a
novel approach for predicting the efficiency of extracts in the formation of ZnO NPs.
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