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Abstract: During oxidative stress, an important factor in the development of many diseases, cellular
oxidative and antioxidant activities are imbalanced due to various internal and external factors
such as inflammation or diet. The administration of probiotic Lactobacillus strains has been shown
to confer a range of antibacterial, anti-inflammatory, antioxidant, and immunomodulatory effects
in the host. This review focuses on the potential role of oxidative stress in inflammatory bowel
diseases (IBD), cancer, and liver-related diseases in the context of preventive and therapeutic effects
associated with Lactobacillus. This article reviews studies in cell lines and animal models as well as
some clinical population reports that suggest that Lactobacillus could alleviate basic symptoms and
related abnormal indicators of IBD, cancers, and liver damage, and covers evidence supporting a
role for the Nrf2, NF-κB, and MAPK signaling pathways in the effects of Lactobacillus in alleviating
inflammation, oxidative stress, aberrant cell proliferation, and apoptosis. This review also discusses
the unmet needs and future directions in probiotic Lactobacillus research including more extensive
mechanistic analyses and more clinical trials for Lactobacillus-based treatments.
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1. Introduction
1.1. Oxidative Stress and Disease

Oxidative stress is associated with the accumulation of excess reactive oxygen and
reactive nitrogen species (ROS and RNS, respectively, see Table S1). In cells, ROS/RNS
are continuously produced through metabolic processes. Low to moderate ROS levels
serve as essential secondary messengers in cell signaling, regulating cell proliferation,
differentiation, and migration, and participate in triggering cellular survival mechanisms.
However, excessive ROS/RNS can cause oxidative damage to a variety of biomolecules
such as unsaturated fatty acids, proteins, and DNA [1]. Endogenous ROS are principally
produced in mitochondria, the endoplasmic reticulum, and peroxisomes, with the vast
majority of ROS generated by the mitochondrial electron transport chain [2,3]. In addition,
numerous enzymes are known to participate in catalyzing the production of endogenous
ROS/RNS such as peroxidases, nicotinamide adenine dinucleotide phosphate (NADPH) ox-
idase (NOX), myeloperoxidase (MPO), nitric oxide synthase (NOS), lipoxygenases (LOXs),
and cyclooxygenases (COXs) [4,5]. Beyond these enzymatic pathways for ROS/RNS pro-
duction, exposure to a wide range of exogenous factors such as trans-fatty acids, iron
(Fe), and copper (Cu) in foods, ultraviolet radiation, various drugs and xenobiotics as
well as chronic infection and inflammatory diseases can also contribute to inducing ROS
accumulation [5–8].
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In humans and other mammals, antioxidant defense systems can largely counteract the
effects of ROS/RNS. Endogenous antioxidant systems are generally classified as belonging
to either the intracellular enzymatic antioxidants, comprising superoxide dismutase (SOD),
catalase (CAT), and other such antioxidant enzymes, or the intracellular non-enzymatic
antioxidants, which rely on the activity of small molecules in conjunction with enzymes to
neutralize ROS/RON. In the latter system, glutathione functions as a significant antioxi-
dant barrier in the gut, along with three related enzymes: glutathione peroxidase (GPX),
glutathione reductase (GSR), and glutathione S-transferase (GST) [1,9]. In addition, the
melatonin (MEL) and thioredoxin (Trx) system are well-studied, essential, intracellular
antioxidants [10,11]. In addition to the above, there are also some extracellular antioxidants
such as vitamin A/C or β-carotene obtained from vegetables and fruits, or flavonoids from
certain plants [12,13]. Oxidative stress can occur when ROS/RNS generation exceeds the
cellular capacity for scavenging activity of the antioxidant systems or as a result of the
dysregulation of antioxidant pathways [5], leading to the damage of various physiological
systems in the body. Some examples of the pathological damage related to ROS/RNS accu-
mulation include atherosclerosis in the cardiovascular system; neurodegenerative diseases
of the nervous system such as Alzheimer’s disease and Parkinson’s disease, rheumatoid
arthritis or systemic lupus erythematosus of the autoimmune system, as well as IBD,
stomach cancer, colorectal cancer, and other diseases of the digestive system [14,15].

Alleviating oxidative stress is thus essential for treating many diseases and ensuring
systemic health. As our understanding of ROS/RNS and antioxidant mechanisms expands,
more precise therapeutic interventions can be developed that focus on disease-related
sources and targets of ROS/RNS, some of which are currently entering the clinical trial
stages of testing [16]. For instance, free iron is a promising target to control the site
and extent of highly aggressive hydroxyl radical generation, which could benefit the
treatment of oxidative stress-related diseases [8]. There is also potential for the application
of more targeted ROS/RNS inhibitors such as site-specific suppressors of superoxide
production (i.e., S1QELs) in quinone-mediated reactions [14,17]. In addition, probiotics
such as Lactobacillus and Bifidobacterium may serve as effective complementary therapies
that enhance antioxidant defenses via ROS/RNS removal, the inhibition of pro-oxidative
enzymes, and the synthesis of antioxidant enzymes.

1.2. Antioxidant Activity of Lactic Acid Bacteria

Lactobacillus, a genus comprising Gram-positive, aerotolerant, rod-shaped, non-sporulating
species, is commonly found among microbiota in the gastrointestinal tract and is also frequently
isolated from many fermented food products. This genus currently includes 253 published,
validated species [18], and accounts for an estimated 6.0% of total bacterial cell numbers in the
human duodenum and ~0.3% of all bacteria in the colon [19]. The beneficial and functional
properties of Lactobacillus in promoting human health have been extensively documented in
recent years. Members of Lactobacillus have been shown to adhere to the intestinal epithelium
and produce antimicrobial metabolites such as ethanol, hydrogen peroxide (H2O2), acetic
acid, lactic acid, and/or succinic acid, which can antagonize other, potentially pathogenic,
bacteria [20]. Some Lactobacillus strains can reportedly enhance cellular immune responses
via the activation of macrophages, natural killer (NK) cells, and/or antigen-specific cytotoxic
T-lymphocytes, or by stimulating the release of various cytokines. Moreover, some Lactobacillus
species could also improve the immune response in gut mucosa by promoting the recruitment
of IgA(+) cells [21]. Some Lactobacillus species may also exhibit direct antioxidant activity, and
a few species are known to possess oxidative stress resistance genes and proteins pivotal for
redox mechanisms such as katA expressed by L. sakei, or thioredoxin antioxidant system proteins
expressed by some L. plantarum and L. casei strains [18]. Apart from these effects, Lactobacillus
species also produce functional products such as exopolysaccharides (EPS), which participate in
mitigating oxidative damage or activating the expression of host transcription factors involved
in modulating cellular oxidative stress [22,23].
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In recent years, several studies have investigated the relationship between Lactobacillus
and oxidative stress in the host. Due to the purported beneficial role of Lactobacillus in
human health, research has increasingly focused on the positive impacts of these species
in ameliorating oxidative stress and related diseases [18]. Moreover, further in-depth
exploration of the role of oxidative stress in disease will provide new perspectives that con-
tribute to improving clinical treatments. This review covers the pathological mechanisms
of oxidative stress in inflammatory bowel disease, cancer, and liver-related diseases as well
as the preventive and therapeutic effects of Lactobacillus in patients with these diseases.

2. Inflammatory Bowel Disease
2.1. Inflammatory Bowel Disease and Oxidative Stress

Inflammatory bowel disease (IBD) including Crohn’s disease (CD) and ulcerative
colitis (UC) is characterized by chronic, non-specific intestinal inflammation. CD can
affect the entire alimentary tract from the oral cavity to the anus (mainly the terminal
ileum and adjacent colon) and include lesions that appear in a segmental or stochastic
(i.e., not continuous) distribution and commonly lead to complications such as abscesses,
fistula, and stenosis. In contrast, these lesions are absent in UC, which is characterized by
mucosal inflammation and is limited to the colon [24]. Previous studies have shown that
individual genetic susceptibility, external environment, gut microbiota, immune response,
and oxidative stress are all contributing factors that can be firmly linked to the pathogenesis
of IBD [25,26], with lipid peroxidation (LPO) and ROS accumulation, in particular, serving
as important causes of oxidative stress in the intestine.

Several points have been proposed regarding the relationship between oxidative stress
and IBD. First, researchers have identified several genetic risk loci associated with IBD,
and mutations in genes encoding antioxidant/biotransformation enzymes can negatively
impact their activity and increase the risk of IBD. For example, case-control studies found
that inter-individual polymorphisms related to a C609T conversion in NAD(P)H: quinone
oxidoreductase 1 (NQO1), an enzyme involved in inflammation and oxidative stress re-
sponse, might play a significant role in the development of colon cancer and could influence
steroid resistance in UC patients [27,28]. In addition, a polymorphism in the promoter
region of the Nuclear factor E2-related factor 2 (Nrf2) gene, which participates in regulating
the expression of detoxifying and antioxidant proteins in the intestine, has been associated
with UC development in a Japanese population [29]. Second, mucosal immune cells and
intestinal epithelial cells (IECs) are involved in oxidative stress in the intestine and have
been shown to play a central role in the pathogenesis of IBD. During mucosal inflammation,
IECs as well as neutrophils and macrophages, produce superoxide and nitric oxide by
activating NOX and inducible nitric oxide synthase (iNOS), respectively, both induced
by inflammatory cytokines, eventually leading to the production of more ROS/RNS. The
ROS/RNS overload alters the structure and function of the intestinal epithelium, dam-
ages cytoskeletal proteins, and accelerates cellular damage through lipid peroxidation,
ultimately resulting in barrier destruction [5,30,31]. Third, mutual interactions between gut
microbiota and oxidative stress have been identified in IBD. Notably, the composition of gut
microbial taxa is altered in CD patients compared to that in healthy controls, characterized
by increased relative abundance of Bacteroidetes and decreased Firmicutes. In addition,
Enterobacteriaceae, especially E. coli, are enriched in CD patients [32]. ROS/RNS are associ-
ated with intestinal dysbiosis. During inflammation, gut microbiota can directly generate
ROS/RNS, or indirectly induce the production of excessive ROS/RNS by activating neu-
trophils or gastrointestinal epithelial cells, stimulating an initial inflammatory response
via positive feedback, which leads to further ROS/RNS production, aggravating intestinal
oxidative stress and damaging tissues [5,33]. Therefore, restoring the normal structure of
gut microbiota has positive implications for the alleviation of inflammation and oxidative
stress in IBD. Lifestyle-associated factors can also contribute to gastrointestinal oxidative
stress. Although the underlying mechanisms remain unclear, many studies have shown
that nicotine intake from smoking can play a dual role in CD and UC, and smoking is a risk
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factor for the occurrence of CD, but has apparently protective effects in UC, according to
epidemiological data [34,35]. Similarly, wine consumption may have various effects in IBD
patients. Some chemicals such as polyphenols in red wine appear to confer antioxidant
properties [36], whereas the alcohol itself can lead to inflammation and oxidative stress in
the liver and intestines, and chronic alcohol consumption leads to increased risk of gastric
or colon cancer [37].

At present, treatments for IBD are still based on conventional anti-inflammatory agents
(e.g., sulfasalazine and mesalazine, etc.) and immune modulators (e.g., thiopurines and
cyclosporine, etc.). However, these drugs have severe side effects [38]. The incidence of
UC and CD are higher in regions of Asia with high population density and coastal areas
of China also have high rates of IBD, indicating that newer, more effective therapeutic
interventions for IBD are urgently needed [39]. The beneficial effects of Lactobacillus in
IBD have stimulated considerable research attention that has led to increased the clinical
application of probiotic Lactobacillus strains as alternative or complementary therapies [40]
(Figure 1).
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2.2. The Effects Lactobacillus in Inflammatory Bowel Disease

A recent study exploring the effects of EPS-producing probiotic bacteria found that
antioxidant enzyme activities were higher and lipid peroxidation was significantly ame-
liorated in UC model rats treated with probiotics compared with those in untreated UC
model rats. More importantly, improvements to oxidative stress were significantly greater
in rats administered with a high EPS producing strain than in those treated with a low EPS
strain [41]. Similarly, another study showed that administering a novel EPS produced by L.
paracasei IJH-SONE68 led to reduced macrophage inflammatory protein 2 mRNA levels,
and the increased expression of the anti-inflammatory cytokine, interleukin-10 (IL-10) in
dextran sulfate sodium (DSS)-induced UC model mice [42] (Figure 1). These results suggest
that EPS should be further examined for application in new treatments for IBD in the future,
and Lactobacillus would be among one of the best choices for EPS production.

In the IBD model mice, administration of L. plantarum ZS62 was found to inhibit DSS-
induced colonic atrophy. Moreover, mice supplemented with strain ZS62 had lower serum
levels of oxidative stress indicators (i.e., Malondialdehyde and MPO) and inflammatory
indicators (i.e., IL-1β, IL-6, IL-12, TNF-α, etc.) at both the mRNA and protein levels and
elevated protein and mRNA levels of antioxidant enzymes (i.e., CAT, T-SOD) and IL-10 [43].
In addition, Chorawala and colleagues reported that exposure to the cell wall components
of L. casei, L. acidophilus, and L. rhamnosus could attenuate lipopolysaccharide (LPS)-induced
rats colitis by modulating the inflammatory immune response and oxidative stress [44].
Studies have suggested that Lactobacillus can improve the hosts’ antioxidant level. For
example, Erdogan et al. found that feeding fermented Kefir significantly increased the
serum total antioxidant status (TAS) levels in Balb/c mice [45]. Similarly, in a healthy
volunteer trial (Application No. WO03002131), study subjects who consumed L. fermentum
ME-3 in fermented goat milk or who received capsules with L. fermentum ME-3 displayed
significantly higher blood total antioxidative activity and TAS than subjects who did not [46].
Furthermore, a pediatric, randomized, placebo-controlled trial demonstrated that a highly
concentrated mixture of probiotic bacterial strains (VSL#3) was both safe and effective
in maintaining remission among patients with active UC [47]. However, another trial in
which CD patients were administered 1 × 109 CFUs of the probiotic strain L. johnsonii LA1
four times daily showed no preventive effects on endoscopic disease recurrence [48].

Assessment of the antioxidant capacity of 34 lactic acid bacteria strains in vitro by
Amaretti et al. indicated that strains such as L. lactis DSMZ 23032, L. acidophilus DSMZ 23033,
and L. brevis DSMZ 23034 produced relatively high intracellular levels of glutathione and
SOD [49], suggesting that LAB might be effective for delivering these antioxidant enzymes
to the gut to alleviate oxidative stress in IBD (Figure 1). Furthermore, the co-expression
of antioxidant enzyme genes in Lactobacillus through genetic engineering could enhance
their antioxidant capacity while also increasing their viability in the host by several-fold,
supporting their potential development in therapeutics for IBD [50–52].

Finamore et al. showed that pretreatment of the enterocyte-like cell line TC7/human
colon carcinoma cell line (Caco-2) with L. casei Shirota (LcS) could prevent membrane
barrier disruption and intercellular ROS accumulation, significantly increase the gastroin-
testinal expression of GPX, and reduce p65 phosphorylation. These findings support the
involvement of theNfr2 and Nuclear Factor-Kappa B (NF-κB) pathways in the activation of
antioxidant cellular defenses [53] (Figure 1). However, the induction of GPX has also been
shown to occur in a Nrf2-independent manner via activation of the transcription factor,
STAT3 [54]. In short, some Lactobacillus strains appear to confer positive effects in maintain-
ing intestinal homeostasis via enhanced antioxidant capacity and inflammatory response,
although the specific mechanisms through which Lactobacillus can alleviate oxidative stress
in IBD remain unclear.

Although Lactobacillus is generally regarded as a safe microorganism, several studies
have indicated that certain species may pose risks such as bacteremia and endocarditis [55,56].
Therefore, the application of Lactobacillus for the treatment of IBD raises concerns regarding
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the presence of virulence genes and antibiotic resistance genes, as their potential transfer to
pathogenic microorganisms could constitute a risk [57].

3. Cancer
3.1. ROS and Cancer

Cancer is among the leading causes of death worldwide. According to the Global
Cancer Statistics, approximately 19.3 million new cancer cases and nearly 10 million deaths
from cancer were reported in 2020 [58]. Tumorigenesis may result from a combination of
internal and external factors, some of which influence cancer progression and metastasis
through increased ROS production [59]. The generation of ROS in cancer cells is primarily
mediated by oxidative phosphorylation in the electron transport chain on the mitochondrial
inner membrane. In addition, transition metals such as iron can also generate ROS non-
enzymatically via a Fenton reaction, while exposure to various external factors such as air
pollutants, radiation, foods, or drugs, etc. can also exogenously induce ROS production [60].
In general, the aberrant and uncontrolled proliferation of cancer cells requires large amounts
of ATP as an energy supply, and the resulting metabolic upregulation leads to elevated
accumulation of ROS. However, cancer cells have a characteristically high antioxidant
capacity due to the Nrf2-mediated activation of various antioxidant response elements
(AREs) that can restrict ROS accumulation to levels compatible with cellular biological
functions, albeit still higher than that in normal cells [61].

At low to moderate levels, ROS may promote abnormal cell proliferation and differen-
tiation by inducing DNA mutations These mutations mainly include DNA double strand
breaks accompanied by abnormalities in their associated repair pathways, or by generating
8-oxo-7-hydrodeoxyguanosine (8-oxodG), which is recognized as an indicator of oxidative
damage to DNA [62,63]. Other work has linked Fe-catalyzed ROS accumulation to the
development of some cancers. For instance, a multivariate statistical analysis indicated
that iron depletion therapy, either through phlebotomy or by maintaining a low-iron diet,
could significantly lower the risk of hepatocellular carcinoma compared to that in untreated
patients [64,65].

In addition, ROS may also contribute to tumorigenesis through their function as signal
molecules (Figure 2). Increased ROS production in cells can induce an enzymatic cascade
reaction that results in the activation of extracellular signal-regulated kinase (ERK), c-Jun
N-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPK), all of which
are linked to tumor cell growth and survival [66,67]. Weinberg and colleagues observed
that mitochondrial ROS are essential for Kras-mediated tumorigenesis in a murine model
of lung carcinoma via ERK-MAPK signaling [59,68]. The phosphatidylinositol-3-kinase
(PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling
pathway is also important for tumorigenesis and cancer metastasis. ROS can stimulate
PI3K/protein kinase B (AKT) signaling through the oxidation of a cysteine thiol group on
various phosphatases (e.g., PTEN, PTP1B, PP2A) and contribute to dysregulation in a wide
range of human cancers (e.g., endometrial, breast, thyroid, and prostate cancers) [69,70].
In addition to the above pathways, NF-κB is increasingly recognized as a key player in
many steps of cancer development and progression. Treatment of breast carcinoma cells
with IL-1β, TNFα, or sodium arsenite generates H2O2 and O2−, which in turn activate
NF-κB and enhance uncontrolled cellular growth [71,72]. Constitutive activation of Nrf2
has been observed in various human cancers such as those affecting the lungs, breasts, and
skin [73,74]. In addition, deregulation of the Nrf2–Keap1 pathway has been reported in
multiple cancer cells, leading to drug resistance, genomic instability, resistance to apoptosis,
metastasis, and metabolic [75].

However, high levels of ROS have contrary effects on cancer, promoting cell death
and severe cellular damage. Some chemotherapeutic drugs or cytotoxic agents such as an-
thracyclines, platinum-based drugs (e.g., cisplatin, carboplatin), and other alkylating drugs
exert therapeutic effects by stimulating the high intracellular production of ROS [76,77]. In
addition, excessive ROS levels are also positively correlated with apoptosis through the
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ASK-1/JNK/p38 signaling cascade induced via the H2O2-mediated oxidation of cysteine
residues on TRX, which leads to the dissociation of ASK-1, the subsequent activation of
JNK and p38 signaling, and ultimately apoptosis [59,78] (Figure 2).

Thus, ROS can serve as a “double-edged sword”, both causing and suppressing
cancer [79], and current studies suggest that modulating the oxidative stress response
might be an effective, new potential approach for cancer therapies.
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3.2. The Role of Lactobacillus in Cancer

Drug resistance is a serious problem in cancer chemotherapy, and thus effective alter-
native therapeutic options are desperately needed to improve treatment response in many
cancer patients. To address this issue, an increasing number of studies has investigated the
potential antitumor activity of Lactobacillus and provide evidence supporting its further
exploration and development for use in candidate anti-tumor therapies [80,81].

In many cancers, abnormal cell proliferation is tightly linked to the suppression of
apoptosis, and many drugs achieve therapeutic efficacy by promoting apoptosis in cancer
cells. Notably, Lactobacillus has been shown to induce apoptosis [82,83]. For example,
oral pretreatment with the probiotic strain, L. acidophilus NCFM, was found to stimulate
apoptosis in CT-26 cell dorsal flank xenograft tumors or in segmental orthotopic colon
cancer in mice [84]. Another study showed that the apoptosis levels increased in the



Antioxidants 2023, 12, 769 8 of 19

LS513 colorectal cancer cells exposed to a combination of the L. acidophilus and L. casei
strains in the presence of 5-fluorouracil (5-FU) in a dose-dependent manner. This effect
was potentially due to the faster activation of caspase-3 and the downregulation of the p21
protein [85]. Similarly, Altonsy et al. found that the L. rhamnosus GG strain (LGG) could
induce caspase-9 and caspase-3 activation, promoting apoptosis in the Caco-2 colon cancer
cells [86]. Homogenates of strain LGG were also found to induce the apoptosis pathways in
HGC-27 human gastric cancer cells via reduced expression of the anti-apoptotic protein, Bcl-
2, and elevated expression of the pro-apoptotic protein, Bax [87]. Similarly, ubiquitination
of IKB was suppressed in human chronic myeloid leukemia-derived cells (KBM-5 cells)
treated with L. reuteri ATCC PTA 6475, resulting in the downregulation of the NF-κB-
dependent gene products (e.g., Bcl-2, Bcl-xL), while pre-treatment with L. reuteri enhanced
JNK and p38 phosphorylation, but suppressed ERK1/2 signaling in cells, increasing the
apoptosis levels and inhibiting proliferation, respectively [88]. In addition, Hwang and
colleagues confirmed that extracts of L. casei could induce apoptosis in gastric cancer cells by
suppressing PI3K/AKT signaling [89] (Figure 2). Thus, numerous studies have shown that
Lactobacillus strains can regulate apoptosis in cancer cells via the modulation of endogenous
signaling pathways or exogenous cues.

Lactobacillus strains and their metabolites (i.e., components of the cell wall and cyto-
plasm) have been documented to inhibit cancer cell proliferation. For instance, Orlando
and colleagues investigated the anti-proliferative effects of the cell wall and cytoplasmic
fractions of strain LGG on the HGC-27 cells and DLD-1 human colonic adenocarcinoma
cells. They found that both HGC-27 and DLD-1 cells were resistant to the bacterial cell
wall fraction, whereas treatment with the cytoplasmic fraction resulted in apparently re-
duced proliferation [90]. 4E-Binding protein 1 (4EBP1) is a transcriptional inhibitor in the
downstream of the mTOR signaling pathway. Treatment with L. paracasei subsp. paracasei
X12 could induce cell cycle arrest at G1 in the HT-29 cells through the mTOR-4EBP1-p27
signaling pathway, and the mRNA expression of 4EBP1 was increased several folds after
treatment by the X12 strain [91]. Hence, blocking hyperactivation of the PI3K/AKT/mTOR
signaling pathway has emerged as a plausible target for cancer therapies due to its involve-
ment in cell growth and proliferation (Figure 2).

Polyamines including putrescine, spermidine, and spermine, etc. can serve as nutrient
substrates for cancer cell growth and may thus play an important role in cancer cell prolif-
eration. In gastric cancer cells, probiotics such as Lactobacillus strains can potentially act as
anti-neoplastic agents to inhibit proliferation by modulating polyamine contents or func-
tion [92]. L. salivarius strains FP25 and FP35, isolated from infant feces, can directly adhere
to cancer cells, triggering the biosynthesis of short-chain fatty acids (SCFAs), especially
butyric and propionic acids, resulting in the inhibition of colon cancer cell proliferation [93].
In addition, some studies have reported that EPS secreted by Lactobacillus might also exert
anti-proliferative effects on cancer cells [94–96].

A growing body of evidence supports that Lactobacillus strains can also provide an-
tioxidant functions to prevent oxidative stress-related tumor development. A recently
identified probiotic strain, L. salivarius REN, isolated from fecal samples of centenarians
by Zhang and colleagues, was found to inhibit 4NQO (4-nitroquioline 1-oxide)-induced
oral cancer in rats by reducing oxidative DNA damage and downregulating COX-2 expres-
sion [97]. In addition, L. reuteri is capable of regulating intestinal metabolites to promote a
growth-repressive effect on cancer and reduce the oxidation level in mice with colorectal
cancer [98]. In rats with colon cancer induced by 1,2-dimethylhydrazine (DMH), treatment
with L. plantarum AS1 led to significant improvements in lipid peroxidation and antioxidant
activities in the colon and plasma, and showed promising antioxidant effects in vitro [99].
Choi et al. found that heat-killed (HK) cells and soluble polysaccharide components of L.
acidophilus 606 exhibited potent antioxidative activity, and further reported that the soluble
polysaccharide fraction could induce apoptosis in HT-29 cells in vitro, suggesting that
soluble polysaccharides of Lactobacillus strains could be explored as possible candidate
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anticancer agents [100]. Overall, many in vivo and in vitro studies support that Lactobacillus
can reduce oxidative damage, attenuating DNA mutation and cancer development.

Lactobacillus can also exert immunomodulatory and cytotoxic anticancer effects. For
instance, L. casei strains 9018 and LcS could activate NK cells by inducing the production of
cytokines such as IL-12 and IFN-γ, and highly active NK cells are reportedly associated
with a lower risk of cancer development [101–103]. In addition, L. acidophilus 36YL shows
no apparent cytotoxicity toward normal cells, but displays high toxicity toward cancer cell
lines such as HeLa and HT-29 [104].

Although several in vivo and in vitro studies have reported that the administration of
various Lactobacillus strains leads to the inhibition of cancer development and progression
through pro-apoptotic, antioxidant, anti-proliferative, or immunomodulatory pathways,
clinical population trials and epidemiological studies are still lacking. Indeed, some issues
should be carefully considered in the administration of probiotic Lactobacillus strains for
the treatment and prevention of cancers. In particular, the potential for undesirable side
effects resulting from host–bacteria interactions, individual resistance to particular strains,
or variability in the benefits conferred by different Lactobacillus strains, all warrant further
experimental investigation [80].

4. Oxidative Stress-Related Liver Disease
4.1. Oxidative Stress and Liver Disease

Alcoholic Liver Disease (ALD): Long-term and excessive alcohol consumption is the
leading cause of ALD, which includes a broad clinical-histological spectrum ranging from
simple steatosis and hepatitis, to liver cirrhosis and hepatocellular carcinoma [105]. Dis-
ruption of intestinal microbiota, increased intestinal permeability, inflammatory response,
liver oxidative stress, and lipid accumulation are all associated with the progression of
ALD [106]. In particular, the role of oxidative stress in the occurrence and development of
ALD is currently the focus of increasing research attention. Alcohol is mainly metabolized
in the liver, leading to elevated ROS/RNS production, weakening antioxidant defense
systems, and finally resulting in oxidative stress in the liver due to excess ROS/RNS. It
should be noted that oxidative stress in the liver has been reported to play a key role in
hepatocellular carcinogenesis [107].

Non-alcoholic fatty liver disease (NAFLD): NAFLD is mainly due to the accumulation
of lipids in the liver, or insulin resistance caused by obesity, type 2 diabetes, and lipid
metabolism disorders, among other conditions, resulting in hepatic steatosis. In addition,
lipid peroxidation, oxidative stress, and pro-inflammatory cytokines are also involved,
culminating in hepatocyte infiltration and necrosis. Although NAFLD has multiple clinical
manifestations, most patients present with only simple steatosis [108,109].

4.2. The Preventive Effects of Lactobacillus

Preventive effects on ALD: Lactobacillus has been tested in both the treatment and
prevention of ALD. Forsyth et al. found that rats fed with alcohol plus L. rhamnosus GG
(ALC + LGG) had significantly lower severity of alcoholic steatohepatitis (ASH) than rats
fed with alcohol alone, while strain LGG was also associated with significantly less alcohol-
induced leakiness in the gut, oxidative stress, and inflammation in both the intestinal
and liver tissues [110]. Another study comparing treatments of Lactobacillus strains with
the traditional Chinese medicine Hu-Gan-Pian in a rat model of alcohol-induced enteric
dysbiosis found that L. rhamnosus CCFM1107 administration could rescue dysbiosis and
inhibit the characteristic increase in serum aminotransferase and endotoxin as well as
triglyceride (TG) and cholesterol (CHO) levels in the serum and liver. In addition to these
findings, the oxidation levels, indicated by the malondialdehyde contents, were lower,
while the antioxidant enzyme (GSH/GSH-Px/SOD) levels were elevated in rats treated
with L. rhamnosus CCFM1107 [111].

In mice with alcoholic subacute liver injury, treatment with L. plantarum ZS62, isolated
from naturally fermented yogurt, could relieve morphological abnormalities in hepatocytes
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and reduce markers of liver damage (e.g., AST/ALT/hyaluronidase, etc.). Furthermore,
inflammation-related genes were significantly downregulated while lipid- and oxidative-
metabolism genes were upregulated, implying that L. plantarum ZS62 could potentially
function as a beneficial prophylactic supplement for people with frequent alcohol con-
sumption [112]. In a study examining alcoholic liver injury using a zebrafish model, L.
plantarum was shown to provide some protective effects via the transcriptional activation
of the Keap-Nrf2-ARE signal pathway [113]. In work by Li and coworkers investigating
the potential mechanism and effects of Lactobacillus in alleviating ALD symptoms in mice,
treatment with a mixture of L. plantarum KLDS1.0344 and L. acidophilus KLDS1.0901 re-
sulted in higher SCFA production by the gut microbiota. These SCFAs could potentially
inhibit alcohol-induced lipid accumulation, oxidative stress, and inflammation in the liver
through hepatic-intestinal circulation, most likely via activation of the AMPK, Nrf2, and
TLR4/NF-κB pathways [106] (Figure 3). Collectively, these studies show that Lactobacillus
strains could provide preventive effects against mild ALD, but long-term experiments
in animal models are necessary to determine whether these strains could also alleviate
end-stage ALD.
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Figure 3. The effects of Lactobacillus treatment in oxidative stress-related liver disease. Some Lactobacil-
lus regulate hepatic lipid metabolism and synthesis via SCFA production and the FXR/SHP/SREBP1c
pathway, and some others reduce liver inflammation and oxidative stress through Nrf2 and NF-
κB pathways.

Preventive effects of Lactobacillus in NAFLD: One study in rats with induced NAFLD
showed that administering a Lactobacillus-rich mixture of probiotic strains including L.
acidophilus, L. casei, and L. reuteri, could significantly reverse hepatic and blood triglyceride
concentrations and blood glucose levels while suppressing markers of oxidative stress in
liver tissue [114]. Zhang et al. isolated L. casei YRL577, which exhibited high bile acid hydro-
lase (BAH) activity that could regulate bile acid metabolism by increasing the transcription
of fibroblast growth factor 15 (FGF15), while downregulating the host mRNA levels of
Na-dependent bile acid transporter (ASBT). In addition, the YRL577 strain reduced the de
novo synthesis of fatty acids (FA) via the FXR/SHP/SREBP1c pathway. These regulatory
effects could possibly contribute to alleviating NAFLD in C57BL/6 mice [109] (Figure 3).
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Furthermore, a population-based study confirmed that dietary supplementation with pro-
biotic strains Bifidobacterium longum and L. acidophilus could improve some anthropometric,
inflammatory, and oxidative indices in patients with NAFLD [115].

Other studies have also examined the mechanisms by which Lactobacillus could affect
NAFLD. Nrf2 is a known protective factor against liver damage, and has been implicated
in the pathogenesis of chronic conditions such as NAFLD. Notably, a recent study has
identified 5-methoxyindoleacetic acid, produced by the human commensal LGG, which can
potently activate Nrf2 in both Drosophila liver analog and the murine liver. This activation
of Nrf2 has been shown to protect against two models of oxidative liver injury, namely,
acetaminophen overdose and acute ethanol toxicity [116]. Chen et al. found that treatment
with L. mali APS1 led to reduced hepatic lipid accumulation via regulating the SIRT-1/PGC-
1α/SREBP-1 pathway, and promoted hepatic antioxidant activity through the Nrf2/HO-1
pathway [117]. Another study reported that L. plantarum NA136 could improve NAFLD by
regulating fatty acid metabolism and oxidative stress defense pathways via AMPK and Nrf2
signaling, respectively [118]. Similarly, another report suggested that L. plantarum NCU116
might ameliorate NAFLD by downregulating lipogenesis while promoting the upregulation
of lipolysis and fatty acid oxidation-related gene expression [119]. However, the current
body of literature examining the preventive or therapeutic effects of Lactobacillus on NAFLD
remains limited. Furthermore, most of the available studies have examined mechanisms
related to the regulation of lipid metabolism and the alleviation of oxidative stress, although
other mechanisms are likely involved in the impacts of Lactobacillus on NAFLD.

Lactobacillus strains prevent other types of liver damage: In an animal model of carbon
tetrachloride (CCl4)-induced liver fibrosis, L. plantarum HFY15 was found to alleviate
liver injury through antioxidant, anti-inflammatory, and anti-apoptotic pathways [120]. In
addition, selenium-enriched probiotics (SP) might also influence pro- and anti-apoptosis
pathways, activate the SIRT1 signaling pathway, or attenuate MAPK signaling, leading
to reduced liver fibrosis [121,122]. Lactobacillus strains were also shown to alleviate liver
injuries caused by other drugs such as D-galactose (D-Gal)/LPS-induced acute liver injury
(ALI) in mice or liver toxicity caused by deoxynivalenol (DON), an extremely common
environmental pollutant [123,124] (Table 1).

Table 1. Summary of the cited Lactobacillus strains and their function in disease.

Lactobacillus Strain Diseases Involved Reported Functions Reference

L. delbrueckii subsp.
bulgaricus B3,

L. delbrueckii subsp.
bulgaricus A13

IBD Produces EPS and antioxidant [41]

L. paracasei
IJH-SONE68 UC Produces EPS [42]

L. plantarum ZS62 IBD Regulates oxidative stress
and immune response [43]

L. casei, L. acidophilus,
L. rhamnosus IBD Modulates inflammatory

response and oxidative stress. [44]

L. fermentum ME-3 /(a healthy
volunteer trial)

Antioxidant activity in healthy
volunteers [46]

Probiotic bacterial
strains VSL#3 UC Maintain remission among

patients with active UC [47]

Engineered L. casei
BL23 CD Candidate strain for genetic

engineering [50]

L. delbrueckii subsp.
Bulgaricus,

S. thermophilus CRL
807

Colitis Anti-inflammatory effects [51]
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Table 1. Cont.

Lactobacillus Strain Diseases Involved Reported Functions Reference

L. casei Shirota

Cellular (caco-2 cells)
inflammatory
damage and

oxidative stress
induced by DPPH

Alleviate oxidative stress and
inflammation via Nrf2 and

NF-κB pathway
[53]

L. acidophilus NCFM Orthotopic colon
cancers

Attenuates tumor growth
and pro-apoptotic effects [84]

L. acidophilus,
L. casei Colorectal cancer Enhances apoptosis [85]

LGG Colon cancer promotes apoptosis [86]

LGG HGC-27 human
gastric cancer cells Anti-proliferative effects [87]

L. reuteri ATCC PTA
6475

Human chronic
myeloid

leukemia-derived
cells

Pro-apoptotic and
anti-proliferation effects [88]

L. casei Gastric cancer cells Pro-apoptotic effects [89]

LGG Gastric and colonic
neoplasms Anti-proliferative effects [90]

L. paracasei subsp.
paracasei X12

HT-29 colon cancer
cells

Induce cell cycle arrest at G1
(anti-proliferative) [91]

L. salivarius FP25,
L. salivarius FP35 Colon cancer cells Anti-proliferative effects [93]

L. gasseri strains Cervical cancer cells
(HeLa)

Inhibits cancer cell growth;
Modulates immune response [94]

L. plantarum NCU116 Colorectal cell line
CT26

Regulates cancer cell
proliferation and apoptosis by

EPS
[95]

L. salivarius REN Oral cancer
Induces apoptosis and protects

against oxidative DNA
damage

[97]

L. plantarum AS1 Colorectal cancer Antioxidant effects [99]

L. acidophilus 606 HT-29 colon cancer
cells

Induces apoptosis; Antioxidant
effects [100]

L. casei Shirota
Normal blood
mononuclear

cells and splenocytes
Enhances NK cell activity [101]

L. casei ssp. casei Normal mice Elicits NK cell activities. [102]

L. casei Shirota Cancer Immunomodulatory
effects [103]

L. acidophilus 36YL
Human cancer cell
lines (AGS, HeLa,

MCF-7, and HT-29)
Cytoxicity toward cancer cells [104]

L. plantarum
KLDS1.0344;
L. acidophilus
KLDS1.0901

ALD

Inhibits liver lipid
accumulation, oxidative stress,

and inflammation.
Regulates gut microbiota

[106]

L. casei YRL577 NAFLD Modulates genes in intestinal
bile acid pathway [109]

LGG ALD Reduces oxidative stress and
inflammation [110]

L. rhamnosus
CCFM1107 ALD

Reduces oxidative stress;
Restores the intestinal

microbiota
[111]

L. plantarum ZS62
Alcohol-induced
subacute hepatic

damage

Reduces inflammation;
Enhances antioxidative [112]
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Table 1. Cont.

Lactobacillus Strain Diseases Involved Reported Functions Reference

L. plantarum ALD
Antioxidant effects via

activation of Keap-Nrf2-ARE
pathway

[113]

L. acidophilus, L. casei,
L. reuteri NAFLD Antioxidant effects [114]

Bifidobacterium
longum;

L. acidophilus
NAFLD

Mitigates oxidative stress and
inflammatory response;
Improves lipid profiles

[115]

LGG NAFLD Active Nrf2 [116]

L. mali APS1 NAFLD Modulates lipid metabolism
and antioxidant activity [117]

L. plantarum NA136 NAFLD

Regulates the fatty acid
metabolism and defends

against oxidative stress via
AMPK and Nrf2 pathways

[118]

L. plantarum NCU116 NAFLD Regulates microbiota and lipid
metabolism [119]

L. plantarum HFY15 Liver fibrosis
Antioxidant;

Anti-inflammatory;
Anti-apoptotic effects

[120]

Se-enriched
probiotics Liver fibrosis

Attenuate hepatic oxidative
stress, ER stress, and

inflammation
[121]

Se-enriched
probiotics Liver fibrosis

Attenuate hepatic oxidative
stress and inflammation;

Induce apoptosis of hepatic
stellate cells.

[122]

LGG
Deoxynivalenol

exposure induces
liver damage

Reduces DON toxicity [123]

L. plantarum KSFY06
Acute liver injury

induced by
D-Gal/LPS

Anti-oxidant and
anti-inflammatory activities [124]

5. Conclusions and Prospects

In summary, oxidative damage accompanies inflammation, cancer development, and
liver injury, whereas the administration of probiotic Lactobacillus strains shows potential for
modulating oxidative stress in cells and tissues throughout the human body, especially in
the gastrointestinal tract [18]. Treatment with probiotic Lactobacillus supplements can also
reportedly prevent or ameliorate IBD by downregulating the expression of inflammatory
factors while promoting an increase in related antioxidant enzymes, possibly through the
activation of various host signaling pathways.

In cancers, it remains largely controversial as to whether targeting ROS, either by an-
tioxidant supplements or chemical/genetic inhibition, is clinically beneficial or detrimental
for cancer treatment. Several studies in animal models support the tumor suppressive
effects of Lactobacillus strains, although it also remains uncertain whether these effects
are the result of directly alleviating host ROS or due to stimulating the host antioxidant
systems. Further mechanistic insights are therefore necessary to better understand the
role of ROS in different types of cancer and to develop more effective, targeted probiotic
anti-cancer therapies [60]. Treatment with Lactobacillus strains has also been shown to
confer prophylactic or therapeutic effects, alleviating inflammation and oxidative damage
in ALD, NAFLD, and other types of liver injury in vitro and in vivo.

Since the large majority of the above studies are based on animal and cellular models,
multi-level, multi-center population-based trials such as prospective epidemiological stud-
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ies are necessary for a robust assessment of the effectiveness of probiotic treatments in IBD,
cancers, and liver diseases.

In addition, Lactobacillus species share conserved microbe-associated molecular pat-
terns (MAMPs) with other Gram-positive bacteria such as cell wall polysaccharides and
lipoteichoic acids, which can be recognized by the human immune system and elicit a
host inflammatory response. Advances in probiotic development will thus focus on the
discovery or engineering of Lactobacillus strains with lower MAMP-induced immunogenic
effects, but with a high antioxidant capacity to maximize their therapeutic benefits in
different diseases.
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