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Abstract: Obesity causes genetic instability, which plays a key-role in the etiology of cancer and aging.
We investigated the impact of bariatric surgery (BS) on DNA repair, oxidative DNA damage, telomere
lengths, alterations of antioxidant enzymes and, selected proteins which reflect inflammation. The
study was realized with BS patients (n = 35). DNA damage, base oxidation, BER, and NER were
measured before and 1 month and 6 months after surgery with the single-cell gel electrophoresis
technique. SOD and GPx were quantified spectrophotometrically, malondealdehyde (MDA) was
quantified by HPLC. Telomere lengths were determined with qPCR, and plasma proteome profiling
was performed with high-resolution mass spectrophotometry. Six months after the operations,
reduction of body weight by 27.5% was observed. DNA damage decreased after this period, this
effect was paralleled by reduced formation of oxidized DNA bases, a decline in the MDA levels and
of BER and NER, and an increase in the telomere lengths. The activities of antioxidant enzymes were
not altered. Clear downregulation of certain proteins (CRP, SAA1) which reflect inflammation and
cancer risks was observed. Our findings show that BS causes reduced oxidative damage of DNA
bases, possibly as a consequence of reduction of inflammation and lipid peroxidation, and indicate
that the surgery has beneficial long-term health effects.

Keywords: bariatric surgery; DNA stability; DNA repair; redox status; proteome profiling

1. Introduction

According to the WHO, 1.9 billion adults are overweight and 650 million are obese. Fur-
thermore, the organization stated that excess body weight (BW) causes around 2.8 million
deaths annually [1].

A most promising strategy to reduce adverse health effects in individuals with severe
obesity is bariatric surgery (BS), which leads to weight loss and reduction of the incidence
of weight-related disorders, including diabetes type II, cardiovascular diseases, and can-
cer [2–4]. The latest report of the International Federation for Surgery of Obesity and
Metabolic Disorders contains data from 50 countries and states that 507,298 operations
were performed in 2021; according to the American Society for Metabolic and Bariatric
Surgery, the number of BS increased substantially in the last years (ASMBS 2021, accessed
on 10 December 2021, www.asmbs.org).

Different BS techniques have been developed, and the most frequently used procedures
are gastric sleeve (GS) and Roux-en-Y gastric bypass (RYGB), one-anastomosis gastric
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bypass (OAGB), and gastric band. It was postulated that OAGB reduces the operation
time and early and late complications [5]. It is well documented in systematic reviews
that BS improves the health status of overweight individuals, i.e., it normalizes glucose
metabolism, reduces the risk for CVD and diabetes, and increases the lifespan [6–8].

Only a few studies have been published which indicate that overweight and obesity
lead to DNA damage, which plays a key role in the etiology of several diseases, including
cancer as a consequence of inflammation and release of radical oxygen species [9]. The
aim of the present study was a comprehensive investigation of the consequences of weight
loss of BS patients (n = 35) who underwent different types of surgery on genomic and
telomeric stability, oxidative damage of DNA bases, DNA repair, and parameters which
have an impact on the integrity of the genetic material (redox status, proteins, which
reflect inflammation). The design which we used was identical to that of earlier dietary
intervention trials, i.e., the extent of DNA damage and other parameters are monitored
before the surgery and at two time points (1 and 6 months) after the operations.

DNA damage, oxidation of purines, and DNA repair (nucleotide excision repair,
NER and base excision repair, BER) were measured with different protocols of the single-
cell gel electrophoresis (SCGE) assay. This method is based on the quantification of DNA
migration in an electric field [10] and is increasingly used in human biomonitoring [11]. The
endpoints, which are measured in SCGE experiments are related to human health. It was
found that the extent of comet formation predicts the risk of mortality [12]. Additionally,
it is well documented that DNA migration is increased in patients with high-prevalence
diseases, including specific forms of cancer [13]. Oxidation of DNA bases is a consequence
of inflammation and redox stress, and it was stated by the European Food Safety Authority
(EFSA) that prevention of oxidative damage has a positive impact on human health [14].
DNA repair systems (BER and NER) play a causal role in the etiology of cancer and other
diseases [15,16]. Telomere shortening causes cellular senescence [17], and evidence is
accumulating that it may accelerate aging processes in humans [18]. Superoxide dismutase
(SOD) and glutathione peroxidase (GPx), which were monitored in the present study are
antioxidant enzymes which reflect the redox status [19]; low activities are associated with
different human pathologies [20,21]. Malondialdehyde (MDA) is a lipid peroxidation
(LP) product which reflects the oxidation of fatty acids and causes damage to the genetic
material [22,23].

Only a few studies have been realized in which the consequences of BS on DNA
stability were investigated. All earlier trials were performed with patients who under-
went GS and RYGB operations, while no data are currently available concerning OAGB
surgery. Bankoglu and co-workers investigated the consequences of BS on DNA damage
in SCGE experiments [24,25]. Furthermore, some studies have been published concern-
ing the formation of oxidized guanine (8-oxoGuo and 8-OHdG) [26–28]. The impact of
BS on BER and NER has not been studied according to our knowledge, but Habermann
and co-workers investigated DNA repair in obese postmenopausal women after weight
loss [29]. Results of studies concerning the reduction of telomere lengths after BS are
controversial; some of them point in the direction of beneficial long-term effects [30], also
the findings concerning alterations of the activities of antioxidant enzymes after weight
loss are inconsistent [28,31,32].

2. Methods
2.1. Recruitment of the Participants

The study was approved (18.10.2016) by the Ethical Committee of Medical University
of Vienna (1479/2016). All patients provided written consent, and 40 patients were recruited
from the Department of Surgery, MUW; 35 individuals finished the study. Inclusion criteria
were BMI values > 35 kg/m2 and an age range between 18 and 60 years. Exclusion
criteria were chronic diseases (diabetes mellitus type II, cystic fibrosis, arthritis, asthma),
intake of food supplements before surgery, and intake of anti-inflammatory drugs and
pharmaceuticals with antioxidant properties.
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The patients underwent different types of BS, namely RYGB (n = 11), OAGB (n = 19),
GS (n = 2) and SADI-S (n = 3). The study had an intervention design, i.e., values that
were obtained before the surgery were compared with the values that were obtained after
the operation.

The same design was used in many other dietary studies [33,34] and in weight loss
trials [9,25]. Blood samples (40 mL/patient) were collected at three time points, namely
one day before the operation (T0) and 1 month (T1) and 6 months (T2) after the surgery
(Figure 1).
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BS leads to nutritional deficiencies [35]; therefore, all participants consumed a sup-
plement containing vitamins and trace elements after the surgery (WLS Forte, Berlin,
Germany). The composition is specified in Table S1.
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2.2. Isolation of Plasma and Lymphocytes

Plasma was separated from blood by centrifugation (650 g, 20 min). Subsequently,
aliquots were stored at −80 ◦C. Peripheral lymphocytes were isolated by gradient centrifu-
gation (800 g, 15 min, 16 ◦C) with Histopaque (Sigma–Aldrich, Steinheim, Germany). The
pellets were suspended in 100 µL RPMI and aliquoted in Biofreeze Medium (Biochrom AG,
Berlin, Germany, frozen overnight at −80 ◦C and stored in liquid nitrogen.

2.3. SCGE Experiments with Lymphocytes

The experiments were carried out according to international guidelines for SCGE
experiments [10,36]. The viability of the cells was determined by use of a CASY cell
counter (Schärfe-System GmbH, Reutlingen, Germany); DNA damage was only analyzed
in samples with a viability ≥ 70% since reduced viability may cause misleading results [37].

For standard comet assays the cells were mixed with 0.5% LMPA and transferred to
agarose coated slides (1.0% NMPA). After lysis (pH 10.0), electrophoresis was carried out
under alkaline conditions (30 min, 300 mA, 1.0 V/cm, at 4 ◦C, pH > 13). Subsequently,
the slides were washed two times (8 min), air-dried, and stained with propidium iodide
(10.0 µg/mL, Sigma-Aldrich, Steinheim, Germany).

Per experimental point, three slides were made and 50 cells were evaluated randomly.
Cells were examined under a fluorescence microscope (Nikon EFD-3, Tokyo, Japan) using
a 20-fold magnification. DNA migration was determined with a computer aided image
analysis system (Comet Assay IV, Perceptive Instruments, Bury Saint Edmunds, UK).
The percentage of DNA in tail (% DNA) was monitored as an endpoint, as suggested in
international guidelines [37].

To determine the formation of oxidized purines, nuclei were exposed after lysis (1 h) to
formamidopyrimidine glycosylase (FPG, Sigma-Aldrich, Steinheim, Germany). To establish
the optimal enzyme concentration, a calibration experiment was carried out [38]. After lysis,
the slides were washed twice with enzyme reaction buffer (pH 8.0, 8 min.). Subsequently,
the nuclei were treated (30 min., 37 ◦C) with 50 µL of FPG solution (1:3000 dilutions) or
with the enzyme reaction buffer. After the treatment, electrophoresis was carried out and
the slides were evaluated as described above. To calculate the extent of DNA damage
attributable to formation of oxidized purines the values, which were obtained with the
enzyme buffer were subtracted from the values, which were obtained with the lesion
specific enzyme [38]. Technical controls (from two individuals, who were not involved at
the study) were included in all experiments [13].

2.4. Measurement of BER and NER

A modification of the SCGE assay was used to measure BER and NER [10]. This
approach is based on the ability of repair proteins in cell extracts to recognize and to cut
substrate DNA, which contains specific lesions [36].

Protein extracts were prepared from lymphocytes (1.5 × 106) by centrifugation (700 g,
10 min, 4 ◦C) after addition of 65 µL of extraction buffer (45 mM HEPES, 0.4 M KCl, 1 mM
EDTA, 0.1 mM dithiothreitol, 10% glycerol, pH 7.8) with 1% of Triton X-100 (Buffer A).
Samples were vortexed at top speed and snap-frozen in liquid nitrogen. Lysates were
thawed and centrifuged at 15,000× g (5 min at 4 ◦C). Supernatants (55 µL) were collected
and mixed with 220 µL cold buffer B (40 mM HEPES, 0.5 mM EDTA, 0.2 mg/mL BSA,
0.1 M KCl, pH 8.0). Protein concentrations of extracts were quantified with a DC Protein
Assay Kit (BIO-RAD, Veenendaal, The Netherlands).

A549 cells (a human lung fibroblast carcinoma line, provided from the ATCC, Manas-
sas, VA, USA) were used as substrate cells. They were cultivated in RPMI 1640 medium (low
glucose, with L-glutamine), supplemented with 10% FCS and U/mL penicillin/streptomycin
(Invitrogen, Darmstadt, Germany) under humidified conditions (5% CO2, 37 ◦C). At
85–90% confluence, the cells were washed with Dulbecco’s PBS and harvested with 0.25%
trypsin-EDTA.
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For the BER measurements, a photosensitizer, Ro 19-8023 (Chiron AS, Trondheim,
Norway) at 1.0 µM was used, which causes oxidation of DNA bases. Substrate cells were
treated in presence and absence of visible light (400 W, 60 cm distance, 4 min). Subsequently,
they were centrifuged (700× g for 10 min). Subsequently, the pellets were re-suspended in
freezing medium (Biofreeze Medium, Biochrom AG, Berlin, Germany) and cryopreserved
at −80 ◦C. For the NER assay, UVC (2.0 Jm−2, 22 s. on ice) was used to produce cyclobutane
pyrimidine dimers.

After the chemical treatments, the cells (2.5 × 104 per gel) were embedded in agarose
and lysed. For NER measurements. The slides were washed twice for 10 min buffer N
(45 mM HEPES, 0.25 mM EDTA, 0.3 mg/mL BSA, 2% glycerol, pH 7.8) and for BER in
buffer B (40 mM HEPES, 0.5 mM EDTA, 0.2 mg/mL BSA, 0.1 M KCl, pH 8.0). Subsequently,
the nuclei were incubated either with 40 µL “extract mix” (lymphocyte extract, extract
buffer with Triton X-100 and reaction buffers) or with control buffer. Alkaline unwinding
(40 min) and electrophoresis (30 min) were performed as in standard comet experiments.

2.5. Measurement of GPx and SOD

The activities of GPx and SOD were measured spectrophotometrically (Tecan Infinite
M200 Plate Reader, Switzerland) with commercially available kits (GPx, ab102530; SOD,
ab65354, Abcam, Cambridge, UK) according to the instructions of the manufacturers at
350 nm for GPx and at 450 nm for SOD. All samples were measured in duplicates. SOD
activity was measured as % inhibition of formation of a water-soluble tetrazolium salt.

2.6. Measurement of Malondiadehlyde in Plasma

MDA concentrations were determined in plasma according to the method of Ramel
et al. [39], which we used in earlier studies [40–42]. The samples were neutralized after
heating (60 min, 100 ◦C) with methanol/NaOH and centrifuged at 3000 rpm (for 3 min).
Subsequently, MDA was measured with HPLC with excitation at 532 nm and emission at
563 nm (LaChrom Merck Hitachi Chromatography system, Tokyo, Japan). Each sample
was analyzed in duplicate.

2.7. Measurement of the Telomere Lengths

Genomic DNA was isolated from pellets using Gentra PureGene Cell Kit (Qiagen,
Venlo, Netherlands). Quantification of DNA was conducted with iQuant Broad Range
dsDNA Quantification Kit (Genecopoeia, Rockville, MD, USA), according to the protocol
of the manufacturer with a Qubit Fluorometer (Thermo Fischer Scientific Inc., Waltham,
MA, USA) and stored at −80 ◦C for further measurements.

Telomere lengths were determined by monochrome multiplex qPCR as described by
Cawthon [43]. Telomeric contents were measured in reference to one selected experimental
DNA sample and to one of the single-copy genes 36B4 and ALB; for more details see [44]. The
relative telomere-to-single-copy-gene (T/S) ratio was determined in each sample in triplicate.

2.8. Proteome Analyses of the Plasma Samples

The protein concentrations of the plasma samples were determined with a bicin-
choninic acid (BCA) assay. Enzymatic digestion of samples was achieved applying a
protocol using the S-trap technology [45]. Finally, peptides were eluted, dried and stored at
−20 ◦C until LC-MS/MS analyses.

For LC-MS/MS analyses, dried peptide samples were reconstituted in 10 µL of 30%
formic acid (FA) containing 4 synthetic standard peptides (10 fmol/µL) and further diluted
with 80 µL mobile phase A (97.9% H2O, 2% ACN, 0.1% FA). LC-MS/MS analyses were
performed on a Dionex Ultimate 3000 nano LC-system coupled to a timsTOF Pro mass
spectrometer (Bruker) equipped with a captive spray ion source. For mass spectrometric
analyses, the timsTOF Pro Mass Spectrometer (Bruker Daltonics USA, Billerica, MA, USA)
was operated in the parallel accumulation-serial fragmentation (PASEF) mode. Trapped ion
mobility separation was achieved by applying a 1/k0 scan (0.60–1.60 V. s/cm2) resulting in
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a ramp time (166 ms). All experiments were performed with 10 PASEF MS/MS scans per
cycle leading to a total cycle time (1.88 s). MS and MS/MS spectra were recorded using a
scan range (m/z) from 100 to 1700.

Protein identification and label-free quantification (LFQ) were carried out using
MaxQuant (version 1.6.17.0, Max-Planck-Institute of Biochemistry, Martinsried, Germany)
running Andromeda as search engine and searching against the SwissProt Database (ver-
sion 14122019 with 20,380 entries, SIB Swiss Institute of Bioinformatics, Lausanne, Switzer-
land); for details, see Cox und Mann [46]. Search criteria included an allowed peptide
tolerance for the first and main search of 20 and 10 ppm and a maximum of 2 missed cleav-
age sites. All peptide and protein identifications met a false discovery rate (FDR) ≤0.01.
After protein identification, proteins were filtered for common contaminants as well as
reversed sequences, and data evaluation was performed using Perseus (version 1.6.1.3,
Max-Planck-Institute of Biochemistry, Martinsried, Germany).

2.9. Statistical Analyses

SCGE data were arcsine transformed, and telomere lengths were log transformed to
obtain homogenous variances and normality of residuals. The Box M test was carried
out to assess symmetry of the variance-covariance matrices. Kolmogorov–Smirnov tests
with Lilliefors’ corrected p-values were performed to assess normality of residuals. For
the analysis of the different endpoints of DNA stability and repair, telomere lengths, and
enzyme activities, a general linear model was applied with age, sex, smoking status, and
BMI at baseline as covariates. Testing against baseline values was performed by linear
contrasts with Bonferroni correction. In addition, trend tests with respect to time since
surgery were performed. All analyses were performed by Stata 13.1 (StataCorp, College
Station, TX, USA). Graphs were prepared by GraphPad Prism 5.0 (Graphpad Software, San
Diego, CA, USA).

Statistical analysis of plasma proteomics data was performed using a software package
(version 1.6.1.3, Max-Planck-Institute of Biochemistry, Martinsried, Germany). Prior to the
analysis, LFQ intensity values were transformed (log2x). T-tests were performed between
the study groups applying an FDR of 0.05 and a S0 of 0.1, whereby S0 controls the relative
importance of t-test p-value and difference between the means. Results are shown as
volcano plots.

3. Results
3.1. Description of the Study Group

The demographic characteristics of the study group are summarized in Table 1. The
average BMI values were in all group similar and the body weights were also in a narrow
range. About one-third of the participants were females.

Table 1. Demographic data of the patients (n = 35).

Characteristics Values 1

Average age (years)
All 41.3 ± 13.3

OAGB 40.1 ± 12.2
RYGB 43.6 ± 13.9

GS 50.5 ± 10.6
SADI-S 33.3 ± 20.0
Gender

All 29 F, 6 M
OAGB 18 F, 1 M
RYGB 8 F, 3 M

GS 2 M
SADI-S 3 F
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Table 1. Cont.

Characteristics Values 1

Smoking
All 13 (12 F, 1 M)

OAGB 5 (5 F)
RYGB 4 (4 F)

GS 1 (1 M)
SADI-S 3 (3 F)

Initial weight (kg)
All 125.5 ± 19.6

OAGB 120.0 ± 12.8
RYGB 128.6 ± 23.5

GS 130.5 ± 13.4
SADI-S 145.3 ± 35.2

Initial BMI (kg/m2)
All 45.4 ± 6.6

OAGB 43.6 ± 4.3
RYGB 47.1 ± 8.0

GS 40.2 ± 2.2
SADI-S 54.1 ± 7.5

1 Four bariatric techniques were used, namely, OAGB (n = 19), RYGB (n = 11), GS (n = 2), and SADI-S (n = 3).
Data are presented as means ± SD. Abbreviations: F, females; GS, gastric sleeve; M, male; NS, non-smokers;
OAGB, one-anastomosis gastric bypass; RYGB, Roux-en-Y gastric bypass; S, smokers; SADI-S, single-anastomosis
duodeno-Ileal bypass.

3.2. Impact of BS on Weights and BMIs

Figure 2A–D show the reduction of the body weights and BMIs in the overall BS
group. The values decreased substantially (p < 0.001) 6 months after the surgery (BWs by
27.5% and BMIs by 28%). The decline in both parameters was similar in the OAGB group
(Figure 2C,D).

3.3. Impact of BS on DNA Stability and Oxidative DNA Damage and Repair

Figure 3A summarizes the results of the SCGE experiments. Significant reduction
(p = 0.009, 54%) in DNA damage was observed under standard conditions after 6 months.
No significant effects were found 1 month after the surgery (scatter plots showing the
individual values are shown in Supplementary Figure S1A–D).

The middle section of the graphs shows alterations of the FPG-sensitive sites. The
extent of comet formation attributable to formation of oxidized purines declined after the
surgery. This effect did not reach significance, but a clear trend was observed (p < 0.001).

The activities of BER and NER decreased after 6 months (NER, p = 0.049 and BER,
p = 0.001). A decline in both repair systems was observed already 1 month after the surgery
(NER, 16.5% and BER, 7%) but this effect did not reach significance.

We analyzed also the effects in the RYGB subgroup. The findings, which were obtained
under standard conditions, were identical to those obtained in the overall group (13%
decrease after 1 months and 47% after 6 months). FPG sensitive sites declined by 12.5%
after 6 months. We observed an unexpected increase (by 29%) of oxidative purines after
1 month. The activity of BER was reduced by 8% after 1 month and 14% after 6 months.
The NER activity declined by 18% after 1 month and by 26% after 6 months.

Figure 3B shows the results which were obtained with the OAGB patients. The effects
were similar to those found in the overall group. Significant changes were detected under
standard conditions, which reflect single- and double-strand breaks (p = 0.0002, 50%) after
6 months. The activity of BER was clearly reduced after this period (p = 0.008), while the
decline in oxidized bases showed only a trend (p < 0.001).
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3.4. Alterations of the Activities of Antioxidant Enzymes

Table 2 and Figure S2A,B show the results of GPx and SOD measurements before and
after BS. The activities of both enzymes declined slightly after one (SOD: 6.4% GPx: 7.3%)
and 6 months (SOD: 1.9% and GPx: 2.5%) but these effects did not reach significance in the
overall group and in the subgroups.
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Figure 3. (A,B). Impact of BS on DNA stability, oxidative DNA damage, and DNA repair capacity
in all BS patients (3A, n = 35) and in patients who underwent OAGB surgery (3B, n = 19). The
experiments were conducted under standard conditions (SC) and after treatment of the nuclei with
FPG. BER and NER activities were measured after pre-damage of the nuclei with cytosolic extracts
of lymphocytes from patients that were collected at different time points before and after surgery
(for details, see Materials and Methods). From each patient, three slides were made in parallel, and
50 cells were analyzed from each slide. Bars represent means ± SEM. Asterisks indicate statistical
significance (* p ≤ 0.05).

3.5. Results of Malondialdehyde Measurements

We found in the overall group evidence of a significant decrease in this LP product in
plasma of the patients half a year after the surgery (baseline before surgery 4.42 ± 0.72 µM/L,
after 1 month 4.21 ± 1.1 µM/L, and after 6 months 2.60 ± 0.89 µM/L); also, in the subgroups
RYGB and OAGB, a clear decline was detected (OAGB: before surgery: 4.49 ± 0.86 µML,
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after 1 month 4.32 ± 0.90 µM/L, after 6 months 2.67 ± 0.80 µM/L; RYGB: baseline
before surgery 4.50 ± 0.57 µM/L, after 1 month 4.24 ± 0.61 µM/L an after 6 months
2.60 ± 0.48 µM/L).

3.6. Alterations of the Telomere Lengths

Table 3 summarizes the results of measurements of the telomere lengths. The T/S
values varied over a broad range and increased in the period between one and 6 months in
the ALB assay in the overall group and also in OAGB subgroup (p = 0.022 and p = 0.046).
The 36B4 assay showed a similar trend without reaching significance.

Table 2. Alterations of the activities of antioxidant enzymes in patients (n = 35) undergoing bariatric
surgery 1.

Parameters before
Surgery

1 Month
after Surgery

∆ (%)
(T0 vs.
1M)

p-Values
(T0 vs.
1M)

6 Months
after Surgery

∆ (%)
(T0 vs.

6M)
p-Values

∆ (%)
(1M vs.

6M)
p-Values

SOD
(% inhibition of
tetrazolium salt

formation)
All (n = 35) 55.8 ± 9.6 52.2 ± 9.4 −6.4 0.158 54.7 ± 8.5 −1.9 0.562 +4.7 0.244

OAGB (n = 19) 54.3 ± 9.4 52.3 ± 10.5 −3.6 0.653 53.7 ± 8.5 −1.1 0.854 +2.6 0.694
GPx (mU/mL)

All (n = 35) 719.5 ± 163.6 667.0 ± 132.6 −7.3 0.228 701.1 ± 139.5 −2.5 0.787 +5.0 0.151
OAGB (n = 19) 690.9 ± 168.0 642.7 ± 116.9 −6.9 0.437 669.2 ± 123.2 +1.2 0.825 +4.1 0.407

Abbreviations: GPx, glutathione peroxidase; OAGB, one-anastomosis gastric bypass; SOD, superoxide dismutase.
1 Results are presented as means ± SD. All samples were measured in duplicate. p-values were calculated with
ANOVA with Bonferroni correction of linear contrasts (gender and age as covariates). Negative values indicate a
decrease in the activities of antioxidant enzymes, and positive values indicate an increase.

Table 3. Telomere lengths before and after bariatric surgery 1.

Telomere (T/S
Ratio)

(in
Lymphocytes)

before
Surgery

1 Month
after Surgery

∆ (%)
(T0 vs.
1M)

p-Values 6 Months
after Surgery

∆ (%)
(T0 vs.

6M)
p-Values

∆ (%)
(1M vs.

6M)
p-Values

relTL-ALB
All (n = 34) 2 1.23 ± 1.19 0.99 ± 0.46 −19.5 0.353 1.11 ± 0.42 −9.7 0.512 +12.1 0.022 *

OAGB (n = 19) 1.24 ± 0.83 1.00 ± 0.39 −19.3 0.157 1.18 ± 0.44 −4.8 0.712 +18.0 0.046 *
relTL-36B4

All (n = 34) 2 1.05 ± 0.47 1.02 ± 0.44 −2.8 0.797 1.08 ± 0.43 +2.8 0.447 +5.8 0.300
OAGB (n = 19) 1.16 ± 0.47 1.05 ± 0.44 −9.4 0.220 1.18 ± 0.38 +1.7 0.667 +12.3 0.125

Abbreviations: OAGB, one-anastomosis gastric bypass; relTL, relative telomere length 1 Results are presented as
means ± SD, p-values were calculated with ANOVA and Bonferroni correction of linear contrasts (gender and age
as covariates). Asterisks indicate statistical significance (* p ≤ 0.05). Negative values reflect a decrease in telomere
lengths, positive values an increase. 2 n = 34; in one subject the number of lymphocytes was not sufficiently high.

3.7. Alterations of the Proteome Profile

We analyzed 410 proteins compiled from 3182 peptides. The individual proteins are
listed in Supplementary Table S2. Figure 4A–C show the results of analyses with plasma
samples. No alterations were observed after 1 month (Figure 4A), but significant effects
were found 6 months after the surgery (Figure 4C). Four proteins were downregulated,
namely serum amyloid A1 (SAA1), C-reactive protein (CRP), and two hemoglobin subunits
(HBB and HBA1). The level of apolipoprotein A-IV (APOA4) was significantly higher
1 month after surgery compared to the level detected 6 months after BS (Figure 4B).
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Figure 4. (A–C). Results of proteomic analyses with plasma samples of the BS patients (n = 35):
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proteins are indicated.

4. Discussion

As mentioned in the introduction, several earlier investigations indicated that BS has
beneficial health effects. For example, it was found that it affects the artherogenic properties
of plasma lipoprotein [47] and reduces cardiovascular risks [48]. Furthermore, several
studies showed that it normalizes the metabolism of amino acids and proteins [49] as well
as the levels of systemic hormones and signaling peptides [50–54] and improves glycemic
control [51].

The present study focused on alterations of the stability of the genetic material and
related parameters. These observations enable to draw conclusions concerning beneficial
long term health effects of the operations. An earlier study focused on the consequences of
RYGB and GS, which are the most frequently used techniques. The present study provides
additional information about OAGB, which is the most widely used technique after GS and
RYGB [55].

We observed a time-dependent weight loss in all participants. Furthermore, we
studied for the first time the impact of BS techniques on DNA repair functions. The effects
in the different subgroups were more or less identical and similar to findings of earlier
studies [56–58].

Six months after the surgery, the extent of DNA damage decreased substantially (54%)
in the overall group and a similar reduction was found in the OAGB group (50%) and in
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patients after RYGB (47%). Only one study with BS patients who underwent RYGB and
GS [25] has been published in which DNA damage was analyzed in SCGE experiments with
lymphocytes and whole blood from the same patients [24,25]. The authors did not detect
reduced comet formation 6 months later, but clear effects were found after 1 year [24,25].
One of the reasons for the lack of an effect after 6 months could be that the extent of weight
reduction was less pronounced as in our study; i.e., the participants lost only 20% after
half a year in the German study, while the BWs decreased in the present investigation by
27.5%. We found in the literature only few studies concerning non-surgical weight loss,
and the reduction in the BWs in all investigations was less pronounced. In two SCGE
studies, a clear decrease in comet formation was detected after 6 months [59,60], while
no evidence for a reduction in the micronucleus frequencies (reflecting structural and
numerical chromosomal aberrations) was observed in lymphocytes of individuals after
consumption of a low carbohydrate/low protein diet by Benassi-Evans and co-workers [61].

It is known that the formation of “comets” reflects adverse health effects in humans,
i.e., a recent analysis showed that “large comets” in humans are indicative for increased
mortality [12]. Furthermore, it is well documented that subjects with oxidative stress (due
to diabetes and other diseases) have more DNA damage [62], and it is also well documented
that exposures to chemicals and radiation, which lead to cancer, cause DNA migration [63].
On the other hand, reduction of comet formation may be indicative of positive effects. In
this context it is notable that plant-derived foods, beverages, vitamins, and trace elements
with cancer protective and antioxidant properties reduce comet formation in humans [34].

We did not detect significant reduction of FPG-sensitive sites which reflect formation of
oxidized purines, but their formation decreased in a time-dependent manner in the overall
BS group. We found this effect also in the OAGB group. It was stated recently by the EFSA
that prevention of oxidative DNA damage has beneficial health consequences [14]. Several
earlier articles concern the oxidation of guanosine after BS. For example, Monzo-Beltran
and co-workers [28] reported a decline of 8-oxodG in serum and urine samples after GS
at time points ≥ 6 months; the same observation was also made in a Turkish study [27].
Carlsson and co-workers [26] measured 8-oxodG and 8-oxoGuo in urine samples after
RYGB surgery; both markers decreased 1–2 years after the surgery, while an increase in
oxidative DNA damage was detected 3 months after the operations. This observation
is interesting as we observed in RYGB patients a pronounced increase (by 29%) of FPG
sensitive sites after 1 month, possibly as a consequence of post-surgical redox stress (data
not shown); notably, no such effect was observed in the OAGB group.

BER and NER are prominent repair pathways in eukaryotic organisms [15] and dys-
functions lead to fatal diseases such as cancer and accelerate aging [15,64]. The impact of
BS on the activities of these repair systems was not studied earlier. We found in the present
study a clear time dependent decrease in the activities of BER and NER regardless of the
type of surgery. These findings were unexpected as it was found in earlier human obesity
studies that the activities of both repair systems are higher in lean individuals [9,65]. An
explanation for the lower levels which we found after weight loss is the intake of a dietary
supplement containing vitamins and trace elements. Supplements are given routinely to
BS patients since the uptake of micronutrients is reduced after the operations [35,66,67].
It was found in earlier studies that DNA repair functions decrease after consumption of
supplements and antioxidant rich foods. For example, reduction in BER was observed
after intake of folate [68]. Additionally, after consumption of a vitamin supplement and an
antioxidant rich diet a decrease in this repair system was observed [69]. A decrease in NER
was reported in a study with kiwi fruit and also after consumption of antioxidant-rich plant
products [70]. According to the authors, these effects may be due to adaptive responses,
i.e., downregulation as a consequence of lower levels of DNA damage. It is interesting
that we found alterations of the repair systems already 1 month after the surgery. These
effects increased only moderately in the following months. On the contrary, DNA damage
decreased only slightly after the first month and much stronger effects were seen at the last
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time point. These differences in the time kinetics indicate that weight loss is not the cause
for the alterations of the repair systems.

It is difficult to elucidate which molecular mechanisms account for the reduction
of oxidative DNA damage, which we observed. BS had in our study no impact on the
activities of SOD and GPx, which are important health related antioxidant enzymes. The
expression of genes which encode for these enzymes is regulated by the transcription factor
Nrf2, and evidence for its activation was observed in a previous study with BS patients [25].
Results of earlier investigations on the activities of these enzymes after BS are controversial.
Guan et al. [71] found no alterations of SOD in GS and RYGB patients after 6 months and an
increase in the latter group after 12 months. Abad-Jimenez [32] reported an increase in both
enzymes after RYGB surgery, while other investigations found reduced activities [31,72].
Many earlier studies indicated that reduction in body weight leads to normalization of
the glucose and insulin levels [9,73], and it is well document that increased concentrations
lead to release of ROS and cause damage of the genetic material under in vitro conditions
(for details, see [9,74]), and also the levels of triglycerides, which are elevated in obese
individuals, may play a causal role. It was found in an earlier study that their levels
correlate with the extent of DNA damage in obese individuals [75]. A further possible
explanation of the high levels of DNA damage as a consequence of excess overweight is
the formation of lipid peroxidation (LP) products, which are formed as a consequence of
oxidation of fatty acids. Many products of this reaction (aldehydes and ketones) cause
DNA damage and cancer. As described in the results section, we found a pronounced
decrease in the formation of MDA after BS in the present study. This observation was not
unexpected as it is known that MDA levels and other LP products are increased in obese
individuals as a consequence of oxidative stress [76–78]. In this context, it is notable that
several aldehydes and ketones which are formed as a consequence of the oxidation of fatty
acids cause DNA damage and cancer [23].

The impact of BS on telomere lengths is a controversial issue. We analyzed in the
present study alterations of telomere lengths by two assays using two different single-copy
genes ALB and 36B4. The ALB assay showed an increase in telomere lengths between
one and 6 months in the overall group and in the OAGB subgroup. In support of this
outcome, the 36B4 assay was increased at the end of the study, but this effect did not
reach significance. Results of earlier investigations are described in a review of Pene and
co-workers [30]. The authors concluded that only results of long-term studies suggest a
clear effect on telomere lengths and stated that it is difficult to drawn firm conclusions.
Additionally, reviews concerning the consequence of non-surgical weight loss on telomere
lengths point in the direction of positive long-term effects [79,80].

Proteome profiling identified a number of proteins, which were altered after BS. Clear
upregulation of APOA4, which is indicative for changes of the lipid metabolism, was also
found in earlier studies [81]. In the present study, four proteins were downregulated after 6
months. The decrease in beta globulin and alpha globulin is probably a consequence of iron
deficiency, which was observed in earlier BS studies [82]. SAA1 and CRP are biomarkers of
acute inflammation and cancer development [83,84]; also, in earlier proteome analyses of
BS patients, a decrease in the concentrations of both proteins was reported [81,85].

5. Conclusions

The results of the present study show that BS leads to stabilization of the genetic
material and reduces oxidative DNA damage; these findings are possibly causally related
to a decrease in inflammatory reactions. Our findings indicate that adverse health effects,
which are caused by increased BW as a consequence of instability of the genetic material,
can be reduced by BS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12030760/s1, Figure S1: Impact of bariatric surgery on
DNA stability (2A), oxidative DNA damage (2B) and DNA repair (2C,D); Figure S2: Impact of bariatric
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surgery on the activities of the antioxidant enzymes SOD (3A) and GPx (3B); Table S1: Dietary
supplements after bariatric surgery; Table S2: List of analyzed proteins.
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Abbreviations

ACN acetonitrile
APOA4 apolipoprotein A-IV
BCA bicinchoninic acid assay
BER base excision repair
BMI body mass index
BS bariatric surgery
BW body weight
CI confidence interval
CRP C-reactive protein
EFSA European Food Safety Authority
FA formic acid
FDR false discovery rate
FPG formamidopyrimidine glycosylase
GPx glutathione peroxidase
GS gastric sleeve
LFQ label-free quantification
LMPA low melting point agarose
LP lipid peroxidation
MDA malondialdehyde
NER nucleotide excision repair
NMPA normal melting point agarose
OAGB one-anastomosis gastric bypass
PASEF parallel accumulation-serial fragmentation
relTL relative telomere length
ROS reactive oxygen species
RYGBSAA1 Roux-en-Y gastric bypassserum amyloid A1
SADI-S single-anastomosis duodeno-ileal bypass with sleeve gastrectomy
SC standard conditions
SCGE single-cell gel electrophoresis
SD standard deviation
SOD superoxide dismutase
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