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Abstract: As an indispensable element in the morphology and phytochemical profile of plants, UV-A
has proved to help promote the growth and quality of kale. In this study, UV-A supplementation in
different photoperiods (light period supplemental UVA = LS, dark period supplemental UVA = DS,
and light-dark period supplemental UVA = LDS) contributed to yielding greater biomass production
(fresh weight, dry weight, and plant moisture content), thus improving morphology (plant height,
stem diameter, etc.) and promoting higher phytochemicals content (flavonoids, vitamin c, etc.),
especially glucosinolates. To fathom its mechanisms, this study, using RNA-seq, verified that UV-A
supplementation treatments signally generated related DEGs of plant hormone signal pathway,
circadian rhythm plant pathway, glucosinolate pathway, etc. Moreover, 2047 DEGs were obtained in
WGCNA, illustrating the correlations between genes, treatments, and pathways. Additionally, DS
remarkedly up-regulated related DEGs of the key pathways and ultimately contributed to promoting
the stem diameter, plant height, etc., thus increasing the pigment, biomass, vitamin c, etc., enhancing
the antioxidant capacity, and most importantly, boosting the accumulations of glucosinolates in kale.
In short, this study displayed new insights into UV-A supplementation affected the pathways related
to the morphology and phytochemical profile of kale in plant factories.
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1. Introduction

Light is an indispensable factor that affects all aspects of plant growth by providing
energy to plants. Plants could sense light signals through different receptors, including
phytochromes (PHYA-PHYE) that sense red and far-red light, cryptochromes (CRY 1, CRY 2,
and CRY DASH) that sense blue light and UVA, and phototropin (PHOT1 and PHOT2) and
UVB-sensing UVR8, induce extensive transcriptional reprogramming in plants to optimize
plant growth, development, and stress response [1,2].

The reduction of ultraviolet light (UVB and UVA) leads to higher growth, biomass,
and pigment content in monocots such as sorghum and wheat [3,4]. Supplemental UV-A
(0.159 mW·cm−2) with PAR (photosynthetically active radiation, 35 µmol·m−2 s−1) signally
expanded the rosettes diameter of Arabidopsis thaliana [5]. Lettuce under 237 µmol·m−2 s−1

RBFR shoot dry weight was increased by 27%, 29%, and 15% in the UVA-10 (10 µmol·m−2 s−1),
UVA-20 (20 µmol·m−2 s−1), and UVA-30 (30 µmol·m−2 s−1) treatments, respectively, which
correlated with 31% (UVA-10), 32% (UVA-20), and 14% (UVA-30) larger leaf areas [6].
Supplemental 8 and 16 h UV-A (2.28 W·m−2, 369 nm) under 9R1B = 220 µmol·m−2 s−1

stimulated plant biomass production in tomato seedlings by 29% and 33%, respectively,
mainly due to larger leaves (i.e., 22% and 31% in 8 and 16 h UV-A, respectively), which
facilitated light capture, while 8 h UV-A reached the biggest stem width [7].
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Chloroplast movement could be induced by an increased light intensity-to-blue light
ratio, a process mediated by the phototropin (UVA/blue light receptor)-related NPL1 gene
that controls chloroplast relocation [8,9]. UVA exposure (9.47 W·m−2) caused increments
in lutein (by 22.4%), chlorophyll b (by 30.7%), neoxanthin (by 33.5%), and chlorophyll a
(by 67%) in broccoli sprouts [10]. Day supplemental UV-A (31.2 µmol·m−2 s−1) slightly
increased the root and total biomass (4.9% and 5.3%) of pea seedlings and significantly de-
creased the shoot chlorophyll b of pea seedlings content (19.4% and 19.4%) [11]. Supplemental
low-intensity (10 µmol·m−2 s−1) UV-A clearly improved the content of vitamin C, chlorophyll,
and carotenoid, while higher intensity (40 µmol·m−2 s−1) UV-A caused lower chlorophyll
content in lettuce compared with control (230 µmol·m−2 s−1 RB + 7 µmol·m−2 s−1 FR) [12].

As a functional vegetable with high antioxidant capacity, kale (Brassica oleracea var.
sabellica) is rich in healthy functional substances, such as vitamin C, phenolic compounds,
and flavonoids, especially glucosinolates [13], and generates more zest worldwide.

Different light could trigger different photoreceptors in plants, including phytochromes
(PHYA-PHYE) that sense red and far-red light, cryptochromes (CRY 1, CRY 2 and CRY
DASH) that sense blue light and UV-A, and Phototin (PHOT1 and PHOT2), and UVB-
sensing UVR8 that induces extensive transcriptional reprogramming in plants to optimize
plant growth, development, and stress response [2]. One of the most important and
widespread protective responses of plants against UV radiation is the induction and syn-
thesis of flavonoids and related phenolic compounds, which are UV-shielding ingredients
and antioxidants [14]. Glucosinolates and their degradation products are known to play
important roles in plant interaction with herbivores and microorganisms [15]. Aliphatic glu-
cosinolate biogenesis genes (CYP79F1, CYP83A1, UGT74B1, and AOP2) were up-regulated
by yellow (570 nm), blue (455 nm), and purple (420 nm) LED lights, which induced the
accumulation of glucoraphanin and glucosinolates (3.43-fold, 2.09-fold, and 3.66-fold) [16].

In recent years, RNA-seq has emerged as a powerful technique for analyzing gene
expression in response to specific stimuli in a wide range of biological systems. RNA-seq
has been used to investigate the overall expression profile of plants under different stresses,
revealing the signal transduction pathways involved in the resistance network [17]. There
are many studies that revealed the effects of different treatments on vegetable growth
and development, functional phytochemicals, and stress resistance, such as radish [18],
cabbage [19], and purple broccoli [20].

The growth of vegetables in plant factories is mainly affected by light. Although
extensive research has been carried out on the effects of UV-B, red, and blue light on plants,
restricted studies existed on the comprehensive effects of UV-A with red and blue light on
kale’s morphology and quality, while UV-A also has an important impact on plants [21]. In
this study, RNA-seq technology was applied to decode the effects of supplemental UV-A in
different photoperiods on the morphology and quality in kale under red and blue light in
an artificial lighting plant factory.

2. Materials and Methods
2.1. Plant Materials, Growth Condition, and Light Treatments

This experiment took place at South China Agricultural University’s artificial light-
ing plant factory. Kale (Brassica oleracea var. sabellica) cv ‘Jingyu No.2’ (Beijing JingYan
YiNong Sci-Tech Development Center, Beijing, China) seeds were sown in moist sponge
blocks and maintained in a dark germination chamber for 2 d. Then, the germinated seeds
were kept in a deep flow technique system with 1/2 Hoagland solution, as well as with
400–600 µmol·mol−1 CO2, 21 ± 2 ◦C temperature, EC ≈ 1.8 mS·cm−1, pH ≈ 6.4, 55–60% rela-
tive humidity, and 250 µmol·m−2 s−1 PPFD white LED lighting from 8:00 to 18:00. Seedlings
with 2 expended true leaves were transplanted into the planting plate (90 cm × 60 cm,
24 plants/plate) after 2 weeks.

The LED panels (Chenghui Equipment Co., Ltd., Guangzhou, China; 150 cm × 30 cm)
with blue (460 ± 10 nm), red (660 ± 10 nm), and supplemental UV-A (380 ± 10 nm) LEDs
were applied. The kale seedlings were cultured under 4 treatments with primary light
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(red: blue = 1:1 at PPFD of 250 µmol·m−2 s−1): CK (primary light, non-UVA treated) after
transplantation. The photoperiod of UV-A supplementation (12 µmol·m−2 s−1) for each
treatment was: light period supplemental UVA (6:00–18:00, LS), dark period supplemental
UVA (18:00–06:00, DS), and light-dark period supplemental UVA (12:00–00:00, LDS). Samples
for RNA-seq were collected at 10 d after UV-A supplementation. The other samples for bio-
metric measurements and quality assays were collected at 21 d after UV-A supplementation.
All the fresh samples for quality assays have been ground and stored at −20 ◦C.

2.2. Biometric Measurements

About 7 kale plants in each treatment were stochastically selected for measurement
of morphology indexes and fresh weight, combined at 105 ◦C for 2 h with 70 ◦C for 72 h
to determine the dry weight and calculate the moisture content of samples. The moisture
content of kale samples (%) = (FW − DW)/FW × 100%.

2.3. Pigment Content Assay

Fresh leaves of kale (0.2 g) were chopped and soaked in 6.0 mL of acetone ethanol
mixture (acetone: ethanol = 1:1, v:v) and stored in darkness for 24 h. The extract solution
absorbances were determined by UV spectrophotometer (Shimadzu UV-16A, Shimadzu,
Corporation, Kyoto, Japan) at 663 nm (A663), 645 nm (A645), and 440 nm (A440). The
pigment contents were determined according to Lichtenthaler [22], as follows:

Chl a content (mg/g FW) = (12.70 × A663 − 2.69 × A645) × 6 mL/(1000 × 0.2 g);
Chl b content (mg/g FW) = (22.90 × A645 − 4.86 × A663) × 6 mL/(1000 × 0.2 g);
Chl a + Chl b content (mg/g FW) = (8.02 × A663 + 20.20 × A645) × 6 mL/(1000 × 0.2 g);
Carotenoid content (mg/g FW) = (4.70 × A440 − 2.17 × A663 − 5.45 × A645) ×

6 mL/(1000 × 0.2 g).

2.4. Phytochemical Measurements
2.4.1. Soluble Protein Content Assay

The soluble protein content was determined by Coomassie blue staining [23]. Com-
bined stored samples (0.5 g) with 8 mL distilled water and then extracted the supernatant.
The supernatant (0.5 mL) plus distilled water was well-mixed with Coomassie brilliant
blue G-250 solution and measured at 595 nm by a UV spectrophotometer 5 min later.

2.4.2. Soluble Sugar Content Assay

Soluble sugar content was determined by anthrone colorimetry [24]. Frozen samples
were well-mixed with distilled water, after repetitive 100 ◦C water baths. Later, the fil-
tered solutions were well-mixed in the sequence of distilled water, anthrone ethyl acetate
reagent (Sinophaem, Beijing, China), and concentrated sulfuric acid. The supernatant was
determined at 625 nm by UV spectrophotometer.

2.4.3. Vitamin C Content Measurement

Vitamin C content was determined by molybdenum blue spectrophotometry [25].
Samples were homogenized with oxalic acid ethylene diamine tetraacetic acid solution
(w/v) and then filtered. The supernatants were mixed in the sequence of partial phosphoric
acid-acetic acid solution (w/v), sulfuric acid solution (v/v), and ammonium molybdate
solution (w/v) and then measured at 705 nm by a UV spectrophotometer.

2.4.4. Nitrate Content Measurement

Samples soaked in distilled water were heated and filtered. Then, the solution was
mixed with 5% salicylic, sulfuric acid, and 8% NaOH sequentially. The nitrate content was
determined using a UV spectrophotometer at 410 nm [26].
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2.4.5. DPPH Radical Inhibition Percentage Measurement

The DPPH radical inhibition percentage (DPPH) measurement was determined ac-
cording to Musa et al. [27]. Samples soaked in ethanol were stored in darkness for 30 min.
With three types of mixtures (Aj: supernatant mixed with ethanol; Ai: supernatant mixed
with DPPH; Ac: DPPH mixed with ethanol) prepared, DPPH was determined at 517 nm by
the UV spectrophotometer.

2.4.6. Ferric Ion-Reducing Antioxidant Power Measurement

The Ferric ion-reducing Antioxidant Power (FRAP) assay was determined according to
Benzie and Strain [28]. Supernatants were well-mixed with TPTZ solution, then incubated
at 37 ◦C for 10 min and determined at 593 nm.

2.4.7. Total Phenolic Content Measurement

The total phenolic content was measured according to Rahman [29]. Supernatants
(samples soaked with methanol) were treated in the sequence of 0.5 mL Folin–Ciocalteu’s
phenol, 1.5 mL 26.7% Na2CO3, and 7 mL distilled water and measured at 760 nm.

2.4.8. Total Flavonoids Content Measurement

The total flavonoids content was measured by using the Al(NO3)3 colorimetric as-
say [30]. The sample extract (5 mL) was mixed with methanol and NaNO2 solution and
added to 10% AlCl3 (0.35 mL) and 5 mL 5% NaOH in sequence. The sample absorbance
was measured at 510 nm.

2.4.9. Mineral Element Contents Measurement

The mineral element (nitrogen (N), phosphorus (P), Kalium (K), calcium (Ca), magne-
sium (Mg), sulfur (S), and zinc (Zn)) contents measurement was based on Gao [31]. Mineral
element accumulation contents (mg/per plant) = mineral element content (g·kg−1 DW) × dry
weight per plant (kg DW) × 1000.

2.4.10. Glucosinolates Content Measurement

Glucosinolates were extracted and determined according to Li [32]. The frozen-
dried samples were extracted with methanol and then purified and desulfurized with
the ion-exchange method. The glucosinolates were separated and identified using high-
performance liquid chromatography (HPLC, Waters Alliance e2695). With a 5 µm C18 col-
umn (Waters, 250 mm length, 4.6 mm diameter) for glucosinolate separation, elution
through mobile phase A (water, 18.2 MΩ·cm resistance), and mobile phase B (acetoni-
trile), the optimum column temperature was 30 ◦C. The detector monitored glucosinolates
at 229 nm. The gradient conditions were set as follows: 0 to 32 min (100% solvent A
volume), 32 to 38 min (80% solvent A volume), and 38 to 40 min (100% solvent B vol-
ume). The individual glucosinolates were identified according to their HPLC retention
times and quantified with sinigrin (Sigma-Aldrich, St. Louis, MO, USA), which was used
as an internal reference substance with their HPLC area and relative response factors
(ISO 9167-1,1992).

2.5. RNA Extraction and Illumina Sequencing

The RNA libraries were sequenced on the Illumina sequencing platform by Genede-
novo Biotechnology Co., Ltd. (Guangzhou, China); the following detailed experimental
methods were provided by the company. The total RNA was extracted from the leaves
by Total RNA Isolation Extraction Kit (Vazyme Biotech Co., Ltd., Nanjing, China). After
total RNA extraction, the integrity of the RNA was meticulously assessed using the Agilent
2100 bioanalyzer. The messenger RNA (mRNA) was selected and enriched by polyA. The
enriched mRNA was subsequently fragmented and reversely transcribed into complemen-
tary DNA (cDNA) using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB#7530,
New England Biolabs, Ipswich, MA, USA). The purified double-stranded cDNA fragments
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were end-repaired. A base was added and ligated to Illumina sequencing adapters. The
libraries were sequenced by applying Illumina HiseqTM 4000 (Illumina, San Diego, CA,
USA). A total of 12 groups (3 replicates per treatment) of RNA extraction were applied
to the RNA-seq analysis for this study. The accession number of Sequence Read Archive
(SRA) is PRJNA940045 (https://www.ncbi.nlm.nih.gov/sra/PRJNA940045, accessed on
4 March 2023).

2.6. Mapping, DEGs, GO Enrichment, and KEGG Pathway Analysis

Through fastp [33], the quality control of the raw reads from the computer was
performed, and the low-quality data was filtered to obtain clean reads. The clean reads
were mapped to the Brassica oleracea var. oleracea (wild cabbage) reference genome sequence
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000695525.1, accessed on 4 April 2021).
The gene expression level was calculated using the fragments per kilobase of transcript
per million mapped reads (FPKM). This study used DESeq2 [34] to detect differential
expression genes (DEGs). Genes with |log2FC| > 1 and FDR < 0.05 were defined as
signally differential expression genes (DEGs). The DEGs of kale under different light/dark
photoperiod treatments were subjected to GO and KEGG functional enrichment analysis.

2.7. Weighted Gene Co-Expression Network (WGCNA) Analysis and Gene Network Visualization

A total of 2047 DEGs were imported to construct co-expression networks, according
to the gene expression matrix by using the WGCNA (version 1.47) package in R [35], and
construct co-expression modules using the automatic network construction function block-
wise modules to determine the gene expression values with default settings, except that
TOM type was unsigned, the power was 8, merge Cut Height was 0.1, and the min module
size was 50. Genes were clustered into 8 correlated modules.

2.8. qRT-PCR Analysis

A total of 15 DEGs were stochastically selected to verify the expression profiles estab-
lished by RNA-seq. qRT-PCR was applied by SYBR Premix Ex Taq II (Tli RNaseH Plus)
(Takara Bio, Dalian, China), and the reactions took place on a LightCycler 480 Real-Time
PCR system (Roche, Basel, Switzerland). Primer 5.0 software was used to design the
primers. The expression data were analyzed by using the 2−∆∆CT method [36], with the
ACT gene for normalization. Primers used for this study could be found in Table S1.

2.9. Statistical Analysis

The measurements were calculated with three replications per treatment, using SPSS
23.0 software (SPSS Inc., Chicago, IL, USA) for statistical analysis and applying analysis of
variance (ANOVA), followed by Duncan’s test for Significance determination among the
treatments. All figures were elaborated by TBtools software [37] and OriginPro 9.0 software
(OriginLab Inc., Northampton, UK).

3. Results
3.1. Morphology and Biomass of Kale in UV-A Supplementation

Supplemental UV-A in different photoperiods massively affected the morphology and
biomass of kale (Figure S1).

Compared with CK, dark-UVA supplementation (DS), and light/dark-UVA supple-
mentation (LDS) distinctly promoted the stem diameter and total leaf area of kale, with
102.38%, 57.14%, and 100.38%, 80.89%, respectively, while the light-UVA supplementa-
tion (LS) barely changed. DS and LDS presented higher specific leaf weight than CK,
by ~27.67% and ~17.87%, which indicated thicker leaves than CK, while LS showed no
difference. UV-A supplementation (LS, DS, and LDS) signally increased plant height of kale
plants and yielded higher shoot fresh weight, with increments of 45.16%, 98.39%, 45.70%,
56.29%, 191.82%, and 84.49%, respectively, in accordance with the results obtained on the
dry weight of shoot and root (40.71%, 159.11%, 54.64%, 6.87%, 40.38%, and 19.23%) of fresh
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weight. With biomass results revealed, UV-A supplementation (LS, DS, and LDS) signally
increased the plant moisture content in kale, with 2.12%, 2.94%, and 2.77%, respectively.
Additionally, dark-UVA supplementation (DS) reached the maximum morphology and
biomass of kale among all the UV-A treatments.

In short, dark-UVA supplementation (DS) and light/dark-UVA supplementation (LDS)
prominently improved morphology and yielded higher biomass of kale.

3.2. Pigment of Kale Leaves in UV-A Supplementation

The pigment biosynthesis of kale leaf was found to be markedly increased in UV-
A supplementation at different photoperiods, which ultimately resembled the SPAD
(Figure S2). LS, DS, and LDS exhibited higher contents of chlorophyll a and b, with
increments of 7.95%, 9.09%, 9.09%, and 7.69%, 15.38%, and 17.95%, respectively. The lower
chlorophyll a/b values observed in shade plants can be attributed to the higher absorption
of blue-violet light by chlorophyll b, compared to chlorophyll a, which is more prominent
in sunny plants. Therefore, shade plants can effectively utilize the predominant blue-violet
diffuse light in shady conditions. DS and LDS observably lowered the chlorophyll a/b
(7.08% and 8.41%). Meanwhile, the carotenoid exerted the highest content in LS (~5.89%),
while DS and LDS showed no noteworthy difference. Compared to CK, DS indicated the
highest SPAD (~6.29%).

Hence, dark-UVA supplementation (DS) and light/dark-UVA supplementation (LDS)
signally boosted the pigment content of kale and ultimately accumulated the biomass.

3.3. Soluble Protein, Soluble Sugar, Vitamin C, and Nitrate Contents Assay

Supplementing UV-A in different photoperiods signally affected the nutritional con-
tent of kale. UV-A supplementation in different photoperiods (LS, DS, and LDS) note-
worthily increased the contents of soluble protein and vitamin C of kale, while the soluble
sugar content remained unchanged, with massive increases of 21.36%, 24.36, 25.70%, and
20.65%, 26.09%, 27.74%, respectively (Figure S3). However, an arresting reduction of nitrate
content was observed in UV-A supplementation (LS, DS, and LDS) with 20.44%, 13.14%,
and 16.06%, respectively.

Overall, UV-A supplementation in different photoperiods exerted higher nutritional
quality of kale, while DS indicated the maximum.

3.4. Antioxidant Capacity and Compounds Assay

UV-A supplementation in different photoperiods markedly affected the antioxidant
capacity and compounds in kale (Figure S4). DS and LDS signally promoted FRAP of kale,
while no remarkable differences were observed in the DPPH and total flavonoids of kale
under UV-A supplementation. However, LS treatment revealed a conspicuous reduction in
total phenolic content.

3.5. Mineral Element Content Assay

UV-A supplementation in different photoperiods massively promoted the mineral
elements accumulation in the shoot of kale, while different mineral elements responded
differently towards different UV-A treatments (Figure S5). UV-A supplementation in
different photoperiods (LS, DS and LDS) yielded higher contents of Ca (12.61%, 10.87% and
8.2%), Mg (5.04%, 9.83% and 10.31%), and S (27.08%, 26.48% and 22.58%), while N content
barely changed. DS and LDS prominently increased the P contents (14.71% and 11.46%),
while LS significantly increased the Zn content (10.51%).

UV-A supplementation (LS, DS, and LDS) highly increased the mineral elements accu-
mulation per plant by combining the shoot dry weight of kale (Figure S5). Supplemental
UV-A in different photoperiods massively boosted the accumulation of all the mineral
elements contents: N (47.78%, 177.56%, and 63.40%), P (39.46%, 196.91%, and 72.53%), K
(41.18%, 142.29%, and 40.98%), Ca (59.06%, 186.94%, and 67.76%), Mg (48.65%, 184.98, and
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71.17%), Zn (56.15%, 161.54, and 52.31%), and S (79.55%, 227.29%, and 90.06%), while DS
reached the maximum.

3.6. Glucosinolate Content Assay

Seven individual glucosinolates were extracted and detected by HPLC in this study
(Figure 1). Among them, there are three aliphatic GLSs: Sinigrin (SIN), Gluconapin (GNA),
and Glucobrassicanpin (GBN), and four indolic GLSs: 4-Hydroxyglucobrassicin (4-OH),
Glucobrassicin (GBS), 4-Methoxyglucobrassicin (4ME) and Neoglucobrassicin (NEO). The
total indolic GLSs content in kale exerted predominantly higher than total aliphatic GLSs,
accounting for 98.7% of total GLSs on aggregate. Additionally, GBS reached the highest
proportion (66.22%), with NEO (30.75%) following.
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4ME = 4-methoxyglucobrassicin, In-GLSs = Indolic Glucosinolate, A-GLSs = Aliphatic Glucosinolates.

UV-A supplementation in different photoperiods (LS, DS, and LDS) markedly boosted
the content of indolic GLSs in kale, with 54.12%, 100.66%, and 131.09%, respectively. Among
them, DS treatment indicated the highest 4ME content by ~183.33%, while LDS treatment
revealed the highest GBS content by ~165.13%. LS yielded higher SIN content (140%) and
DS exerted higher GNA content (80%), while total aliphatic GLSs content remained no
distinct difference.

Overall, supplemental UV-A conspicuously increased GLSs content of kale, while DS
and LDS treatments displayed higher.
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3.7. Heatmap and Multivariate Principal Component Analysis

A heatmap presented an integrated overview of the impact of different supplemental
UV-A treatments on the morphology and quality of kale (Figure 2).
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Figure 2. Cluster heatmap analysis summing up the morphology and quality of kale in CK and
supplemental UV-A light treatments. A false-color scale with purple as an increased parameter,
while blue represents a decreased parameter was used to visualize the results. “LS” = Light-UVA
Supplementation, “DS” = Dark-UVA Supplementation, “LDS” = Light/Dark-UVA Supplementation,
“PMC” = plant moisture content, “SAW” = specific area weight, “PH” = plant height, “TFW” = to-
tal fresh weight, “RDW” = root dry weight, “SD” = stem diameter, “SFW” = shoot fresh weight,
“RFW” = root fresh weight, “SDW” = shoot dry weight, “RFW” = root fresh weight, “TDW” = total dry
weight, “TLA” = total leaf area, “TP” = total phenolic, “SS” = Soluble sugar, “TF” = total flavonoids,
“SP” = soluble protein, “Vc” = Vitamin C, and the full names of all GLS variants has been described
in Figure 1.

The cluster exhibited different morphology and quality of kale in different photoperiod
UV-A supplementations and CK at harvest. The kale in CK exerted higher content of
chlorophyll a/b, nitrate, and K, while UV-A supplementation massively revealed higher
pigment content, fresh weight, dry weight, plant moisture content, indolic GLSs, 4OH,
4ME, GNA, S, P, Mg, total phenolic, soluble sugar, soluble protein, and Vc, etc. These
results verified supplemental UV-A treatments enhanced the growth and promoted the
phytochemical accumulation of kale.
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The principal component analysis (PCA) was performed to compare the relevance of
all quality characteristics of kale between supplemental UV-A treatments and CK (Figure 3).
The first 10 principal components, PC1–PC10 (eigenvalues > 1), account for 99.43% of the
cumulative variance.
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Figure 3. The multivariate principal component analysis presented the relationship between indexes
among 4 treatments. The full name has been described in Figure 2. “LS” = Light-UVA Supplementa-
tion, “DS” = Dark-UVA Supplementation, “LDS” = Light/Dark-UVA Supplementation.

Figure 3 showed that presenting the first two factors (PC1 vs. PC2) revealed 63.01%
of kale’s total variance in supplemental UV-A treatments and CK. The results indicated
a clear separation between CK and LS, DS and LDS, validating significant differences
between the results obtained between CK and the supplemental UV-A treatments. The
results indicated the relationship between morphology and quality by confirming the angle
between two vectors (0◦ < positively correlated < 90◦; uncorrelated, 90◦; 90◦ < negatively
correlated < 180◦). There were strong positive correlations between PH, SD, TFW, PMC,
TLA, SLA, SIN, DPPH, GBN, Ca, NEO, S, 4OH, 4ME, GBS, Mg, FRAP, soluble sugar, soluble
protein, indolic GLSs, and so forth, as their angles were less than 90◦.

3.8. RNA-Seq Analysis
3.8.1. Illumina Sequencing, Mapping Reads, and Transcript Identification

In this study, an Illumina HiSeq platform was used for sequencing 12 kale samples,
with a total of 77.6 Gb of clean data generated. Table S2 displays more than 97.62% of
clean reads were >Q20, 93.23% of clean reads were >Q30, with GC ranging from 47.54% to
47.97% (with an average of 47.71%), and more than 91.05% of these reads were mapped to
the Brassica oleracea var. oleracea genome (GCF_000695525.1), which indicates that the high-
quality sequencing and good assembly effect meet the needs of subsequent bioinformatics
analysis. To calculate the gene expression values between each pair of samples, FPKM and
Pearson correlation coefficients were utilized. The R2 between the two samples is >0.97,
indicating great repeatability of the experiment and highly reliable sequencing results
(Figure S6).
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3.8.2. Identification of Differential Expression Genes (DEGs)

Genes were considered differential expressions by using DESeq2 with the false discov-
ery rate (FDR) < 0.05 and the |log2FC (fold change)| > 1. A total of 2047 DEGs have been
identified, while there were more up-regulated DEGs in the CK vs. DS comparison and
more down-regulated DEGs in the CK vs. LDS (Figure S7).

3.8.3. Gene Ontology (GO) Enrichment and KEGG Pathway Analysis of DEGs

Gene Ontology (GO) provides a dynamically updated controlled vocabulary to com-
prehensively describe the properties of genes and gene products in organisms. The results
of GO classification indicated that the DEGs were enriched in 23 biological processes (BPs),
17 cellular components (CCs), and 11 molecular functions (MFs). Compared to CK, a
massive amount of up-regulated DEGs exhibited enrichment in DS, while LDS revealed the
most down-regulated DEGs. Significant GO terms were enriched in the “cellular process”,
“metabolic process”, “single-organism process”, “response to stimulus”, “biological regula-
tion”, and “regulation of biological process” in the BP category. In the CC category, the top
three enriched GO terms were “cell”, “cell part”, and “organelle”. In the MF category, the
remarkedly enriched GO terms were “binding” and “catalytic activity” (Figure S8).

In organisms, different genes coordinately perform their biological functions. Pathway-
based analysis helps to further understand the biological functions of genes. Determining
significant enrichment can identify the most crucial biochemical metabolic and signal
transduction pathways that are involved in differential genes.

Significant pathways (p < 0.05) were screened and utilized for comparative anal-
yses. The top 20 KEGG pathways were shown in Figure S9. It revealed 486 DEGs
that were enriched in 14 significant pathways, including “Biosynthesis of secondary
metabolites” (n = 153, 31.48%) (mainly about ‘Biosynthesis of phytochemical compounds’,
‘Polyketide sugar unit biosynthesis’, ‘Plant terpenoid biosynthesis’, ‘Cofactor and vita-
min metabolism’, etc.), “Plant hormone signal transduction” (n = 58, 11.93%), “Ribo-
some” (n = 53, 10.91%), “Plant-pathogen interaction” (n = 30, 6.17%), “Phenylpropanoid
biosynthesis” (n = 28, 5.76%), “MAPK signaling pathway-plant” (n = 27, 5.56%), “Glu-
tathione metabolism” (n = 17, 35%), “Cyanoamino acid metabolism” (n = 13, 2.67%), “alpha-
Linolenic acid metabolism” (n = 13, 2.67%), “2-Oxocarboxylic acid metabolism” (n = 13,
2.67%), “Carotenoid biosynthesis” (n = 9, 1.85%), “ Circadian rhythm-plant” (n = 9, 1.85%),
“Glucosinolate biosynthesis” (n = 8, 1.65%), and “Linoleic acid metabolism” (n = 4, 1.44%).

In short, these pathways might be the primary metabolic pathways involved in kale’s
response to different UV-A supplementation.

3.8.4. Identification of Key Regulatory Genes Involved in Important Pathways

The “biosynthesis of secondary metabolites”, “plant hormone signal transduction”,
“Circadian rhythm-plant”, “Glucosinolate biosynthesis” pathways, and other pathways of
photosynthesis were identified as being significantly enriched in kale.

The network of “plant hormone signal transduction” pathway revealed 58 DEGs
significantly enriched (Figure 4). A total of 27 DEGs were identified in the Auxin pathway,
with SAUR22-like, SAUR20, SAUR24, and SAUR50 markedly down-regulated in LDS,
IAA27, IAA9, and SAUR50 massively up-regulated in DS, and IAA17 up-regulated in CK
and LS. In the CTK pathway, AHP4, ARR8, and ARR5 were up-regulated in CK and LS
and down-regulated in DS and LDS. In the GA pathway, the GID1B gene was significantly
down-regulated in LDS and up-regulated in CK.

The supplemental UV-A in different photoperiods typically interact with the circadian
rhythm pathway, with eight DEGs and seven constans-like DEGs markedly enriched
(Figure S10). APRR1, APRR5, LHY, TCP21, and PHYB indicated signal up-regulation in
DS, while APPR9 inhibited expression. The series of constans-like genes perform similar
functions during light treatment. COL9, COL15, CIA2, and COL10 were all identified as
observably up-regulated in DS. Above them, COL-6 (ncbi_106343570, CIA2) indicated
massively up-regulation in DS.
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A total of eight DEGs encoding enzymes related to the glucosinolate biosynthesis
pathway were identified (Figure S11). CYP79A, BCAT4, SOT17, IMDH1, and MAM2 exerted
dominant up-regulation in LDS. The other CYP79A2 and CYP79B1 displayed prominent up-
regulation in DS, but arrested down-regulation in CK and LS. CYP79B3 revealed distinctly
up-regulation in CK and DS, while down-regulation in LS.

Thus, different light treatments might trigger specific photoreceptors, exhibit key
regulatory genes (i.e., IAA9, COL6, and other related genes/proteins), transmit specific
signals, and ultimately affect the growth and biomass of kale (Figure 5).
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3.8.5. WGCNA Analysis

To gain more in-depth analyses into the gene regulatory network of the growth and
phytochemical quality of kale, this study engaged WGCNA to perform a co-expression net-



Antioxidants 2023, 12, 737 12 of 19

work using 2047 DEGs with morphological and nutritional parameters (Figure 6A). DEGs
were acutely partitioned into eight distinct co-expression modules (turquoise, blue, green,
brown, black, red, pink, and magenta) (Figure 6B). The gene numbers of eight modules re-
vealed MM.turquoise and MM.blue owned more DEGs, while MM.pink and MM.magenta
showed less. Among them, the module-sample expression pattern proved that CK has
positive correlations with MM.magenta and MM.red. LS treatment has positive correlations
with MM.pink and MM.blue, while DS treatment indicated positive correlations with
MM.black, MM.green, and MM.turquoise, apart from them. LDS treatment showed a
positive correlation with MM.black and MM.brown (Figure 6C). Meanwhile, regarding
the traits of morphology (PH, SD, TLA, SPAD, TFW, TDW, PMC, SLW, chla, chlb, caro),
most of the mineral element content (N, P, Ca, Mg, and S), GLS content (GNA, 4OH, 4ME,
NEO), and quality (TP, FRAP, SP, VC) were found to be positively associated with DEGs
expression in black, brown, green, turquoise, and pink modules. Chla/b, K, and nitrate
content showed a positive correlation with the magenta modules (Figure 6D). Additionally,
the “plant hormone signal transduction” pathway was found to be significantly enriched in
MM.pink and MM.blue. “Biosynthesis of secondary metabolites” and “phenylpropanoid”
pathways were found to be highly enriched in MM.black. “Glutathione metabolism”
pathway showed significant enrichment in MM.brown. “Ribosome” pathway showed
significant enrichment in MM.green. “Circadian rhythm” and “Glucosinolate biosynthesis”
pathways displayed marked enrichment in MM.turquoise. “Selenocompound metabolism”
indicated high enrichment in MM.magenta, while “Monoterpenoid biosynthesis” showed
enrichment in MM.red (Figure S12).
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Figure 6. WGCNA of 2047 DEGs. (A) Cluster dendrogram indicating 8 modules of co-expressed
genes by WGCNA. (B) Gene numbers of different modules. (C) Module-Sample expression patterns.
(D) Module-trait correlations. p values were shown as: * p < 0.05, ** p < 0.01, *** p < 0.001. The full name
of the traits has been described in Figure 2. The color scale shows correlations from positive (purple)
to negative (green). “LS” = Light-UVA Supplementation, “DS” = Dark-UVA Supplementation,
“LDS” = Light/Dark-UVA Supplementation.
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Combining the correlations between the PCA, heatmap, pathways, and WGCNA,
this study revealed that the genes of pink, blue, black, and green modules might play
crucial roles in the morphology and quality of kale under UV-A supplementation in
different photoperiods.

3.9. Validation of DEGs Expression Patterns

To verify the reliability and repeatability of RNA-seq results, quantitative real-time
PCR (qRT-PCR) was set to reveal the expression of 15 DEGs that were randomly selected
from the top 20 enriched KEGG pathways. The correlation coefficients between RNA-seq
results and qRT-PCR were normalized to the mean of the ACT gene. Those 15 genes
exhibited an observably positive correlation, with 0.9100 < R2 < 0.9965, proving that the
RNA-seq results were highly reliable, due to the line with the trends in expression detected
by qRT-PCR (Figure S13).

4. Discussion

Light is an indispensable element for vegetable growth and phytochemical accumula-
tion. Plants perceive light through a variety of photoreceptors to regulate plant growth and
development, including blue/UVA photoreceptors: cryptochrome (CRY) and phototropin
(PHOT), UVB photoreceptor UVR8, and infrared and far-infrared photoreceptor photosen-
sitive pigments (PHY). CRY1 plays a major role in inhibiting hypocotyl elongation under
blue light treatment, whereas CRY2 mainly inhibits hypocotyl growth under low-intensity
blue light (1 µmol·m−2 s−1) [38]. Under blue light irradiation, CRY1 interacts with BZR1,
BES1, and PIF4 to repress target gene expression, thereby inhibiting hypocotyl elongation
in Arabidopsis [39]. In this study, the UV-A supplement markedly increased the plant
height of kale, with massive increments of stem diameter, plant moisture content, and
total leaf area found in DS and LDS (Figure S1). In addition, UV-A supplementations
highly increased the contents of chlorophyll a, chlorophyll b, and carotenoids (Figure S2),
which resembled the increasing trend of biomass. The PCA results intuitively indicated
a positive regulatory relationship between pigment and biomass since the angle between
pigment, fresh weight, and dry weight was less than 90◦ (Figure 3). The kale exposed to
supplemental UV-A treatments (6, 12 and 18 µmol·m−2 s−1) indicated higher contents of
chlorophyll a and chlorophyll b than CK, with increases of 18.9%, 13.3%, 17.8%, and 34.5%,
20.7%, and 37.9%, respectively. The highest biomass was found in the 12 µmol·m−2 s−1

treatment [40]. The 30 min·d−1 UV-A (0.5 W·m−2) treatment highly promoted the plant
height, root length, and total leaf area of Phaseolus mungo [41]. Similar results were found in
lettuce, with 15~29% dry weight increased by supplemental 10~30 µmol m−2 s−1 of UV-A.
The shoot dry weight (18~32%) and leaf area (15~26%) increased under the treatments of
UVA-5d, UVA-10d, and UVA-15d [6]. Daytime supplemental UV-A (31.2 µmol m−2 s−1)
slightly increased the root and total biomass of pea seedlings, while nighttime supplemental
UV-A significantly decreased the root and total biomass [11].

Plant hormones are widely recognized as crucial regulatory signals in plants [42].
Auxin (IAA) has an important role in the regulation of plant morphogenesis and growth,
which is regulated by a myriad of genes [43]. In tomatoes, IAA9 will always be the negative
regulator of auxin responses. AS-IAA9 (antisense plants) plants were usually taller than
wild-type plants and exhibited enhanced hypocotyl elongation and longer internodes [44].
Compared to CK, 15 µmol m−2 s−1 blue light treatment significantly increased GH3.5
expression and, thus, promoted IAA-Asp synthesis activity, which, in turn, controlled pea
growth and development [45]. As Figure 4 shown, IAA27, IAA9, IAA4, and four GH3.12
genes were significantly up-regulated in DS treatment, and both the plant height and stem
diameter were significantly increased. Simultaneous supplementation with blue light and
UVA (LS and LDS) would co-regulate photoreceptors and, thus, trigger the relevant genes
in the plant to inhibit growth hormone signaling, in order to stabilize the growth hormone
environment, but when blue light and UVA were treated separately (DS), the expressions
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of the GH family and IAA family genes were significantly up-regulated, which, in turn,
promoted the accumulation of auxin and contributed to morphological changes in kale.

Gibberellin (GA) could promote cell division and expansion and promote the growth
of the stem and leaf of plants [46]. The overexpression of TaCRY1a reduced plant height
and radicle growth in wheat, and TaCRY1a interacted with TaGID1 and Rht1 to attenuate
the TaGID1-Rht1 interaction. Thus, blue light stimulates CRY1 by inhibiting GID1-DELLA
interactions, thereby stabilizing the DELLA proteins and enhancing their inhibition of plant
growth [47]. Both GID1B and RGL3 were significantly up-regulated under DS treatment in
this study (Figure 4), suggesting that dark-UVA supplementation may have influenced the
synthesis of gibberellin and, thus, the morphological changes in kale.

In this study, different light/dark photoperiod supplementation of UV-A (LS, DS, and
LDS) stimulated the growth of kale. Plant height, stem diameter, and total leaf area were
revealed higher under DS treatment (Figure 2), and their angles were less than 90◦, which
indicated those indexes were highly correlative (Figure 3). From WGCNA, plant hormone
signal transduction pathways were found to be predominantly enriched in MM.pink and
MM.blue, while the brassinosteroid biosynthesis pathway was exhibited to apparently
enrich in MM.green (Figure S12), Furthermore, the plant height, stem diameter, and total
leaf area revealed a strong positive correlation with MM.pink and MM.green (Figure 6D).
MM.pink and MM.green were found to have a noteworthily up-expression under DS
treatment (Figure 6C). Combined, the results above (PCA, heatmap, and WGCNA), this
study demonstrated that the combined effect of blue light and UV-A co-stimulated photore-
ceptors resulted in increased expression of phytohormone-related genes (IAA, GH3, GID1,
ARR, etc.), transmitted specific signals and ultimately affected the growth and biomass of
kale. However, the simultaneous supplementation of blue light and UVA at the same time
(LS and LDS) might cause abiotic stress and, thus, lead to a decrease in morphology, while
the UV-A supplementation treatment at the dark photoperiod (DS), where blue light and
UV-A stimulated photoreceptors at different period, achieved the maximum superimposed
effect, resulting in the highest plant height, stem diameter, leaf area, and specific leaf weight
under this treatment. However, plant hormones are synergistically or antagonistically
related to each other, and their regulation of growth and morphology is intricate and
complex. How UVA regulates complex plant hormone signaling at different supplemental
photoperiods and affects the growth of kale needs to be explored more deeply.

Plants have endogenous circadian rhythm functions at the cellular level and a circa-
dian clock that generates 24-h oscillations in gene expression to anticipate diurnal variation
of external environment factors and regulates physiological processes in organisms to
synchronize with the external light-dark cycle (LDC) [48,49]. CCA1 and LHY genes are
morning-expressed MYB transcription factors that have overlapping functions. TOC1 and
PRR1 genes are evening-expressed genes [50]. CONSTANS (CO) is a key transcription
factor in light perception and photoperiodic regulation through the circadian clock too [51].
Under light/dark (14 h/10 h) treatment, ZmCOL06 and ZmCOL19 were indicated to be
down-regulated in the plumule stage of maize, while the radicle and immature leaves
stage were up-regulated [52]. In this study, LHY, APRR5, and two APRR1 genes exhibited
distinct up-regulation in DS, while two APRR9 genes were inhibited (Figure S10). Mean-
while, seven CONSTANS-like genes (two COL15, COL9, two COL10, COL6, and CIA2) all
revealed prominent up-regulation in DS. Circadian rhythm pathway displayed remark-
able enrichment in MM.turquoise (Figure S12), while MM.turquoise presented significant
correlations with plant height, stem diameter, total leaf area, total fresh weight, and total
dry weight (Figure 6D). Meanwhile, MM.turquoise displayed significant up-expression
in DS (Figure 6C), which matched the results with the plant hormone signal pathway. In
short, UV-A supplementation in different light/dark photoperiods stimulated the related
key genes, boosted LDC, and eventually affected the growth and biomass of kale, while DS
treatment generated the most.

Glucosinolates (GLSs) are sulfur-rich and nitrogen-rich secondary metabolites unique
to cruciferous species and can be classified as aliphatic glucosinolate (AGS), indolic glu-
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cosinolate (IGS), and aromatic glucosinolate (RGS), depending on their amino acid pre-
cursors [53]. In this study, seven GSLs, including three aliphatic GLSs and four indolic
GSLs, were exacted and detected by HPLC (Figure 1). Generally, UV-A supplementation
in different light/dark photoperiods signally increased indolic GLSs and total GLSs con-
tent, while LS and LDS treatments significantly increased aliphatic GLSs. Among them,
LS remarkedly increased the SIN content, DS treatment significantly increased the GNA
and 4ME content, and LDS treatment signally increased the GBS content. The content
of 2-phenylethylthioside and 4-methoxy-indole-3-methylenethioside in white mustard
under UVA (365 nm) treatment exhibited significantly higher than control [54]. Supple-
mental 40 µmol·m−2 s−1 UVA-radiation exposure (under 250 µmol·m−2 s−1 white light)
remarkedly up-regulated UVR8 and other genes related to the glucosinolate biosynthesis
pathway, ultimately promoting the GLS accumulation of Chinese kale [31], highly resem-
bling this study (Figure 4). Glucosinolate biosynthesis pathway consists of three parts: side
chain elongation of methionine (Met) and tryptophan (Phe), core structure formation, and
side chain modification [55]. In the core structural part, dark-UVA and light/dark-UVA sup-
plementation significantly upregulated the expression of CYP79B1, CYP79B3, two CYP79A2,
and SOT17. MYB34, MYB51, and MYB122 were important transcription factors for indolic
GLSs biosynthesis [56]. ATR1/MYB34 has been verified to activate CYP79B2, CYP79B3, and
CYP83B1 and regulate homeostasis between indolic GLS and IAA biosynthesis [57]. In this
study, MYB34 (ncbi_106322588) illustrated down-regulation under LS and LDS treatments,
while indicating signally up-regulated under DS. The other MYB34 (ncbi_106303800) exhib-
ited more expression (5.63 < FPKM < 10.273) under DS and LDS treatments than the former
MYB34 (FPKM < 0.983) (Figure S11). Glucosinolate biosynthesis illustrated enrichment
in MM.black, MM.magenta, and MM.turquoise (Figure S12), but GNA, 4OH, GBS, 4ME,
NEO, and total GLS demonstrated strong correlations with MM.turquoise and MM.black,
which were predominantly up-regulation in DS and LDS treatment (Figure 6) and matched
the GLS content (Figure 1). Overall, dark-UVA supplementation and light/dark-UVA
supplementation accelerated the GLS biosynthesis, especially indolic GLS biosynthesis, by
triggering MYB34 to stimulate the key genes (CYP79B1, CYB79B3, and CYP79A2).

UV-A supplementation in different photoperiods (LS, DS, and LDS) signally promoted
the nutritional quality of kale in this study. UV-A supplementation remarkedly increased
soluble protein and Vc contents, with a massive reduction of nitrate content, while soluble
sugar content barely changed (Figure S3). Lettuce leaves grown under low UV-A intensity
(10 µmol·m−2 s−1) also maintained the soluble protein (secondary respiratory substrate)
content during storage, whereas the leaves of the control plants or plants grown under high
UV-A intensity (40 µmol·m−2 s−1) underwent a decrease [12]. Supplemental UV-A (10, 20,
30 µmol·m−2 s−1, 16 h) treatment exhibited higher contents of soluble sugar, soluble protein,
and Vc, about 12.74~26.11%, 13.76~23.53%, and 61.04~66.11%, respectively, compared
with lettuce grown under mixed blue, red, and far-red light, with a photon flux density of
237 µmol·m−2 s−1 in the growth room. Meanwhile, lettuce exposed to different durations
(5 d, 10 d, and 15 d) of UV-A revealed higher contents of Vc and soluble sugar, about
47.46~63.19% and 21.69~42.17%, respectively [14]. Supplemental UV-A (6 µmol·m−2 s−1)
signally decreased the nitrite content of red-leaf lettuce, but massively increased in green-
leaf lettuce [58]. Vc displayed a positive correlation with soluble protein and a negative
correlation with nitrate, which observably matched the results in this study (Figure 3).

Plants could synthesize some antioxidant compounds to cope with UV stresses, e.g., Vc,
phenolic, flavonoids, etc. In the present study, UV-A supplementation in different photope-
riods (LS, DS, and LDS) yielded higher Vc content of kale. DS and LDS signally promoted
FRAP, and LS inhibited total phenolic content, while DPPH and total flavonoids content re-
mained unchanged under supplemental UV-A in different photoperiods of kale (Figure S4).
Total phenolic content revealed negative correlations to DPPH and total flavonoids, while
FRAP exerted positively correlation with Vc (Figure 3). Pea plants could regulate the epider-
mal UV-A absorption and accumulation of individual flavonoids by sensing the complex
radiation signals extending into the visible region of the solar spectrum [59]. The com-
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pounds overproduced by 2 h UV-A (3.16 W·m−2) treatment were GAH I, 4-O-CQA, GAD,
sinapic acid and 1-S-2, 2-diFG, with increments of ~14, 42, 48, 7, and 61%, as compared to
7-day-old control broccoli sprouts [60]. Supplemental UV-A radiation (40 µmol· m−2 s−1)
dramatically enhanced FRAP (~18.3%) of broccoli microgreens [61]. In response to various
stress stimuli in nature, plants produce a range of antioxidants to reduce stress, including
glutathione (GSH). GhGSTF1 and GhGSTF2 could restore pigmentation in the hypocotyl of
the Arabidopsis mutant tt19-7 [62]. The glutathione s-transferase (GST) family influences
many redox-dependent processes, including hormonal and stress responses, and plays
an important role in cellular metabolism and detoxification [63]. The AtGSTU7 mutant
significantly increased the glutathione content of Arabidopsis thaliana compared to the con-
trol [64]. In this study, GSTF10, GSTU24, GGT1, GPX2, GSTU7, GSTU5, GSTF2, GSTU17,
GSTU12, GSTU25, GSTU11, and two GSTF3 were significantly up-regulated in DS and LDS
treatments, indicating that dark photoperiod and light/dark photoperiod supplemental
with UVA significantly promoted glutathione biosynthesis, which enhanced the antioxidant
capacity and increased the antioxidant compounds of kale (Figure S14).

5. Conclusions

As a phytochemical-rich vegetable, kale has led to increasing awareness. This study
validated the morphological and biometric responses of kale to supplemental UV-A in
different light/dark photoperiods via RNA-seq. UV-A supplementation treatments are
conducive to yielding greater biomass and accumulating higher GLS content. Moreover,
DS treatment remarkedly up-regulated the expressions of the key regulatory genes (IAA9,
COL6, APRR1, and MYB34, etc.) involved in important pathways (plant hormone signal
transduction pathway, circadian rhythm pathway, and glucosinolate biosynthesis path-
way, etc.). Thus, supplemental 12 µmol·m−2 s−1 UV-A in dark photoperiod (DS) might be a
valuable method to promote the growth and phytochemical profile of kale in a plant factory.
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